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High-performance nanoscale 
topological energy transduction
Timothy M. Philip   1,2 & Matthew J. Gilbert1,2

The realization of high-performance, small-footprint, on-chip inductors remains a challenge in 
radio-frequency and power microelectronics, where they perform vital energy transduction in filters 
and power converters. Modern planar inductors consist of metallic spirals that consume significant 
chip area, resulting in low inductance densities. We present a novel method for magnetic energy 
transduction that utilizes ferromagnetic islands (FIs) on the surface of a 3D time-reversal-invariant 
topological insulator (TI) to produce paradigmatically different inductors. Depending on the chemical 
potential, the FIs induce either an anomalous or quantum anomalous Hall effect in the topological 
surface states. These Hall effects direct current around the FIs, concentrating magnetic flux and 
producing a highly inductive device. Using a novel self-consistent simulation that couples AC non-
equilibrium Green functions to fully electrodynamic solutions of Maxwell’s equations, we demonstrate 
excellent inductance densities up to terahertz frequencies, thus harnessing the unique properties of 
topological materials for practical device applications.

On-chip inductors are integral, passive circuit components that convert or transduce electrical energy into mag-
netic energy for use in a variety of analog filter and voltage regulating circuits1–3. Two key requirements for 
effective on-chip inductors are: a small footprint to allow for the integration of more active components within 
modern microelectronic chips and a high operating frequency as necessitated by the operating frequencies of 
modern and future device technologies. Due to the demands of the planar fabrication process, typical on-chip 
inductors consist of spiraled metallic wire traces, usually made from copper, that link the magnetic flux generated 
by the concentric coils to concentrate magnetic energy. Although the spiral geometry maximizes flux linkage for 
a two-dimensional system, limitations in fabricating highly-conducting, closely-spaced spiraled traces results in 
the consumption of a large chip area to create components with significant inductance4. Various solutions have 
been proffered to mitigate this issue from the incorporation of magnetic NixFe1−x yokes to enhance the magnetic 
field through the core4–6, to the substitution of graphene7–9, or carbon nanotubes10 for the conducting material to 
increase the current flow within the coils. These solutions, however, are limited by their operating frequency, as 
is the case for magnetic yokes in copper inductors4, or by their fabrication reliability and low inductance density, 
for the carbon-based designs. Fundamentally, an inductor design based on new phenomena, geometries, and 
materials would enable on-chip inductors to achieve the size and inductance targets needed for nanoscale circuits 
of the future11.

Recently discovered three-dimensional, time-reversal-invariant topological insulators (TIs) have drawn sig-
nificant attention for possessing high mobility and for hosting novel physical phenomena12–15, A number of device 
applications using the unique properties of TIs ranging from transistors16–18, and interconnects19, 20, to more 
exotic applications such as spintronics21–23, and quantum computation24 have been suggested, yet few have offered 
the performance or reliability necessary to be considered for integration into next-generation, post-CMOS elec-
tronic circuits. Like ordinary insulators, TIs have a bulk electronic band gap, but the nontrivial topology of their 
band structures results in gapless conducting two-dimensional Dirac fermions on their surface25–27, Using the 
unconventional physics enabled by the Dirac surface states such as the anomalous Hall effect (AHE)28, 29, and the 
quantum anomalous Hall effect (QAHE)30, 31, we present a pragmatically different geometry for magnetic energy 
transduction that does not rely on the conventional method of physically spiraling a conductor. We theoretically 
investigate the performance afforded by our topological inductor design by utilizing a novel hybrid quantum 
transport and electrodynamics simulation that captures the dynamic fields that enable flux linking.

1University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, IL, 61801, 
USA. 2University of Illinois at Urbana-Champaign, Micro and Nanotechnology Laboratory, Urbana, IL, 61801, USA. 
Correspondence and requests for materials should be addressed to T.M.P. (email: tphilip3@illinois.edu)

Received: 8 February 2017
Accepted: 20 June 2017
Published online: 27 July 2017

OPEN

http://orcid.org/0000-0001-6522-0563
mailto:tphilip3@illinois.edu


www.nature.com/scientificreports/

2SCienTifiC REPOrTS | 7: 6736 | DOI:10.1038/s41598-017-06965-8

Results
Device design and ideal operation.  The surface states of a TI are Dirac electrons characterized by the 
low-energy energy-momentum dispersion26

