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Cell death is generally classified into two categories: regulated cell death (RCD)

and accidental cell death (ACD). In particular, RCD is a kind of genetically

controlled process, including programmed apoptotic death and programmed

necrotic death. Pyroptosis, an inflammatory form of programmed necrotic

death, causes inflammation in cells. The influence of pyroptosis on tumor is

complicated. On the one hand, pyroptosis triggers antitumor response. On the

other hand, pyroptosis may induce carcinogenesis. Pyroptosis is initiated by

various factors, especially non-coding RNAs. In this review, we discuss the

effects of ncRNAs on pyroptosis and the mechanisms by which ncRNAs initiate

pyroptosis. Moreover, we introduce the influence of ncRNA on tumor

resistance via pyroptosis. Additionally, we summarize how ncRNA-associated

pyroptosis modulates the tumor microenvironment (TME) and thereafter

triggers antitumor immune response. Finally, pyroptosis-related ncRNAs are

promis ing diagnost ic and immunotherapeut ic biomarkers and

therapeutic targets
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Abbreviations: PCDs, programmed cell deaths; GSDMs, gasdermins; TME, tumor microenvironment;

ncRNAs, non-coding RNAs; sncRNA, short ncRNA; lncRNA, long ncRNA; circRNA, circular ncRNA;

microRNA, microRNA; GC, gastric cancer; NSCLC, non-small cell lung cancer; CRC, colorectal cancer;

DAMPs, danger-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; CC,

cervical cancer; GR, glucocorticoid receptor; SBE, SMAD-binding elements; IR, ionizing radiation; HDAC,

histone deacetylase; ASC, apoptosis-associated speck-like protein; TIL, tumor-infiltrating lymphocytes;

ICIs, immune checkpoint inhibitors; TLR, toll-like receptor; DCs, dendritic cells; NK cells, natural killer

cells; AEs, adverse effects; APF, antigen-presenting function.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.982040/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.982040/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.982040/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.982040/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.982040&domain=pdf&date_stamp=2022-08-17
mailto:fccsunzq@zzu.edu.cn
mailto:fccqiaobb@zzu.edu.cn
mailto:zlyyliuyang1440@zzu.edu.cn
https://doi.org/10.3389/fimmu.2022.982040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.982040
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2022.982040
Highlights
Fron
• NcRNA-regulated pyroptosis is a double-edged sword

for tumor development.

• NcRNAs regulate tumor resistance via pyroptosis and

could be potential therapeutic targets to overcome

tumor resistance.

• NcRNAs trigger pyroptosis, causing fierce inflammatory

response and remodeling TME.

• Pyroptosis-related ncRNAs are expected to serve as

biomarkers of diagnoses and immunotherapeutic

efficiency.
Open questions
• The influence of ncRNA-regulated pyroptosis is complex

on tumor and requires further experimentations.

• There is still a lack of a precise pyroptosis-related drug

delivery platform to specifically trigger pyroptosis in

extracellular milieu in tumor sites.

• The factors leading to the expression change of

pyroptosis-associated ncRNAs within a cancerous

context are unknown.

• The mechanisms by which circRNAs are sensed in the

pyroptotic pathway are unclear.
Pyroptosis

The history and characteristics
of pyroptosis

In 1992, Lindgren, S. W. firstly described pyroptosis in

Shigella flexneri-infected macrophages (1). Pyroptosis is the

inflammatory programmed necrotic death that is characterized

by cell lysis, cell content release, membrane rupture, DNA

fragmentation, and an intact nucleus (2–7). Rapid death speed

and huge morphological change distinguish pyroptotic cells

from apoptotic cells (8).

Programmed necrotic death is generally categorized as

necroptosis, ferroptosis, and pyroptosis. Evolutionarily, viruses

attained the ability to evade their host’s defense and the immune

system (9, 10). Necroptosis is thought to be conserved as an

MLKL-mediated necrosis to defend viruses during evolution (11).

Ferroptosis is a kind of iron-dependent necrosis by lipid

peroxidation. Unlike necroptosis and pyroptosis, ferroptosis is

not induced by classic signaling, such as through a death receptor

or a DNA sensor. Additionally, it is not comprehensively clarified
tiers in Immunology 02
how the plasma membrane might rupture in ferroptosis.

Furthermore, this necrotic-type cell death, ferroptosis, occurs in

a non-cell-autonomous manner referred to as synchronized

regulated necrosis (11). Given pyroptosis, it is a gasdermin-

mediated necrosis to amplify inflammasome action and

eventually trigger fierce inflammatory response (12–18).

