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Abstract: To reduce electromagnetic pollution as well as increase the accuracy of high-precision
electronic equipment, more attention has been paid to new electromagnetic wave (EMW) absorbing
materials, which have the advantages of strong absorption, wide absorption bands, and a narrow
thickness. In this study, a novel ternary type of the NiS2@rGO/polypyrrole (PPy) sandwich-like
structured composites was synthesized via a facile two-step method, in which the hydrothermal
method was used to prepare NiS2@rGO binary composites and then the in situ polymerization
method was used to synthesize the PPy, which acted as the outer layer of the sandwich-like structure.
The morphologies and electromagnetic absorption performance of the NiS2@rGO/PPy were measured
and investigated. A sample with 6 wt% NiS2@rGO/PPy loading paraffin-composite obtained an
outstanding reflection loss (RL) of−58.7 dB at 16.44 GHz under a thickness of 2.03 mm. Simultaneously,
the effective electromagnetic wave absorption bandwidth for RL < −10 dB, which covered 7.04 to
18.00 GHz (10.96 GHz), was achieved by changing the thickness of the absorber from 2.0 to 3.5 mm.
The results not only suggest that the NiS2@rGO/PPy composite has excellent performance in the
field of EMW absorption but also prove that the novel sandwich-like structure can contribute to
appropriate impedance matching through multiple relaxation and interfacial polarization processes.
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1. Introduction

In recent years, with the development of advanced high-power electronic equipment,
electromagnetic (EM) pollution, which has harmful effects on human life, has become significant [1–3].
In this regard, more attention has been focused on developing highly efficient and stable
electromagnetic wave (EMW) absorbing materials to solve EM pollution [4]. The practical application
of single-component absorbers, such as Fe3O4, Co, and polypyrrole (PPy), is restricted because they do
not have the characteristics of small matching thickness, light weight, strong absorption features, and
a wide EM absorption band. In contrast with single absorbers, multiple-component absorbers can
better meet the requirements of being a highly efficient EMW absorber on account of their adjustable
impedance matching and multilayer structures [5,6].

Reduced graphene oxide (rGO), a new type of two-dimensional material, has shown a promising
application prospect in the field of EMW absorption [7,8]. On the one hand, a large specific surface area
will increase the transmission intensity of electromagnetic waves in rGO-based composites and help EM
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waves get inside the rGO-based composites. EM waves will be consumed significantly by the synergistic
effects of interlaminar multiple refraction, reflection and surface fold scattering [9,10]. On the other
hand, the surface area and polar functional groups distributed on rGO undergo polarization relaxation
under an external electric field, giving it a strong dielectric loss [11–13]. For example, Fang et al. studied
three-dimensional rGO powder and found that the 3D-rGO shows efficient microwave absorption
in the S-band due to its honeycomb-like structure and the strong polarization [14]. However, a
single rGO EMW absorber cannot achieve good impedance matching due to its simple dielectric loss
mechanism. Some reports have proved that combining a low dielectric component with rGO can
balance the dielectric constant of the composite and obtain appropriate impedance matching [15,16].
Davide Micheli et al. studied carbon-based nanostructures and their nanocomposites with different
sizes and morphologies, at the same time, they evaluated the electromagnetic absorption properties
of carbon-based nanocomposites [17,18]. Their work also proved that rGO-based composites with
a graded-dielectric multilayer has an excellent EM absorption potential [19]. Wang et al. prepared
MnO2-rGO nanocomposites via a hydrothermal method and the heterostructure exhibited the highest
reflection loss (RL) of −37 dB at 16.8 GHz [20]. The research group of Zhao and Ji used an in situ
synthesis method to fabricate an ACNT/rGO/BaFe12O19 composite. The minimum reflection loss
value of the ACNT/rGO/BF composite was −19.03 dB at 11.04 GHz with a frequency bandwidth of
3.8 GHz [21]. The narrow effective frequency bandwidth and large thickness will limit the further
application of rGO-based binary composites. To further solve this problem, it is feasible to embellish
rGO-based binary composites on the conducting polymer.