= +E v Mk , (1)Fsurf
2 2 2 2

where ħ is the reduced Planck’s constant, vF is the electron’s Fermi velocity, k is the electron’s momentum, and M 
is the magnetically-induced Zeeman energy. Figure 1 illustrates the linear dispersion of the surface states in the 
absence of ferromagnetism when M = 0. The linear dispersion combined with the fact that spin, illustrated by 
the superimposed arrows in Fig. 1, is locked to momentum results in highly conductive surfaces with suppressed 
backscattering32. When a perpendicularly-oriented ferromagnet is placed in proximity to the surface resulting in 
M ≠ 0, a gap opens in the dispersion that divides the surface states into topologically nontrivial 2D bands33–35, 
characterized by the Chern number ν, as indicated in Fig. 1. When the magnetization orientation is away from 
(towards) the bulk, M is positive (negative), resulting in the lower occupied band having a Chern number ν of 
+1/2 (−1/2). When an electric field is applied in a Chern insulating system while the chemical potential lies 
within the magnetic gap, charge is pumped perpendicular to the field by the QAHE with a quantized Hall con-
ductivity σxy = νocc.e2/h, where νocc. is the sum of the Chern numbers of all occupied bands, e is the electron charge, 
and h is Planck’s constant36, 37.

Figure 2a illustrates how this unique Hall response can be utilized to make a highly-efficient topological 
inductor. The design involves a TI substrate where the chemical potential is within the bulk band gap, resulting in 
transport being carried solely through the surface states. Ferromagnetic islands (FIs), indicated as orange and 
purple squares corresponding to +ẑ and −̂z oriented magnetizations, respectively, are placed on the surface of the 
TI to selectively create magnetic band gaps in the surface state dispersion. For ideal operation, the chemical 
potential is placed within the magnetic band gap such that the ferromagnetically-doped regions are insulating. 
When the surface current density J, generated by a bias V applied in the x̂ direction, encounters the first island 
with M > 0 and νocc. = +1/2, it is guided counter-clockwise around the island by the QAHE. After traversing 
around the first island, the surface current is then directed clockwise around the second island with M < 0 and 
νocc. = −1/2 by the opposite flowing QAHE. By directing the current density around the islands, the 
current-generated magnetic flux density B is concentrated through the FIs resulting in the storage of magnetic 
energy. The magnetic fields generated by circulating currents around an FI, in addition to that created by the 
currents encircling nearby FIs, create flux linkages that amplify the magnetic energy within the system and result 
in a highly inductive device. 

Our inductor design is notable in that the orientations of the FIs do not switch with the direction of current 
flow as is the case in modern, ferrite-core inductors. Typical designs that use magnetic materials utilize soft ferro-
magnets with a low coercivity in order to easily and rapidly switch the magnetization with the direction of current 
flow. Switching ferromagnetics domains, however, is not possible beyond the ferromagnetic resonance (FMR) 
frequency, which ultimately limits the high-frequency operation of ferrite-core inductors6. In contrast, the top-
ological inductor can sustain its performance well beyond the FMR frequency, despite the use of ferromagnetic 
materials, as the FI are used to provide proximity-induced magnetization to open a gap in the topological surface 
states. Our design, therefore, can benefit from the use of hard ferromagnetic materials such as Co/Pd multilayers 
that possess high coercivity, exchange coupling, and magnetic anisotropy38. The high coercivity of these materials 
minimizes the influence of the strong spin torque that has been observed in the surface states of TIs and has been 
shown to alter the magnetization of softer ferromagnets39–41. In addition, Co/Pd multilayer islands have been 
shown to form single magnetic domains42 and maintain antiparallel alignments even in tightly-packed, nanoscale 
arrays43. Furthermore, their orientation can be manipulated with relative ease using magnetic force microscopy 
cantilevers or giant magnetoresistive recording heads, thereby providing a viable route to fabricate and orient the 
FI arrangement required for our design.