The roles of pyroptosis in human diseases have emerged.

Triggering pyroptosis contributes to various diseases, including

infection such as L. pneumophila (19, 20), autoinflammatory

genetic diseases such as Familial Mediterranean Fever (FMF)

(21, 22), inflammation such as cytokine release syndrome (CRS)

(23, 24), noninfectious diseases such as alcoholic hepatitis

(25, 26), and cancers such as non-small cell lung cancer

(NSCLC) (27, 28). Notably, pyroptosis is a double-edged

sword for tumorigenesis and progression. LINC00958

inhibited miR-4306 levels to trigger AIM2-mediated pyroptosis

pathway and promoted cancer cell survival (29). By contrast, Liu

et al. reported that pyroptosis attenuates cancer cell viability and

proliferation in glioma (30). Therefore, the mechanisms of

pyroptosis in tumor are attracting increasing attention.
The pathways of pyroptosis

Dying cells caused by therapeutic regimens, including

chemotherapy, radiotherapy, targeted therapy, and immune

therapy, activate pyroptosis in cancer (17, 31). In addition,

alcohol accumulation also triggers pyroptosis in the distal

esophagus (32). However, it is still unclear whether ultrasound

irradiation could activate pyroptosis in extracellular matrix.

Pyroptotic cell death is mainly triggered by two pathways. In

the GSDMD-mediated canonical pathway, the danger-

associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs) induce and activate

caspase-1 inflammasome. Thereafter , the caspase-1

inflammasome cleave GSDMD and pro-IL-1 family. GSDMD-

N terminal (GSDMD-NT), the active state of GSDMD, forms a

pore in cell membrane, leading to the liberation of cellular

contents, including mature IL-1b, IL-18, ATP, HMGB1, and

chemokines (33–35). In addition to caspase-1, caspase-4, -5,

and -11 also are critical for pyroptosis activation. Caspase-4, -5,

and -11 directly recognize bacterial lipopolysaccharide (35),

whereas caspase-11-activating inflammasomes only lead to

GSDMD cleavage without maturation of the cytokines (11,

16). In the GSDME-mediated noncanonical pathway, activated

caspase-3 cleaves GSDME, which converts noninflammatory

apoptosis to inflammatory pyroptosis. GSDME-NT eventually

generates cell membrane pores (36, 37).

There are other GSDM family members mediating

pyroptosis. GSDMA, for example, is the first GSDM family

member be ing ident ified (38) . However , GSDMA

polymorphisms have been linked to autoimmune (39) and

chronic inflammatory diseases (40). The understanding of the
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impact of GSDMA on cancers needs to be further explored. In

addition, the overexpression of GSDMB has been found in many

cancers, such as cervical, breast, gastrointestinal, and hepatic

cancers, which is associated with the poor prognosis (41–44).

Furthermore, GSDMC was first clarified in melanoma as a

marker for progression. It was worth noting that GSDMC can

be induced in breast cancer by hypoxia-triggered STAT2

phosphorylation and its complexation with nuclear-

translocated programmed cell death ligand 1 (PDL1) (45).

Taken together, pyroptosis was firstly observed in infectious

diseases. Furthermore, GSDM family members are the key

executors of pyroptosis. As research on pyroptosis

accumulated, the effects of pyroptosis were clarified deeply and

comprehensively, especially on cancers. Additionally, the

regulatory networks of pyroptosis were also demonstrated,

among which ncRNAs have a pronounced impact on cancer

cell pyroptosis and the tumor microenvironment (TME).
Effects of ncRNAs on tumor
pyroptosis

