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Abstract: Filamentous actinobacteria are widely used as microbial cell factories to produce valuable
secondary metabolites, including the vast majority of clinically relevant antimicrobial compounds.
Secondary metabolites are typically encoded by large biosynthetic gene clusters, which allow
for a modular approach to generating diverse compounds through recombination. Protoplast
fusion is a popular method for whole genome recombination that uses fusion of cells that are
transiently wall-deficient. This process has been applied for both inter- and intraspecies recombination.
An important limiting step in obtaining diverse recombinants from fused protoplasts is regeneration
of the cell wall, because this forces the chromosomes from different parental lines to segregate, thereby
preventing further recombination. Recently, several labs have gained insight into wall-deficient
bacteria that have the ability to proliferate without their cell wall, known as L-forms. Unlike
protoplasts, L-forms can stably maintain multiple chromosomes over many division cycles. Fusion of
such L-forms would potentially allow cells to express genes from both parental genomes while also
extending the time for recombination, both of which can contribute to an increased chemical diversity.
Here, we present a perspective on how L-form fusion has the potential to become a platform for novel
compound discovery and may thus help to overcome the antibiotic discovery void.

Keywords: secondary metabolites; actinomycetes; protoplast fusion; novel compound discovery;
cell wall-deficiency; heteroploidy

1. Introduction

Microorganisms have been used as a chassis to produce beneficial compounds like antibiotics,
growth promoters, enzymes, inflammatory drugs, and protease inhibitors. Of these, antibiotics have
made a tremendous impact on our lives due to their application in clinical and veterinary settings.
Considering the global challenge of increased antimicrobial resistance, there is an urgent need for
the discovery of new compounds. Antibiotics are produced via complex pathways encoded by large
biosynthetic gene clusters (BGCs). These clusters not only include the necessary genes for biosynthesis
of the antibiotic, but also those required for regulation of gene expression, export, and resistance to the
antimicrobial compound. Streptomycetes are well-known for their ability to produce a large variety of
antibiotics and may carry up to 70 BGCs per genome [1]. Notably, many of these gene clusters are
silent or only poorly expressed, which so far has limited the successful exploitation of some of these
metabolites as new antimicrobial agents. Genetic engineering of these BGCs for optimal production
can be challenging, for instance, due to the presence of cryptic functions and the non-tractability of
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natural strains that harbor these BGCs. This has been one of the reasons behind the void in novel
compound discovery with very few structurally new classes of antibiotics being introduced in the
market in the past decades [2]. In contrast, genomic data analysis has unearthed 33,351 putative BGCs
in 1154 microbial genomes [3]. The biosynthetic capabilities are thus plentiful, but our capacity to
harness them is limited.

Protoplast fusion is a commonly used method to introduce a BGC or entire chromosome into
a recipient cell for further genetic manipulation or directed evolution approaches. Its application
for genome shuffling has resulted in strains with higher productivity, prominent examples being
that of clavulanic acid [4], cephalosporin [5], diverse enzymatic activity [6], and novel compounds
(indolizomycin [7]). This method has also led to the activation of silent BGCs [8]. However, protoplast
fusion has potential disadvantages, such as the requirement for multiple fusion and regeneration
phases, a short time frame during which recombination can occur due to the necessity for protoplasts
to regenerate their cell wall, and lastly the instability of recombinants. From this perspective, we take a
deeper look into the benefits and hurdles of protoplast fusion and then propose the use of permanent
cell-wall-deficient forms as an alternative system for novel compound discovery.