Figure 1.  Physics of topological insulator surface states. The surface states of TIs host 2D Dirac surface states 
with linear dispersion when there is no magnetic Zeeman interaction (M = 0). Their characteristic spin-
momentum locking is evident from the superimposed arrows indicating the spin. When magnetization is added 
with M > 0, a gap is generated creating two topologically nontrivial bands with Chern numbers ν = ±1/2. When 
the sign of the magnetization is flipped with M < 0, the Chern numbers of the resulting bands also switch.
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We theoretically evaluate the basic implementation and efficacy of the topological inductor by simulating 
the device using a novel method that couples AC quantum transport self-consistently with the full solution of 
Maxwell’s equations for electrodynamics in three-dimensions. A fully quantum treatment of transport is neces-
sary to capture the topological QAHE that is integral to the device operation. We use the AC non-equilibrium 
Green function (NEGF) technique that computes the first-order response of a device to an AC driving voltage 
(See Methods section)44–46. The computed currents and charge density from AC NEGF are then input into a fully 
dynamic finite-difference frequency-domain (FDFD) electromagnetics simulation47 to accurately evaluate the 
inductance resulting from the dynamic magnetic flux generation (See Methods section). The output electrody-
namic potentials are then input back into the transport equations resulting in a iterative cycle that is terminated 
once the change in dynamic potentials between successive iterations is less than 1 μV, which we define as our 
criterion to reach self-consistency. It is important to note that a simple self-consistent solution of Poisson’s equa-
tion severely underestimates the inductance even at low frequencies, thus demonstrating the necessity for the 
full dynamic electromagnetic calculation to capture the flux linking by the circling currents (See Supplementary 
Note 1 and Supplementary Fig. 1). As previously noted, we assume that the FIs have high coercivity, thereby 
allowing us to neglect magnetization dynamics.

Using this coupled AC NEGF-FDFD technique, we simulate a (12a0, 10a0, 5a0) device, where a0 = 1 Å, with a 
model Hamiltonian that reproduces the same symmetries of a 3D TI and has a bulk band gap of 1 eV (See 
Methods section). Square FIs are placed on the top surface with side length of 0.3 nm, separation of 0.2 nm, and 
M =  ± 0.2 eV. The chemical potential is set to 0.1 eV to be within the magnetic gap such that the inductor operates 
within the QAHE regime. The temperature is set to 300 K, but results are largely insensitive to the specific choice 
as long all relevant energy scales are well above the thermal energy. After self-consistency is attained, the induct-
ance L is calculated as L = 2EB/I2, where I is the current through the device and the stored magnetic energy EB is 
calculated as ∫=

μ
E dV BB

1 2

0
, where μ0 is the magnetic permeability of the material and B is the magnetic flux 

density.
Figure 2b displays the AC current density profile of the top surface of the device at a frequency of 10 GHz and 

AC voltage of 10 mV. Since the AC observables are averaged over the period of the driving frequency, the resultant 
current density appears to completely encircle the islands due to the addition of forward and backward current 
flow. This current circulation due to the QAHE generates high magnetic fields over the islands as shown in Fig. 2c. 
In Fig. 2d, we repeat the simulation of the topological inductor over a frequency range from 10 MHz to 1 THz. 
Without any specific optimization of the device geometry, we achieve an inductance density of 225 nH/mm2, an 
order of magnitude greater than the 23.2 nH/mm2 attained by CNT inductors and comparable to the 1000 nH/

Figure 2.  Schematic and ideal operation of the topological inductor. (a) A schematic of a two-island topological 
inductor that utilizes the surface states of a time-reversal-invariant TI. By alternating the magnetization of each 
subsequent island, indicated by the orange and purple squares, under bias, the surface current density wraps 
around the FIs because of the QAHE induced by the ferromagnetism. The altered motion of the current around 
the islands concentrates magnetic energy through the islands, resulting in enhanced inductance. (b) The self-
consistent AC NEGF simulation of the the current density in the top surface of a topological inductor under an 
AC bias of 10 mV reveals the circulating currents generated by the QAHE. The FIs are indicated by the two 
colored squares where the Zeeman field M is nonzero, and the current density by the black arrows. (c) The 
resulting ẑ-directed magnetic flux density Bz at an AC bias of 10 mV, where the gray outline indicates the 
position of the inductor. The electromagnetic domain is larger than the NEGF domain to capture any fringing 
and radiating fields. (d) The frequency response of the topological inductor demonstrates high inductance 
density up to terahertz frequencies.
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mm2 of high-density copper spiral inductors. The topological inductor sustains this performance over the entire 
frequency range simulated, which is well above the low cut-off frequencies, ranging from 0.2 GHz to 150 GHz, of 
other current and proposed designs. When we simulate a bare TI without the FIs, we find that the surface states 
naturally have an inductance density less that is than one pH/mm2, which demonstrates the dramatic increase the 
FIs can have on energy transduction. At high frequencies near 1 THz, we observe an increase in the inductance 
both with and without islands. At such high frequencies, spurious charge accumulation due to the AC NEGF 
contact approximation utilized results in an artificial increase in the inductance46. In principle, however, the only 
limitation on operation frequency is the size of the island compared to the wavelength of the driving voltage. 
Once the island side length exceeds half a wavelength, the rapidly oscillating electric field does not produce uni-
form circulating currents around the islands, resulting an unreliable current density and magnetic field profile.