For decades, in the field of cancer biology, researchers

focused on the involvement of protein-coding genes. However,

recently, it was discovered that an entire class of molecules,

termed non-coding RNA (ncRNA), plays crucial regulatory roles

in shaping cellular activity (46). Accumulating lines of evidence

suggest that ncRNAs could initiate pyroptosis in cancers (47). In

particular, the regulatory functions and molecular mechanisms

of ncRNAs on tumor cell pyroptosis are attracting growing

attention with the development of high-throughput sequencing

technology (48, 49). In this section, we reviewed the influence of

ncRNAs, including microRNA, lncRNA, and circRNA, on

tumor pyroptotic cell death (Figure 1).
MicroRNAs

Numerous studies have found that the dysregulation of

microRNAs is part of the pathological processes of cancers,

including pyroptosis. MicroRNAs bind to a protein-coding

mRNA and thereafter decrease target gene expression

post-transcriptionally (50). In glioma, miR-214 suppresses

cell proliferation and migration via caspase-1-mediated

pyroptosis. Furthermore, miR-214 bind to the 3’-untranslated

region (3’-UTR) of caspase-1 (51). Nevertheless, in cervical

cancer, miR-214 targets NLRP3 and thereafter induces

pyroptosis in cervical cancer (52). Therefore, in distinct

cancers, miR-214 has different targeted genes. Additionally,

miR-145/GSDMD signaling is regulated by tanshinone IIA, a

lipophilic pharmacologically active compound extracted from

Salvia miltiorrhiza Bunge (Danshen) (53). Similarly,

tanshinone IIA enhances the pyroptosis in nasopharyngeal
Frontiers in Immunology 03
carcinoma (NPC) and suppresses the progression of NPC via

miR−125b/foxp3/caspase−1/GSDMD signal ing (54).

Moreover, in enterovirus A71 (EV-A71)-infected human

neuroblastoma, miR-195 inhibits pyroptosis by targeting

NLRX1. Therefore, these mechanisms by which microRNAs

initiate pyroptosis in cancers provide the antitumor therapy

with a novel direction.
LncRNAs

In addition to mRNAs, complementarity between lncRNA

and microRNA has been identified to be part of the regulation of

pyroptosis. In colorectal cancer (CRC), lncRNA nuclear

paraspeckle assembly transcript 1 (NEAT1) enhances the

expression of GSDME and then promotes pyroptosis in CRC

by binding to miR-448 (55). Similarly, lncRNA small nucleolar

host gene 7 (SNHG7) expression was increased in hepatocellular

carcinoma (HCC). Furthermore, SNHG7 inhibited NLR family

pyrin domain containing 3 (NLRP3)-dependent pyroptosis

serving as a competing endogenous RNA of miR−34a (56). In

oral squamous cell carcinoma (OSCC), LINC00958 decreases the

levels of miR-4306 to activate the AIM2-dependent pyroptosis

(29). In ovarian cancer (OC), lncRNA HOTTIP significantly

enhanced NLRP1 inflammasome-mediated pyroptosis via the

miR-148a-3p/AKT2 axis (57). Therefore, lncRNAs targeting

microRNAs are the critical regulators of pyroptosis in cancers

and have the potential of therapeutic targets.

Apart from sponging microRNA, lncRNA could influence

gene expression directly. For example, in NSCLC, lncRNA X

inactive-specific transcript (LNCXIST) suppressed pyroptosis by

inhibiting the SOD2/ROS signal pathway (27). In ovarian

cancer, long noncoding RNA growth arrest-specific transcript

5 (lncRNA GAS5) functions as a suppressor of tumor

progression by inducing inflammasome formation (58).

Meanwhile, lncRNA GAS5 blocks the upregulation of gene

expression by activating glucocorticoid receptor (GR) (59, 60).

Furthermore, the activated GR complex could increase the level

of anti-inflammatory proteins in the nucleus or inhibit the

proinflammatory proteins in the cytosol (58).

Collectively, lncRNAs initiate pyroptosis in TME by acting

as competing endogenous RNAs (ceRNAs) indirectly or

influencing targeting gene expression directly.
CircRNAs

Circular RNAs are a group of different non-coding RNAs

with a covalently closed loop structure (61). CircRNAs are

abundantly expressed in tumor cells and initiate the

pyroptosis-related gene expression (62, 63). On the one hand,

circRNAs initiated DNA methylation of pyroptosis-associated

genes (64). For example, in glioma cells, circRNA-0001836
frontiersin.org
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promotes the expression of NLRP1 via DNA demethylation,

leading to the activation of pyroptosis (30). In vivo, knockdown

of circRNA-0001836 suppressed tumorigenesis by activating

NLRP1/GSDMD signaling (30). On the other hand, circRNAs

unlock the inhibitory effects of microRNAs on downstream

targets serving as microRNA sponges (65–67). For instance, in

lung adenocarcinoma (LUAD), circNEIL3 initiates pyroptosis

by directly binding to miR-1184 (68). However, the mechanisms
Frontiers in Immunology 04
by which circRNAs are sensed in the pyroptotic pathway are still

vague, which needs to be further explored in the future.