Conducting polymers such as PPy have attracted the attention of many research laboratories
due to their unusual properties, including low density, stable chemical properties, and high
conductivity [22–24]. Recently, extensive studies have proved that polypyrrole can be used as
an effective material in the EMW absorption field [25,26]. This is due to the synergistic effects of the
conjugated bonds and electric dipoles in the composites containing PPy under external EMW, which
could improve the dielectric loss and impedance matching. For example, Chen et al. synthesized a
novel ternary graphite/polyaniline/CoFe2O4 nanocomposites and found that the maximum reflection
loss was around −19.13 dB at 13.28 GHz with a thickness of 0.5 mm [27]. Liu et al. synthesized uniform
core-shell PPy@C composites with a highest reflection loss of −38.1 dB at 11.6 GHz [28]. Their work
proved that adding an additional interfacial polarization step can play a role in improving impedance
matching if the carbon-based nanomaterials are coated with PPy. Inspired by this, the rGO-based
binary composite coated with PPy has great potential to obtain new types of EMW absorber with a
wide absorbing frequency, light weight, and strong absorption.

In the current study, we fabricated a novel ternary type of the NiS2@rGO/polypyrrole
(NiS2@rGO/PPy) sandwich-like structure composite with a remarkable EMW absorption property.
A NiS2@rGO binary composite was synthesized by a facile hydrothermal method, to act as the inner
layer of the sandwich-like structure. The outside layer of the sandwich-like structure was formed by the
PPy which was produced by the in situ polymerization method [29]. In this work, NiS2 supported by
rGO formed the electric polarization center of the composite, giving it a controllable particle size and low
dielectric constant and adjusting impedance matching by producing an interface polarization with rGO.
At the same time, PPy acted as the shell of the sandwich-like structure, synergizing with NiS2@rGO
and consuming EMW by scattering and multiple refraction in sandwich-like structures. The detailed
EM absorption performance study on the NiS2@rGO/PPy sandwich-like structure composite showed
an excellent intensity and bandwidth for EM absorption as well as good compatibility and excellent
stability during production and testing.
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2. Experimental Section

2.1. Materials

Nickel chloride hexahydrate (NiCl2·6H2O), polyvinyl pyrrolidone (PVP-30,000), sulfur powder,
and pyrrole (Py) were obtained from Aladdin Industrial Corporation (Shanghai, China). GO powder
was provided by Xianfeng Chemical Co. Ltd. (XF002-2, Nanjing, China). All of the reagents were of
analytical grade and were used without further purification.

2.2. Synthesis of NiS2@rGO Binary Composite

The NiS2@rGO binary composite was prepared through a facile hydrothermal method [30,31].
Firstly, 0.05 g of GO powder was added into 50 mL of deionized water and then sonicated for 60 min at
20 ◦C (120 W, 40 KHz). After that, the GO dispersed solution continued to be magnetically stirred
at 70 ◦C for further processing. Secondly, 0.9506 g of NiCl2·6H2O dissolved in 30 mL of deionized
water was added to the GO dispersed solution. A quantity of 0.213 g of sulfur powder was dissolved
in 30 mL of deionized water under sonication for 10 min at 20 ◦C to form a S dispersed solution
and then added into the GO mixture solution. Then, 1.6 g polyvinyl pyrrolidone (PVP-30,000) was
dissolved in 10 mL deionized water and slowly added into the abovementioned GO mixture solution.
After that the mixture solution magnetically stirred for 20 min at 20 ◦C to mix well. Subsequently, the
mixture was placed in a 160 mL Teflon-lined stainless-steel autoclave and maintained at 200 ◦C for
12 h. After this reaction, the obtained product was washed with deionized water and ethanol several
times and vacuum dried at 60 ◦C for 14 h.