2. History of Bacterial Protoplast Fusion

The need for protoplast fusion mainly arose from the difficulty of introducing DNA into cells,
especially Gram-positive bacteria. The Gram-positive cell wall typically consists of many interconnected
layers of peptidoglycan and teichoic acids [9]. Methods like electroporation and conjugation help
alleviate the hurdles of passing through the multilayered cell wall but are restricted in terms of
size of DNA that can be transformed. Hence, an alternative was found by stripping away the cell
wall altogether. The basic set-up of protoplast fusion involves four consecutive steps: (i) protoplast
formation, (ii) protoplast fusion, (iii) recombination between chromosomes within the fused cells,
and (iv) reversion of protoplasts to walled cells (Figure 1) [10–12]. Protoplasts are obtained by treating
walled cells with lysozyme, which degrades the major component of the cell wall, peptidoglycan
(PG). The subsequent exposure of protoplasts to crowding agents, such as polyethylene glycol (PEG),
causes protoplasts to aggregate. This in turn forces their membranes in close proximity with one
another, causing them to fuse. Electrofusion and laser-induced fusion are also commonly used methods
to obtain fused cells [12]. Fusion is followed by a brief period of recombination, during which the
fusants are maintained in an osmotically protected environment, allowing them to regenerate their
cell wall without lysis. In order to select for the desired recombinants, the cells are finally grown in
a selective medium.

Because protoplast fusion is non-specific, it has been used for recombination within and between
different species. Industrial strains like Lactobacillus species have been a common target for genome
shuffling via protoplast fusion, resulting in increased yield of lactic acid and improved acid tolerance [13].
Within species fusion may also be combined with random mutagenesis to increase genetic variation,
followed by screening for the desired phenotype [14]. For instance, improved degradation of the
toxic pesticide pentachlorophenol was achieved in Sphingobium chrolophenolicum via protoplast fusion
generating cells that had become more resistant [15]. Fusion between phylogenetically distant bacteria
has also been performed with Streptomyces griseus and Micromonospora sp. where recombinants
displayed characteristics of both parents. More specifically, recombinants had a colony morphology
like Micromonospora but with the carbohydrate and amino acid utilization abilities of S. griseus [16].
Notably, protoplast fusion is not limited to microbial cells, but has also been successfully used with
plants to improve particular traits [10,17].

Taken together, protoplast fusion as a means for genome shuffling has provided several new
biological activities and strains with improved traits or growth dynamics [18].



Microorganisms 2020, 8, 1897 3 of 8Microorganisms 2020, 8, x FOR PEER REVIEW 3 of 7 

 

 
Figure 1. The general process of protoplast fusion compared with L-form fusion. Both methods share 
some steps like the loss of cell wall and cell–cell fusion but differ in other key steps. Fusion in L-forms 
can lead to multiple possibilities due to polyploidy in daughter cells, whereas reversion to a walled 
state is essential in protoplast fusion. Differences in chromosome size are for depiction purposes only 
and not to scale. 

3. Disadvantages of Protoplast Fusion 

The process of protoplast fusion introduces entire genomes into a single cellular compartment, 
allowing them to recombine. Protoplasts carrying multiples chromosomes are typically unable to be 
sustained for long periods of time and are thus unstable. This instability was observed when the 
mycaminose-producer Streptomyces fradiae was fused with a picronolide-producing Streptomyces 
strain [19]. The fusant transiently produced a novel macrolide antibiotic that was not formed by either 
parent that was hypothesized to have been due to a diploid state of the fusant. Unfortunately, the 
ability to produce this new compound was rapidly lost after subsequent culturing. Another 
disadvantage of fusing protoplasts is the limited period during which the chromosomes can fuse with 
one another to generate recombinants. This is due to the regeneration of a cell wall, which starts 
immediately after cells have fused. In some fusions, the efficiency of obtaining a recombinant with 
activity different compared to the parental lines is not quantitatively the same. Protoplasts of the 
raffinose utilizer Micromonaspora carbonaceae and Streptomyces griseus were fused by treatment with 
PEG [16]. Interestingly, only 2 out of 24 fusants revealed different antimicrobial activity compared to 
their parents. Moreover, protoplast regeneration can be unsuccessful due to inadequate media 
supplements, rendering the fusants non-viable. Fusants often die without the addition of sucrose, 
proline, and microelements in specific proportions to the selection media [20]. Lastly, rebuilding the 
cell wall in fusants producing cell wall-targeting agents may be complicated. This may lead to lower 
recombinant efficiencies following protoplast fusion [21]. An alternative method would thus be 
valuable, especially for generating increased phenotypic diversity and stabilizing fusant strains. 