In summary, microRNA, lncRNA, and circRNA initiate

cancer cell pyroptosis by sponging upstream or downstream

molecules. Understanding these mechanisms has pronounced

effects on the development of diagnostic biomarkers and

therapeutic targets in clinics. In the future, screening the

comprehensive spatial and temporal RNA-expressing profiles
A B D E
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C

FIGURE 1

Molecular mechanisms that regulate pyroptosis in cancers. (A) In non-small cell lung carcinoma, LNCXIST regulates pyroptosis via the miR-335/
SOD2 axis and SMAD2/NLRP3 axis simultaneously. (B) In colorectal cancer, LNCNEAT1 regulates pyroptosis via the miR-448/GSDME axis, and
LNCRP7-85F18.6 regulates pyroptosis via △Np63. (C) In ovarian cancer, LNCHOTTIP regulates pyroptosis via the miR-148a-3p/AKT2/NLRP1
axis. Meanwhile, LNCGSA5 interferes with glucocorticoid receptor (GR), which blocks the upregulation of anti-inflammatory proteins and
eventually promotes inflammasome formation. (D) In oral squamous cell carcinoma, LNC00958 regulates pyroptosis via the miR-4306/AIM2
axis. (E) In gastric cancer, LncRNA ADAMTS9-AS2 regulates pyroptosis via the miR-229-3p/NLRP3 axis. (F) In glioma, downregulation of
circ0001836 promotes pyroptosis via epigenetically upregulating NLRP1. Meanwhile, miR-214 directly binds to the 3’-UTR of caspase-1 and
consequently inhibits pyroptosis. (G) In hepatocellular carcinoma, LNCSNHG7 regulates pyroptosis via the miR-34a/SIRT1 axis. (H) In cervical
cancer, miR-214 regulates pyroptosis via targeting to NLRP3. Moreover, tanshinone IIA promotes pyroptosis via upregulating miR-145. (I) In
nasopharyngeal carcinoma, tanshinone IIA regulates pyroptosis via the miR-125b/FOXP3 axis.
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of each cancer is needed to expand the utilization of pyroptosis

for cancer therapy.
The influences of pyroptosis-related
ncRNAs on tumor resistance

Although overall survival has been prolonged significantly

with various treatments, tumor resistance remains an obstacle in

clinics (69). Tumor resistance is complex and multifaceted. In

2020, David M. Hyman defined and separated the key

determinants of tumor resistance, including tumor burden,

growth kinetics, tumor heterogeneity, physical barriers,

undruggable cancer drivers, application of therapeutic

pressures, immune system, and microenvironment (70).

Pyroptosis, an inflammatory PCD, has attracted notable interest

within the cancer research community for its potential to address

tumor resistance by remodeling immunosuppressive TME.

Recently, it has been illustrated that ncRNAs may regulate

tumor resistance via pyroptosis (71, 72). For example, lncRNA X

inactive-specific transcript (LNCXIST) is upregulated in cisplatin

[cis-diamminedichloroplatinum (II); DDP]-treated NSCLC. In

vitro, LNCXIST knockdown enhances DDP chemosensitivity via

pyroptosis (71). Furthermore, LNCXIST binds to the TGF-b
effector SMAD2, inhibiting its translocation to nucleus. The

SMAD2 in nucleus prevented the transcription of NLRP3 (71).

Eventually, the DDP chemoresistance is promoted by LNCXIST

via pyroptosis. In vivo, similarly, LNCXIST mediates DDP

chemoresistance by inhibiting pyroptosis (71). Additionally, the

expression of miR-556-5p is significantly upregulated in the

cisplatin-resistant NSCLC (CR-NSCLC) than the cisplatin-

sensitive NSCLC (CS-NSCLC) (28). Knockdown of miR-556-

5p triggered pyroptotic cell death in cisplatin-treated CR-NSCLC

cells via upregulating NLRP3 (28). Moreover, the expression of

lncRNA ADAMTS9-AS2 was downregulated, and miR223-3p

was upregulated in cisplatin-resistant gastric cancer (CR-GC)

(73). Furthermore, the overexpression of lncRNA ADAMTS9-

AS2 enhanced the cytotoxic effects of cisplatin on CR-GC with

the upregulation of NLRP3 inflammasome through targeting

miR-223-3p (73). Therefore, these identifications suggest that the

expression of LNCXIST, lncRNA ADAMTS9-AS2, miR-556-5p,

and miR-223-3p may serve as promising biomarkers to predict

DDP treatment efficacy, and may help in the design of new

therapies to circumvent DDP chemoresistance in NSCLC and

other tumor types.
NcRNAs remodel tumor
microenvironment via pyroptosis

The ncRNA-regulated pyroptosis releases various cellular

contents, such as inflammatory caspase, IL-1 family, cleaved
Frontiers in Immunology 05
GSDMD, and chemokines (74), most of which must not be

liberated normally. These cellular contents cause unexpected

reactions in TME.
The effects of pyroptosis-related ncRNAs
on chronic inflammation