2.3. Synthesis of NiS2@rGO/PPy Sandwich-Like Structure Composite

The NiS2@rGO/PPy sandwich-like structure composites were synthesized as described in the
suit method [32]. Briefly, 40 mg of the NiS2@rGO binary composite synthesized in the previous step
was dissolved in a mixture of 4 mL deionized water and 4 mL ethanol to form a NiS2@rGO dispersed
solution and sonicated for 10 min. Then, 135 mg of pyrrole was slowly trickled into the aforementioned
solution. After that, 2 mL of deionized water and 2 mL of absolute ethanol was used to fully dissolve
1.6 g FeCl3·6H2O, and the FeCl3·6H2O solution was stepwise injected into the NiS2@rGO/Py solution
under swift mechanical stirring for 5 min. A fluffy black powder was obtained after the NiS2@rGO/Py
solution had reacted for 24 h. Finally, the black NiS2@rGO/PPy composites were rinsed with absolute
ethanol and distilled water several times until the filtrate was colorless, and then, they were dried in a
vacuum at 50 ◦C for 24 h. In addition, the NiS2@rGO/PPy with 40, 60, and 80 mg of NiS2@rGO were
used for comparative analysis, which are recorded as samples A, B and C, respectively.

2.4. Characterization and Electromagnetic (EM) Parameters Measurement

X-ray diffraction (XRD) was performed using a Bruker D8 Advanced X-ray diffractometer
(BRUKER, Karlsruhe, Germany) with Cu Kα radiation (λ = 1.5406 Å) at 40 KV over the range of
2θ = 5–80◦. The Fourier transform infrared (FT-IR) spectra of the samples were characterized by
a Nicolet IS10 FT-IR spectrometer with KBr and the field emission scanning electron microscopy
(FE-SEM) data of the samples were analyzed using a Hitachi S4800 field emission scanning microscope.
The further morphology, crystal structure, and element distribution properties of the NiS2@rGO/PPy
composite were determined by transmission electron microscopy (TEM) with an energy-dispersive
X-ray spectroscope (EDS) and a high-resolution transmission electron microscope (HRTEM), which
were provided by JEL-2100F (JEOL, Tokyo, Japan) and Tecnai G2 F20 (FEI Company, Hillsboro, OR,
USA), respectively. X-ray photon spectroscopy (XPS) was performed on an ESCALAB 250 (Thermo,
Waltham, MA, USA).
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2.5. EM Absorption Measurement

The microwave scattering parameters of the samples composing of paraffin wax NiS2@rGO/PPy
composite were studied using an Agilent N5224A PNA (Agilent Technologies Inc, Santa Clara, CA, USA)
vector network analyzer (VNA) recorded at 2–18 GHz. Samples composed of wax and NiS2@rGO/PPy
composite were fabricated into cylindrical compacts (Φout = 7.00 mm, Φin = 3.04 mm) with different
proportions of NiS2@rGO/PPy (4, 6, and 8 wt%). The VNA operates based on the transmission line
theory, and was used to calculate the electromagnetic parameters of the sample by measuring four
scattering parameters (S11, S22, S12, and S21) of the two-port network [33–35]. The electromagnetic
parameter testing principle is that when an electromagnetic wave is incident on an absorbing material
with a certain thickness, it will generate multiple reflections and transmits. The schematic diagram of
the fixture and the test sample is illustrated in Figure S1.

3. Results and Discussion

The NiS2@rGO/polypyrrole (NiS2@rGO/PPy) sandwich-like structure composite was synthesized
by a facile two-step method. Fitstly, the NiS2@rGO binary composite was prepared by a hydrothermal
method. Secondly, an in suit method was used to synthesize the NiS2@rGO/PPy sandwich-like
structure composites on the basis of NiS2@rGO binary composite. The synthetic procedure of the
NiS2@rGO/PPy sandwich-like structure composite is illustrated in Scheme 1.
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Scheme 1. The preparation process of the NiS2@rGO/polypyrrole (PPy) sandwich-like
structure composite.