4. Cell-Wall-Deficient L-Forms as an Attractive Alternative for Protoplasts 

Figure 1. The general process of protoplast fusion compared with L-form fusion. Both methods share
some steps like the loss of cell wall and cell–cell fusion but differ in other key steps. Fusion in L-forms
can lead to multiple possibilities due to polyploidy in daughter cells, whereas reversion to a walled
state is essential in protoplast fusion. Differences in chromosome size are for depiction purposes only
and not to scale.

3. Disadvantages of Protoplast Fusion

The process of protoplast fusion introduces entire genomes into a single cellular compartment,
allowing them to recombine. Protoplasts carrying multiples chromosomes are typically unable to
be sustained for long periods of time and are thus unstable. This instability was observed when
the mycaminose-producer Streptomyces fradiae was fused with a picronolide-producing Streptomyces
strain [19]. The fusant transiently produced a novel macrolide antibiotic that was not formed by
either parent that was hypothesized to have been due to a diploid state of the fusant. Unfortunately,
the ability to produce this new compound was rapidly lost after subsequent culturing. Another
disadvantage of fusing protoplasts is the limited period during which the chromosomes can fuse with
one another to generate recombinants. This is due to the regeneration of a cell wall, which starts
immediately after cells have fused. In some fusions, the efficiency of obtaining a recombinant with
activity different compared to the parental lines is not quantitatively the same. Protoplasts of the
raffinose utilizer Micromonaspora carbonaceae and Streptomyces griseus were fused by treatment with
PEG [16]. Interestingly, only 2 out of 24 fusants revealed different antimicrobial activity compared
to their parents. Moreover, protoplast regeneration can be unsuccessful due to inadequate media
supplements, rendering the fusants non-viable. Fusants often die without the addition of sucrose,
proline, and microelements in specific proportions to the selection media [20]. Lastly, rebuilding
the cell wall in fusants producing cell wall-targeting agents may be complicated. This may lead to
lower recombinant efficiencies following protoplast fusion [21]. An alternative method would thus be
valuable, especially for generating increased phenotypic diversity and stabilizing fusant strains.
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4. Cell-Wall-Deficient L-Forms as an Attractive Alternative for Protoplasts

While protoplasts are transiently wall-deficient, many bacteria can be forced into a permanent
wall-deficient state as so-called L-forms [22,23]. They are variants of bacteria that have an altered
cell wall organization, which when made irreversible on account of mutations in the genome result
in stable cell wall deficiency. They may be referred to by other names in literature such as L-phase,
L-variants, and L-organisms, with the “L” signifying the place of discovery, i.e., the Lister Institute [24].
Since their discovery, L-form research has contributed to the fields of bacterial cell biology [25,26],
biotechnology [27], host-associated symbiotic and pathogenic interactions [28,29], and the origin of
life [23,30]. Unlike protoplasts, cell-wall-deficient L-forms are able to propagate without their cell
wall [31]. Proliferation of L-forms is based on biophysical principles, whereby an imbalance in the
cell surface-to-volume ratio of cells causes membrane blebbing, tubulation, and vesicle formation.
The imbalance required for this mode of proliferation can be obtained by increasing synthesis of
fatty acids [32], which act as building blocks for the membrane, and by increasing the fluidity
of the membrane [33]. Many (if not all) bacteria can be forced into an L-form state, including
antibiotic-producing actinobacteria [34–40]. In most cases, loss of the cell wall is triggered by exposing
walled cells to a combination of lytic enzymes and antibiotics in an osmotically protective environment.
However, formation of wall-less cells has also been observed as a mechanism to escape stress [41],
such as osmotic stress in filamentous actinomycetes [38], heat stress in E. coli [42], and nutrient stress in
Mycobacterium bovis [43]. One of the important consequences of wall deficiency is that the resulting
cells are polyploid. Because DNA segregation is likely unregulated during this phase, division of
L-forms leads to the uneven distribution of chromosomes among progeny (Figure 1). While some cells
inherit a single chromosome, others will inherit multiple chromosomes, with different ratios of the
parental chromosomal types.