The chronic inflammation caused by ncRNA-regulated

pyroptosis promotes tumorigenesis (75), progression,

angiogenesis, and metastasis (76–78). For example, in oral

squamous cellular carcinoma (OSCC), LINC00958 activates

AIM-mediated pyroptosis pathway, which released caspase-1

and IL-1 family into TME and eventually caused chronic

inflammation in TME (29). Moreover, the tumor-promoting

effects of inflammation were confirmed in the CANTOS trial, in

which anti-IL-1 antibody significantly prolonged overall survival

and reduced the incidence of lung cancer (79). Therefore, the

ncRNA-regulated pyroptosis may have strong tumor-promoting

effects in the early stage of tumors.
The effects of ncRNAs on
antitumor immunity

The tumor with low levels of tumor-infiltrating lymphocytes

(TILs) was named “cold tumor”, which is considered as non-

responsive to immune checkpoint inhibitors (ICIs) (80). In

addition to “cold tumor”, many tumors possess acquired

resistance to ICI therapy (80), which remarkably constrains

the efficiency of ICIs. MiR-214 elicits robust antitumor

immune response in TME via promoting pyroptosis with the

elevation of IL-1b, IL-18, and caspase-1 (51). After being

liberated into TME, IL-1b promotes the maturation of

dendritic cells (DCs), activates antigen-specific cytotoxic CD8+

T cells, recruits Th1 CD4+ T cells, and represses the

differentiation of immunosuppressive Treg cells (81, 82).

Additionally, IL-18 polarizes Th1 cells, recruits and activates

natural killer (NK) cells, and produces adhesion molecules,

chemokine, and nitric oxide (83) (Figure 2).

Therefore, these inflammatory cytokines and caspase not

only cause the innate immune response, but also recruit adaptive

immune cells, promote antigen presentation, and activate toll-

like receptor (TLR) (82, 84, 85). Consequently, ncRNA-regulated

pyroptosis enhances the efficiency of immunotherapy. In the

future, understanding the underlying mechanisms of pyroptosis-

produced inflammatory mediators in TME and the methods to

manipulate the inflammatory condition via ncRNA-regulated

pyroptosis is critical to increase the clinical effect of ICIs

on patients.

Collectively, ncRNA-regulated pyroptosis not only converts

“cold tumor” to “hot tumor”, but also unleashes various

inflammatory mediators to reboot immune response in TME.
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Therefore, screening ncRNA-expression profiles spatiotemporally

is meaningful to expand the clinical application of pyroptosis.
The clinical value of ncRNAs in
pyroptotic cancer cells

Numerous studies have verified that ncRNAs are involved in

cell pyroptosis and regulate the content of TME. Hence,

converting these studies to clinics is rational and feasible.
Pyroptosis-associated ncRNA as
diagnostic and immunotherapeutic
biomarkers

Liquid biopsy is characterized by minimal invasion, which is

non-invasive and accessible for cancer diagnosis and monitoring

(86). As the mechanisms by which ncRNAs initiate the

pathogenesis of cancers were found, the potential diagnostic

biomarkers have been emerging. In ovarian cancer, the levels of

lncRNA GAS5 was downregulated, while lncRNA HOTTIP was

upregulated, indicating that lncRNA GAS5 and HOTTIP may be

the futuristic diagnostic biomarkers (57, 58). Similarly, the

expression of lncRNA RP1−85F18.6 and DNp63 increased and

GSDMD cleavage was suppressed in primary CRC, which

suggests that the levels of lncRNA RP1−85F18.6, DNp63, and
GSDMD-N domain should be highlighted diagnostically.

Additionally, cancer immunotherapy has gained success in
Frontiers in Immunology 06
prolonging the survival of patients. However, only a small

proportion of patients achieved satisfactory clinical outcomes

after immunotherapy (87). Therefore, identifying more precise

biomarkers in liquid biopsy for predicting the efficiency of

immunotherapy is urgent. For example, it was observed that

LNCXIST (27, 71) and miR-556-5p (28) were upregulated in

NSCLC, whereas pyroptosis was suppressed. The pyroptosis-

generated inflammation evokes a switch from cold tumor to hot

tumor, which promotes immunotherapy response. Therefore,

LNCXIST and miR-556-5p are the feasible biomarkers for

predicting whether patients with NSCLC could respond to

immunotherapy effectively.
Pyroptosis-associated ncRNAs as novel
chemo- and immunotherapeutic
direction