3.1. Characterization of Samples

In order to investigate the crystal structure of the NiS2@rGO/PPy ternary composite and the
NiS2@rGO binary composite, the XRD patterns are presented in Figure 1a. The existence of NiS2 in the
NiS2@rGO composite can be clearly confirmed, because all of the diffraction peaks correspond with the
standard card of NiS2 (#88-1709). Furthermore, the XRD pattern of NiS2@rGO/PPy ternary composite
is almost consistent with the standard card of NiS2 (#88-1709) and the standard C card (#75-0444),
while the characteristic diffraction peaks are broad and weak due to the existence of amorphous PPy,
which is indicative of poor crystallization. The XRD pattern of GO is presented in Figure S2. To verify
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the existence of PPy, the surface chemical states of the NiS2@rGO/PPy ternary composite were further
investigated via FT-IR. The FT-IR spectra of PPy and NiS2@rGO/PPy are shown in Figure 1b. Figure 1b
shows that for NiS2@rGO/PPy, the characteristic bands at 1546 and 1449 cm−1 are associated with
symmetrical and anti-symmetrical ring-stretching modes, respectively, whereas the peaks located at
1300 and 1035 cm−1 correspond to C–N stretching vibrations and the C–H band in-plane vibration
of PPy rings, respectively [36]. At the same time, the doping state of PPy can be verified by the
characteristic peaks at 1166 and 897 cm−1, and the existence of PPy can be proved by the peaks located
at 1091 and 965 cm−1 [37]. These characteristic peaks in the FT-IR spectra of NiS2@rGO/PPy correspond
well with the FT-IR spectra of PPy, which could be associated with the successful coating of PPy.
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Figure 1. (a) X-ray diffraction (XRD) patterns of the NiS2@rGO/PPy ternary composite and the NiS2@rGO
binary composite; (b) Fourier transform infrared (FT-IR) spectra of the PPy and NiS2@rGO/PPy
ternary composites.

The chemical composition of the NiS2@rGO/PPy ternary composite was also determined by XPS
(Figure 2). The peaks of four elements (Ni, N, C, and S) are clearly displayed in Figure 2a, which
further confirms that NiS2@rGO/PPy ternary composite was successfully synthesized. In addition,
although the characteristic peaks of N and C are obvious, the characteristic peaks of Ni 2p and S 2p are
weak because the NiS2 nanospheres coated with rGO and PPy were placed in the innermost layer of
the composite structure, which is difficult to characterize and analyze accurately using XPS. As shown
in Figure 2b, in the spectrum of C 1 s, the major peaks at 284.5 and 286.4 eV are attributed to the C–C
bonds of the aromatic rings and the C=O bonds of the carbonyl, respectively. The intensity of the C=O
bonds is subdued, which could indicate that the GO was reduced [38]. N 1s spectra are exhibited in
Figure 2c, in which the peaks located at 399.65 and 400.9 eV are assigned to the C–N/N–H bonds and
the N–C=O bonds, respectively [39,40]. The chemical composition of GO was determined by XPS
(Figure S3a), and the core-level spectrum of C 1S in GO is displayed in Figure S3b. The phase analysis
combining XRD, FT-IR and XPS spectra accurately proves that NiS2, rGO, and PPy successfully formed
a new type of ternary composite without doping with any other substances.

In this study, to investigate the microstructures and morphologies of the composites, typical SEM
and TEM images of the NiS2@rGO/PPy ternary composite were made and are presented in Figure 3.
Figure 3a–c show SEM images of the NiS2@rGO/PPy ternary composite at different resolutions, and
the EDS pattern has been presented in Figure S4b. It can be clearly observed that the PPy nanospheres
uniformly coated the NiS2@rGO binary composites while maintaining the integrity of the binary
composites, forming a complete sandwich-like composite structure. Meanwhile, at the edge of the
sandwich-like structure, there is a slight aggregation of PPy nanospheres. As revealed by Figure 3b,c,
the average thickness of the sandwich-like NiS2@rGO/PPy ternary composite is about 100 nm, which
is mainly comprised of PPy nanospheres. The SEM images of NiS2@rGO is presented in Figure S5.
The TEM pattern presented in Figure 3d accurately shows the microstructure of the inner layer of the
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sandwich-like NiS2@rGO/PPy composite, in which the NiS2 nanospheres are well encased in rGO
nanosheets. The diameter of the inner NiS2 nanospheres is approximately 200 nm while the thickness
of the out-layer rGO nanosheets is about 20 nm (Figure 3e). Such unique structures allow the NiS2