The structural similarity of L-forms to protoplasts makes then amenable to fusion using PEG
or electrofusion. Increased membrane fluidity of L-form cells may also facilitate fusion in the
absence of such inducing conditions. Indeed, we have observed spontaneous fusion between
L-forms (our unpublished results). In contrast to protoplasts, L-form fusion is not followed by
regeneration of the cell wall and the subsequent generation of haploid cells (Figure 1). Three potential
outcomes are possible after fusion: (i) recombination between chromosomes, (ii) polyploidy where
multiple copies of the recombinant genome are present, and (iii) heterokaryosis where both parental
genomes are maintained. L-forms could thus overcome the problem of the short recombination time
and fusants that only transiently produce a new metabolite due a diploid state prior to cell wall
regeneration [19]. The use of L-forms instead allows for maintenance of heterokaryotic genomes
in the same cytoplasmic compartment thereby prolonging opportunities for genetic variation to
arise through recombination, resulting in novel production phenotypes. The presence of multiple
chromosomes can have beneficial effects in terms of productivity (antibiotics, enzymes), fermentation,
and biocontrol. This can happen via various routes such as (i) masking of deleterious alleles by a
dominant or complimentary copy, (ii) interactions between genes that were previously not in the same
environment, and (iii) gene dosage effects (multiple copies of a biosynthetic gene). It has been shown for
Streptomyces specifically that interactions between different species can induce antibiotic production and
activity [44,45]. By introducing genomes of different species in the same compartment using L-forms,
one could potentially achieve a similar effect. Metabolite-inducing interactions that are governed by
transcriptional regulators or epigenetic modifiers are good candidates to test [46,47]. The introduction
of multiple copies of a gene cluster or induction of gene duplication is already in practice for increased
antibiotic production [48,49]. For instance, actinorhodin production by S. coelicolor was increased
20-fold after tandem amplification of the act gene cluster, resulting in nine copies in the genome [48].
In the context of antibiotic production, L-forms are ideal for production of compounds targeting the
cell wall since they are naturally resistant. This reduces loss of biomass during production. L-forms
also do not show the formation of inclusion bodies, which can be a useful trait for overproducing
proteins that are toxic to the cell [27]. Lastly, L-forms can be easily stored at −80 degrees for extended
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periods of time. It is yet unclear though if subculturing after revival has an effect on the genomes of
the hybrid L-forms.

Collectively, the use of CWD bacteria alleviates most of the disadvantages of protoplast fusion.
However, L-form fusion itself does have certain lose ends namely, the time and mutations required
to achieve wall-deficient propagation, heterogeneity of fusants, and metabolite production levels.
Obtaining a stable L-form strain from a wild-type requires multiple rounds of exposure to cell
wall-targeting agents. During this exposure, mutations can arise that help alleviate the stress of
surviving and growing without a cell wall such [41,50]. Recent studies are shedding light on the
metabolic requirements for maintaining a wall-deficient state in a range of bacteria, thus accelerating
the process of generating L-forms. The second issue of fusant heterogeneity when using L-forms can
make phenotype screening and quantification difficult. Interestingly, the availability of single cell
metabolomics, microfluidics, and encapsulation techniques can help solve this by isolating individual
fusants immediately after fusion [51,52]. The fusants can then be tracked over time for certain
biochemical activity to identify stable phenotypes. Lastly, studies attempting to use L-forms for
overproduction of metabolites have resulted in mixed outcomes depending on the species of L-form
used. The production of tetracycline by S. viridifaciens L-forms was lower than the walled parent [40],
while on the other hand P. mirabilis L-forms engineered to express a variety of enzymes, antibodies,
and polypeptides were able to produce a higher yield than their walled parent [27,53]. A better
understanding of L-form growth and its physiology, division, and chromosome dynamics will help to
develop this model as an attractive system for identifying novel compounds.

Taken together by providing the extended opportunities for recombination and maintenance of
heterokaryons, the wall-deficient lifestyle provides an opportunity for novel compound discovery.
The more we understand about growth, division, and DNA segregation in these systems, the better we
can apply them for large scale bioprocessing as well.
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