Non-idealities.  The performance of the topological inductor is intimately tied to the flux linking between 
adjacent current loops and therefore is a function of the spacing between successive islands. Thus, we simulate a 
larger (32a0, 10a0, 5a0) structure with 0.3 nm side length islands, a frequency of 10 GHz, and island spacing rang-
ing from 0.2 nm to 1.7 nm to understand the effect of island spacing on the observed inductance. In Fig. 3a, we 
plot the inductance in addition to the numerically calculated and analytically approximated square of the current 
between the FIs, Iy

2, (See Supplementary Note 2 and Supplementary Fig. 2). The magnetic field generated by the 
circulating current is proportional to current density by Ampére’s law, and inductance is proportional to the 
square of the magnetic field. Therefore, it follows that the peak inductance can be found by maximizing the 
amount of current that circulates around and between the islands, which is proportional to Iy. The analytic 
approximation for the current between the islands, approximated as semi-infinite magnetic regions, reveals that 
the current between the islands varies sinusoidally with island spacing. The inductance peaks at the width that 
captures a half period of the sinusoidal current profile, which corresponds a spacing of 1.2 nm in our system. After 
1 nm, the islands can no longer be approximated as semi-infinite, and thus the analytic calculations begins to 
deviate from the numerical.

The chemical potential, μ, in TIs cannot always be accurately placed within the magnetic band gap. For exam-
ple, in the TI Bi2Se3, the proliferation of selenium vacancies in the growth process results in a highly 
electron-doped material in which the chemical potential crosses the bulk bands48. Controlling the chemical 
potential position in these materials with conventional methods such as electrostatic gating has proved to be 
challenging49 and thus it is imperative to understand how its position effects the resultant inductance. Figure 3b 

Figure 3.  Device performance with respect to island spacing, chemical potential, and impurity disorder. (a) The 
inductance is maximized when a half-period of the input voltage signal is captured between the FIs and is 
proportional to the square of the current between the FIs, Iy

2, which is calculated numerically and approximated 
analytically. (b) Inductance at a frequency of 10 GHz as a function of chemical potential. The locations of 
μ1 = 0.1 eV, μ2 = 0.3 eV, and μ3 = 0.6 eV, which lie within the magnetic gap, inside only the surface bands, and 
inside both the surface and bulk bands, respectively, are illustrated on the band structure schematic in the inset. 
(c) The magnetic field Bz as a function of x at y = y0 (see inset device schematic) increases with chemical 
potential. The shaded regions correspond to the location of FIs. (d) The current density Jy at y = y0 reveals that 
the the stronger magnetic field is due to the increase in circulating current around the islands. (e) Inductance of 
the design under the influence of random disorder impurity potentials. (f) The current density on the surface of 
the device is illustrated at disorder strength of D = 0.6 eV, where the square outlines mark the location of the FIs. 
As disorder is increased, the current density becomes dominated by circulating currents caused by skew 
scattering off impurities. (g) A schematic of skew scattering, whereby electrons with different spins scatter to 
different directions due to an asymmetry in the scattering amplitude of a given spin, generated by broken time-
reversal symmetry. (h) Skew scattering is easily recognized in a simulation of a single magnetic island, indicated 
by the blue square with M = −0.2 eV, and a nearby row of impurities with strength 1.7 eV, indicated by the red 
rectangle. The characteristic rotation of current around the FIs is disrupted by skew scattering, resulting in the 
accumulation of spin on each side of the impurities.
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shows that the inductance in fact decreases with increasing μ at a frequency of 10 GHz. To better understand the 
device response to the chemical potential placement, we consider three values depicted in the inset: μ1 = 0.1 eV, 
which lies within the magnetic band gap, μ2 = 0.3 eV, which crosses the surface band, and μ3 = 0.6 eV, which 
crosses both the bulk and surface bands. Figure 3c shows a cross section along the center of the device, y = y0 in 
the inset, of the ẑ magnetic flux density, Bz, with the location of the FIs illustrated by orange and purple shaded 
regions. We see that the magnetic flux density grows with increasing chemical potentials μ2 and μ3. Figure 3c 
similarly displays a cross cut of the the ŷ current density, Jy, and reveals that the the increased magnetic flux den-
sity is due to the increase in current circulating around the islands. When the chemical potential crosses the sur-
face bands at μ2, the QAHE is replaced by the AHE, whereby a bulk, non-quantized transverse current is 
generated by a longitudinal electric field28. The AHE combined with increased electron density at the higher 
chemical potentials results in the larger current densities observed. The enhancement of the magnetic flux density 
and circulating current density, however, is offset by an increase in terminal current, resulting in the net decrease 
of inductance seen in Fig. 3b. Raising μ further to μ3, where bulk states contribute to transport, results in a further 
reduction in inductance as the terminal current is again increased. Despite this non-ideal current flow resulting 
from the AHE and additional conduction through the bulk states, we observe only a 4% reduction in inductance 
at μ = 0.7 eV, indicating that the performance of the inductor is largely independent of the specific location of the 
chemical potential.