nanospheres to fully interact with rGO nanosheets to significantly adjust the dielectric properties of the
whole composite. In order to further validate the existence of NiS2 nanospheres, the HRTEM pattern
of NiS2@rGO/PPy composite is displayed in Figure 3f. The lattice planes were calculated to be 0.325
and 0.28 nm, which match well with the (200) and (311) planes of NiS2, respectively. The distribution
of elements in the sandwich-like NiS2@rGO/PPy ternary composite is shown by the EDS spectra in
Figure 4, from which C, N, Ni, and S were measured. The distributions of the measured Ni and S
elements validate the hypothesis that the NiS2 nanospheres are encased in rGO nanosheets; meanwhile,
the distributions of the detected C and N elements further verify the unique sandwich-like structure.
The morphology analysis, which combined SEM, TEM and EDS spectra, further validated that the new
ternary composite composed with NiS2, rGO and PPy was synthesized with a unique sandwich-like
structure to obtain an excellent EMW performance.
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NiS2@rGO/PPy ternary composite.

3.2. Electromagnetic Parameters of the NiS2@rGO/PPy Composite

To investigate the EMW absorption properties of the NiS2@rGO/PPy composite, real parts
of complex permittivity (ε′), imaginary parts of complex permittivity (ε”), real parts of complex
permeability (µ′), and imaginary parts of complex permeability (µ”) of samples A, B, and C with
filler loadings of 4, 6, and 8 wt% were measured at room temperature. The real parts (ε′ and µ′) and
imaginary parts (ε” and µ”) of complex permittivity and permeability represent the storage ability of
microwave energy and the dissipation ability of electric and magnetic energy, respectively [15]. Figure 5
shows that the value of µ′ and µ” are appropriately constant and close to 1 and 0, respectively. There are
no significant changes in the numerical values of the frequency-dependent complex permeability
values (µr) of the samples calculated by the real and imaginary parts of complex permeability (µr = µ′

− jµ”), which is associated with the non-magnetic characteristics of the as-prepared materials. On the
contrary, for the dielectric properties of the as-prepared materials, the frequency dependent complex
permittivity values (εr, εr = ε′ − jε”) of the NiS2@rGO/PPy composite in paraffin matrix was measured
at 2–18 GHz, as shown in Figure 5. In fact, numerous reports have indicated that in order to obtain a
fine impedance match, a relatively moderate dielectric constant is needed, and the relatively higher or
lower permittivity will cause the EMW to be reflected out of the absorber [16]. With the increase in the
content of rGO-based binary composites, the high permittivity of PPy was effectively regulated, which
is in favor of EMW absorption of NiS2@rGO/PPy. According to the free-electron theory, the relationship
between the electrical resistivity (ρ) and ε”, and the relationship between electrical conductivity (σ)
and skin depth (δ) can be expressed using the following equation [15]:

ε′′ ≈ 1/πε0ρ f (1)

δ = 1/
√
πfµσ (2)

where ƒ is the frequency of EMW, ε0 is the dielectric constant in vacuum (ε0 = 8.854 × 10−12 F m−1).
It can be found that lower ε” bring about higher resistivity of NiS2@rGO/PPy composite, and lower
conductivity could signifies a big skin depth, eventually increase transmittance and reduce reflection
of the EM wave. Thus, a higher electrical resistivity will obtain a better electromagnetic absorption
performance; and a relatively lower ε” might be required. With the increase of filler loading, the value
of ε′ and ε” of the three samples also show an increasing trend. By contrast, with the increase of
NiS2@rGO content, the value of ε′ and ε” show an downward trend in every filler loading (4, 6, and 8
wt%). As shown in Figure 5, the ε” values of all samples decrease with an increase in frequency from 2
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to 18 GHz, which indicates that the NiS2@rGO/PPy composite might have an excellent EMW-absorbing
effect at high frequencies.