Tumor resistance has significantly constrained the efficiency

of current drugs such as cisplatin (28, 73), sorafenib (88, 89), and

pembrolizumab (90, 91). One way to overcome tumor resistance

is to develop novel anticancer drugs. For instance, in glioma, the

validity of circ_0001836 (30) and caspase-1 (51) serving as

therapeutic targets for the treatment of gliomas has been

proven. Because there is a conserved binding site for miR-214

in the 3’UTR of the caspase 1 gene. By binding to the the 3’UTR,

miR-214 could inhibit cell proliferation and migration in glioma.

Meanwhile, circ_0001836 ablation suppresses tumorigenesis in

the xenograft model by triggering pyroptosis via epigenetically
FIGURE 2

The influence of pyroptosis on TME.After being released into TME, IL-1b escalates the maturation of dendritic cells (DCs), activates antigen-
specific cytotoxic CD8+ T cells, recruits Th1 CD4+ T cells, but suppresses the differentiation of immunosuppressive Treg cells. IL-18 polarizes
Th1 cells, recruits and activates natural killer (NK) cells, and produces adhesion molecules, chemokine, and nitric oxide.
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upregulating NLRP1. Nevertheless, the innovation, design, and

validation of a new anticancer drug require extraordinary

investment and effort. Therefore, natural products have been

reviewed, and it has been identified that natural products are a

type of potent noncanonical cell death inducers in antitumor

therapy (92). For example, tanshinone IIA, a major component

of S. miltiorrhiza, suppresses cell proliferation and promotes

pyroptosis in nasopharyngeal carcinoma by targeting the miR-

125b/foxp3/caspase-1 axis, and it is believed that tanshinone IIA

is a potent molecule to exert anticancer effects (53, 54).

Additionally, in cervical cancer, tanshinone II A was found to

regulate tumor growth via the miR-145/GSDMD signaling

pathway. The expression of GSDMD and miR-145 was

dramatically increased after tanshinone II A administration

(53). However, one big obstacle to utilizing ncRNAs clinically

is the precise delivery of ncRNAs to specific tissues (93).

Accumulating lines of evidence have demonstrated that

engineered exosome is expected to be a new generation of

bioinspired nanoscale drug delivery systems (DDS), which

could release chemotherapeutic drugs, mRNAs, regulatory

ncRNAs, lipids, and proteins specifically (94–96). For example,

engineered exosomes loaded with miR-449a specifically suppress

the growth of homologous NSCLC in vitro and in vivo (97).

Although there are no reports about the engineered exosomes’

loaded ncRNAs regulating pyroptosis in cancers, engineered

exosomes could act as DDS to modulate pyroptosis in tumor

sites precisely. With the precise delivery platforms, pyroptosis-

associated ncRNA drugs have the ability to attain stronger

anticancer effects and less unexpected side effects. Therefore,

pyroptosis-related ncRNAs offer clinicians a novel direction for

either developing new drugs or identifying potent

natural products.

Collectively, the tissue-specific characteristics of ncRNAs

make it possible to diagnose primary cancer and predict the

efficiency of immunotherapy. Engineered exosomes loaded with

pyroptosis-related ncRNAs may manipulate tumor-specific

pyroptosis for chemo- and immunotherapy precisely.
Conclusion

Taken together, this article reviews the effects of pyroptosis-

associated ncRNAs in cancers. Furthermore, we summarize the

mechanisms by which ncRNAs initiate pyroptosis. Meanwhile,

we outline the influence of ncRNAs on tumor resistance and

TME via pyroptosis. Finally, the promising biomarkers and

therapeutic targets of pyroptosis-associated ncRNAs are

discussed. In the future, the increasingly new advanced

analytical techniques and nanotechnology are expected to

provide new insights into ncRNA-based biomarkers and drugs.

However, the influence of ncRNA-regulated pyroptosis on

tumor resistance and microenvironment is complex. There still
Frontiers in Immunology 07
exist many problems about the regulation of ncRNAs on

pyroptosis, for example, whether there are other ncRNAs that

initiate pyroptosis and how ncRNA-regulated pyroptosis

modulates tumor resistance and immunity spatiotemporally.

Additionally, it is also vague what leads to the expression

change of pyroptosis-associated ncRNAs within a cancerous

context and how circRNAs are sensed in the pyroptotic

pathway. In the future, more experiments are needed to

resolve the above questions.
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