Conduction through the surface states of TIs is known to be robust to the presence of non-magnetic  
disorder32, 50, but time-reversal-breaking ferromagnetism can destroy this topological protection51. Since the 
operation of the topological inductor is reliant on the presence of FIs that break time-reversal symmetry, the 
surface states may not be as resilient to disorder as a pristine TI sample. To characterize the influence disorder has 
on the topological inductor performance, we calculate the inductance with the original dimensions of  
(12a0, 10a0, 5a0) at a frequency of 10 GHz with μ = 0.1 eV and include the presence of on-site impurity potentials 
throughout the device domain with energies ranging between −D/2 and D/2, where D is the disorder strength. 
Figure 3e shows the simulated inductance averaged over three real-space disorder potential configurations as a 
function of the disorder strength. We find that the inductance rises with disorder strength, leading to an induct-
ance density of 1.5 μH/mm2 at D = 0.6 eV. We also observe that the variance in inductance increases with disorder 
strength, indicating that the physical layout of dopants plays a considerable role in the resulting energy transduc-
tion. Figure 3f shows the current density profile of the top layer of the device overlaid on a specific disorder poten-
tial profile distribution with D = 0.6 eV. Rather than observing the currents circulating around the FIs, we see a 
much more erratic current distribution. The disorder strengths studied here are lower than that which would be 
necessary for a disorder-induced phase transition52. Thus, the disturbances observed are related to scattering in 
the now vulnerable surface states. The origin of such unpredictable electron motion can be traced back to the 
onset of skew scattering off the impurity potentials. Skew scattering, illustrated schematically in Fig. 3g, is a 
spin-selective scattering mechanism that, although unrelated to topological character, is unique to systems pos-
sessing strong spin-orbit coupling and broken time-reversal symmetry, as considered here53, 54. In skew scattering, 
the time-reversal-breaking magnetic field or magnetization generates an asymmetry in the scattering transition 
probability based on the spin of the electron28, 55, 56, Therefore, an spin-up electron deflects off an impurity in the 
opposite direction of a spin-down electron. Since the surface states of the TI are spin-momentum locked, 
right-moving electrons have opposite spin of left-moving electrons and therefore scatter in opposite directions. 
Figure 3h shows this clearly in a simulation of a single FI with M = −0.2 eV marked with the blue square and a 
row of impurity potentials with barrier height 1.7 eV marked by the red rectangle. The physical origin of the 
asymmetric scattering is easily understood in this example: a left-moving electron encountering the impurities 
will more likely deflect above them into the circulating QAHE current around the FI. Similarly, it is energetically 
unfavorable for right-moving electrons to scatter into the opposite-moving QAHE current, so they scatter below 
the impurities. Because left-moving and right-moving electrons take opposite paths around the dopants, the AC 
current density distribution in Fig. 3h appears to encircle the impurities. The expectation value of ẑ spin, 〈Sz〉, 
accumulates with opposite sign on each side of the impurities, which demonstrates that the underlying mecha-
nism for this disturbance to the current profile is indeed skew scattering. The inadvertent current circulation 
around impurities due to skew scattering causes localized magnetic flux “pockets” away from the magnetically 
defined regions, resulting in a net increase in the inductance of the device. However, because these impurities are 
randomly placed these calculations show that although disorder does not degrade performance in the topological 
inductor, it does make the inductance more difficult to predict due to the loss of control of the surface current 
density distribution.

Discussion
In order to benchmark the topological inductor for use as an on-chip inductor, we compare its performance to cur-
rent and proposed inductor designs in Table 1. Although the physical dimensions of our simulated device are small, 
by comparing inductance per unit area, we obtain metrics that are independent of the device geometry, thereby 
allowing us to compare different technologies on equal footing. The low resistance of copper combined with 
recent advances in depositing magnetic yokes to enhance magnetic flux linking gives copper inductors superior 
low-frequency performance exceeding 1700 nH/mm2 6. This high inductance density, however, is limited to below 
one GHz. At high frequencies, the skin affect constricts current to the surface of the copper wire, dramatically 
increasing resistance and rapidly decreasing the inductance below 40 nH/mm2 4, 6. Radio-frequency copper induc-
tors can be offer reliable performance up to 6 GHz, but their inductance density is greatly reduced to 282 nH/mm2 
due to a combination of skin effect resistance increases and ferromagnetic resonance permeability degradation1.  
High-mobility carbon-based conductor materials have been proffered as alternatives to copper-based design 
and have dramatically increased cut-off frequencies of up to 150 GHz. To create carbon-nanotube (CNT) spiral 
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inductors, a metallic contact must be placed at each turn of the design, resulting in a high series contact resistance 
that severely restricts inductance densities below 23.2 nH/mm2. Since graphene-based design can be lithographi-
cally patterned, their inductance is not limited by a series contact resistance, like CNT designs, and thus can reach 
inductance densities in excess of 600 nH/mm2. The anomalous skin affect, an analog of the normal skin affect rel-
evant in materials with mean free paths longer than the skin depth, however, limits the conductance of graphene 
inductors beyond 150 GHz7, 9. The novel, simple geometry of the topological inductor allows it to achieve an 
inductance density of 930 nH/mm2, approaching inductance densities of state-of-the-art magnetic-core copper 
inductors at operating frequencies well above those of competing technologies. This broad spectrum performance 
is afforded by the fact that its operation is based on surface conduction. Therefore, any high frequency surface 
confinement effects do not change conduction properties and the inductance is unaltered. Furthermore, as we are 
not concerned with motion of the ferromagnetic domains, we are not constrained by the known high-frequency 
limitations associated with ferromagnetic resonances6.

While our proof-of-concept inductor design demonstrates high performance, greater inductance may be 
achieved by adding more islands in series, thereby would increase flux linkages between islands. Additionally, 
further flux linking can be generated by adding islands to the bottom surface and side walls. The ability to opti-
mize island size, spacing, and arrangement makes this system a versatile and promising inductor design. As the 
operation of the inductor only requires the presence of a QAHE or AHE, the design is not limited only to the sur-
face of TIs and can be realized in a variety of material systems including but not limited to Weyl semimetals57–59, 
2D transition-metal dichalcogenides60–62, and dilute magnetic semiconductor systems63, 64.

Our study illustrates that the unique properties of TIs provide a platform for novel information processing 
device architectures. By placing ferromagnetic islands with alternating magnetization on the surface of a TI, we 
utilize the QAHE or AHE to deform the current density around the islands, concentrating magnetic flux within 
current loops. When simulated with a hybrid AC quantum transport and frequency-domain electromagnetics 
simulation, we find that the topological inductor offers high performance over a broad frequency range, making 
it an exceptional candidate for use in nanoscale wireless communication and power electronic applications.

Methods
Model Hamiltonian.  The systems are modeled by a tight-binding Hamiltonian with nearest-neighbor hop-
ping, which is given by

H Hr( ) ( H c ) ,
(2)r

r r r r0 † †∑ ∑ψ ψ ψ ψ=




 + + . .







δ
δ δ+

where ψr is the electron annihilation operator, δ = ± ± ±ˆ ˆ ˆa a ax y z( , , ) are the distances between nearest neighbor 
atoms on a cubic lattice with lattice constant a = 1 Å. In Eq. (2), H0 is the on-site term, and Hδ is the 
nearest-neighbor hopping term. The three-dimensional TI Hamiltonian requires a basis of two orbital and two 
spins resulting in the on-site term65:

= Γ + Γ −H M eV Ir r( ) ( ) , (3)M0
0

4

where Γ0 = τz ⊗ I2, ΓM = I2 ⊗ σz, τi are the orbital Pauli matrices, σi are the spin Pauli matrices, IN are the N × N 
identity matrices, and  = −m b a3 / 2. Here, m and b are parameters that can be tuned to fit characteristics of a 
time-reversal-invariant 3D topological insulator. The spatially-varying Zeeman field generated by a 
surface-perpendicular ferromagnet is added through M(r), and the scalar electromagnetic potential profile is 
incorporated through V(r). The hopping term for this model is given by

∫
δγ Γ
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Γ + ⋅ 
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

⋅


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
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(4)r
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2 

Inductor

Cut-off Inductance

Frequency (GHz) (nH/mm2)

LF Copper6 0.2 1700

RF Copper1 6 282

CNT10 150 23.2

Graphene7 150 636

Topological Inductor 1000 930

Table 1.  Comparison of modern inductor performance. Low-frequency (LF) copper-based inductors provide 
a large inductance due to their low resistance, but this performance is limited below one GHz due to the skin 
effect that constricts current flow. Higher frequency radio-frequency (RF) copper inductors can offer higher 
cut-off frequencies at the cost of a significantly lower inductance density. Carbon-based CNT and graphene 
designs offer moderate and high inductance, respectively, but their operation frequency is again limited by 
the anomalous skin effect that greatly increases resistance above 150 GHz. As the topological inductor utilizes 
surface current flow, skin effects have negligible impact on performance and thus offers high inductance into 
terahertz frequencies.
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Here, Γi = τx ⊗ σi(i ∈ {x, y, z}), Γ = Γ Γ Γˆ ˆ ˆx y z( , , )x y z , e is the electron charge, ħ is the reduced Planck’s constant, 
and γ is an additional tunable parameter. The vector potential A(r) enters through the Peierl’s phase in this hop-
ping term66.

This model Hamiltonian reproduces the low energy physics of a TI including the anomalous Hall effect (AHE) 
and the quantum anomalous Hall effect (QAHE) by preserving the same symmetries of a time-reversal-invariant 
TI and obeying the proper Clifford algebra65. To understand the qualitative transport features of a TI, we set 
m = 1.5 eV, b = 1 eV · Å2, and γ = 1 eV · Å to create a bulk band gap of 1 eV that highly localizes the surface states 
such that they do not hybridize even at nanometer dimensions.

AC NEGF.  The DC NEGF formalism has found great success in modeling fully quantum mechanical electron 
transport in nanoscale devices67, 68, and recent theoretical advances have extended the method to small-signal AC 
biases44–46. The retarded Green function, that is, the impulse response of the system Hamiltonian, at energy E can 
be expressed as

= + ωG E G E G E( ) ( ) ( ), (5)r r r
0

where G E( )r
0  is the DC retarded Green function and ωG E( )r  is first-order response due to an AC perturbation. The 

DC component is calculated via the standard NEGF formalism as67, 68

η= + − − − Σ −G E E i U E( ) [ ( )] , (6)r r
0 0

1

where U is the static potential energy profile, η is an infinitesimal positive number that pushes the poles of the 
Green function into the complex plane, allowing for integration along the real energy axis68, and Σ E( )r

0  is the 
contact self-energy that integrates out the influence of the semi-infinite leads. We assume the wide bandwidth 
limit (WBL) where the contacts have a much larger bandwidth than the device with a constant density of states as 
a function of energy. This assumption results in a retarded self-energy of the form Σ = ΓE i( )r

0 , where Γ is the 
energy level broadening introduced by the leads. As the contacts are typically much larger than the device region, 
the WBL is a valid assumption since the number of available states in the lead should not vary greatly over energy 
for biases and frequencies much less than the bandwidth of the metallic contact.

Since the AC bias is introduced perturbatively, the small-signal retarded AC Green function ωG E( )r  at fre-
quency ω is expressed as a product of DC Green functions at energies E and E + ħω44:

ω ω ω= + − + Σ + .ω ωG E G E eV E E G E( ) ( )[ ( ) ( , )] ( ) (7)r r r r
0 0 

Here V(ω) is the AC potential profile and Σω
r  is the AC contact self-energy. Just as the AC Green function is the 

small-signal perturbation to the DC Green function, the total contact self-energy can be expressed as

γΣ = Σ + Σ = <γ γ
ω
γE E E r( ) ( ) ( ) ( , ), (8)0

where Σω
γ E( ) is the AC self-energy due to a perturbative bias of the form ω=V t V t( ) cosAC , where VAC is the 

amplitude of the AC driving voltage. The AC contact self-energy is similarly a function of the DC contact 
self-energies and is calculated as

E eV E E r( ) [ ( ) ( )] ( , ), (9)
AC

0 0ω
ω γΣ = Σ − Σ + = <ω

γ γ γ




where e is the electron charge. In the WBL, the AC retarded self-energy greatly simplifies to Σ =ω 0r . Although the 
WBL provides an accurate description of large reservoir contacts for small energy scales, it neglects the nontrivial 
energy dependence of the contact self-energy at high frequencies where ħω is no longer small and 

ωΣ − Σ +γ γ E E[ ( ) ( )] 00 0 ≉ , which can result in unphysical charge accumulation46. However, for small frequen-
cies, where ħω ≪ 1 and E E[ ( ) ( )] 00 0 ωΣ − Σ + ≈γ γ  , the WBL can be safely applied to model the AC self-energy 
of metallic leads.

In order to account for the application of a bias, the retarded Green function must be convolved with the lesser 
self-energy Σ<(E), which accounts for the occupancy of the leads, using the Keldysh equation G<(E) = Gr(E)Σ<

(E)Gr(E)†44. After applying the definitions in Eqs (5) and (8) and taking only the terms that are first-order in the 
perturbation, we obtain the expression for the AC lesser Green function:

  ω ω ω= + Σ + + + Σ

+ Σ .
ω ω ω

ω

< < <

<

† †

†

G E G E E G E G E E G E

G E E G E

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (10)

r r r r

r r
0 0 0 0

0 0

In the WBL, the DC lesser self-energy takes the form Σ = Γ< E i f E( ) ( )c0 , where fc(E) are the Fermi-Dirac distri-
butions for the contacts. By Eq. (9), the AC self-energy is then given by 


ωΣ = − − +ω ω

< Γ f E f E( ( ) ( ))ieVAC .
Observables can then be calculated from the lesser AC Green function in a fashion similar to DC NEGF. The 

frequency-dependent electron density nω(r) is given as

∫ π
= − .ω ω

<n i dE G Er( )
2

( ) (11)r r; ,

While the electron density is important for charge dynamics, the AC current density must be calculated to 
compute the dynamic magnetic field within the inductor, and it is given by
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 ^ ^ ^ ^∫ π
α= − 

 − 
 = .α ω α ω α ω α α+ +

<
+

<
+J e dE H G E G E H x y zr( )

2
( ) ( ) ( , , ) (12)a a a ar r r r r r r r, , ; , ; , ,0 0 0 0

Lastly, the AC contact current in the WBL is computed as

∫ω
π

ω ω= − + Γ + Γ .†I e dE f E f E G E G E( )
2

[ ( ) ( )]Tr[ ( ) ( ) ] (13)L
r

R
r

0 0
 

The AC NEGF method can be computationally expensive since two matrix inversions are required to obtain 
Gr(E) and Gr(E + ħω) at each step of the energy integration. Recursive methods that obviate the need of a full 
matrix inversion, however, can speed up computation significantly67.

Self-consistency with electrodynamics.  For situations where the operating frequency is much lower 
than the inverse of an electron’s transit time across a device, the quasistatic approximation of the electrostatic 
potential using the solution of Poisson’s equation provides adequate accuracy45, 69. Above these frequencies, a full 
solution of Maxwell’s equation must be obtained to incorporate dynamic electromagnetic coupling. For inductors, 
however, whose operation is dependent on magnetic coupling of the currents in the device, Poisson’s equation is 
also inadequate as it fails to capture the magnetic response of the magnetic response of the current density. 
Therefore, to capture both the electric charge effects and the magnetic inductive effects of the device, we require 
the fully dynamic solution of Maxwell’s equations. While typical electrodynamics simulations solve directly for 
the electric field, E, and magnetic field, B, quantum mechanics relies on the vector and scalar potentials70. 
Therefore, we solve directly for the scalar potential V and vector potential A in the frequency domain using the 
Lorenz gauge, where ∇ ⋅ = − ω VA i

c
, resulting in the following governing equations:

ω ρ
ε





∇ +






= −
c

V ,
(14)

2
2

2

ω μ




∇ +






= − .
c

A J
(15)

2
2

2

Here, ω is the frequency of interest, c is the speed of light, ε is the electric permittivity, and μ is the magnetic per-
meability. The FDFD formulation solves these equations using finite differences on a Yee cell47, 71, using the charge 
and current densities from the AC NEGF simulation. The electromagnetics domain is larger than the NEGF 
domain to accommodate absorbing boundary conditions that allow for field radiation and hinder the develop-
ment of cavity modes72, 73. To reach self-consistency of this solution with the AC NEGF equation, the scalar and 
vector potentials are input back into the AC NEGF equations until the difference between the scalar potential on 
successive iterations is less than 1 μV.
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