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 13 

Nanomaterials 2019, 9, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/nanomaterials 

from 2 to 18 GHz, which indicates that the NiS2@rGO/PPy composite might have an excellent 
EMW-absorbing effect at high frequencies. 

 
Figure 5. Frequency dependence of the ε′, ε″, μ′, and μ″ values of sample A with filler loadings of 4 
(a), 6 (b), and 8 wt% (c); sample B with filler loadings of 4 (d), 6 (e), and 8 wt% (f); and sample C with 
filler loadings of 4 (g), 6 (h), and 8 wt% (i). 

To obtain new types of EMW absorptive materials with strong absorption and wide absorption 
bands, not only should we think about the complex permittivity (εr) and the complex permeability 
(μr) of the as-prepared composites, but we also need to calculate the attenuation constant (α) and the 
impedance matching ratio (Z) [41]. In terms of the transmission line theory, the relationship between 
α and the corresponding matching frequency can be expressed through the following equation [42]: 

2 22 ( ) ( ) ( )f
c
πα μ ε μ ε μ ε μ ε μ ε′′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′= − + − + +  (3)

where ƒ is the frequency of EMW, and c is the velocity of light in a vacuum. Meanwhile, the 
impedance matching ratio (Z) can be described by the following equations [16]: 

1 0Z /r rZ μ ε=  (4)

1 0Z / ZZ=  (5)

where Z0 ≈ 378 Ω is the free space of impedance matching, Z1 is the impedance value of the absorber, 
εr and μr are the complex permittivity and permeability, respectively. On the one hand, it is obvious 
in Figure 6a that the overall trend of α decreased as the content of NiS2@rGO composites increased 
(αA > αB > αC). On the other hand, Figure 6b shows that the integral tendency of Z increased as the 
content of NiS2@rGO composites increased (ZC > ZB > ZA). Although Sample A possesses the best 
attenuation property and Sample C possesses the optimal impedance matching characteristic, the 
worst Z performance was shown by Sample A, and the poorest value of α was exhibited by Sample 

Figure 5. Frequency dependence of the ε′, ε”, µ′, and µ” values of sample A with filler loadings of 4
(a), 6 (b), and 8 wt% (c); sample B with filler loadings of 4 (d), 6 (e), and 8 wt% (f); and sample C with
filler loadings of 4 (g), 6 (h), and 8 wt% (i).

To obtain new types of EMW absorptive materials with strong absorption and wide absorption
bands, not only should we think about the complex permittivity (εr) and the complex permeability
(µr) of the as-prepared composites, but we also need to calculate the attenuation constant (α) and the
impedance matching ratio (Z) [41]. In terms of the transmission line theory, the relationship between α
and the corresponding matching frequency can be expressed through the following equation [42]:

α =

√
2π f
c

√
(µ′′ − ε′′ ) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (3)

where ƒ is the frequency of EMW, and c is the velocity of light in a vacuum. Meanwhile, the impedance
matching ratio (Z) can be described by the following equations [16]:

Z1 = Z0
√
µr/εr (4)

Z = Z1/Z0 (5)

where Z0 ≈ 378 Ω is the free space of impedance matching, Z1 is the impedance value of the absorber,
εr and µr are the complex permittivity and permeability, respectively. On the one hand, it is obvious
in Figure 6a that the overall trend of α decreased as the content of NiS2@rGO composites increased
(αA > αB > αC). On the other hand, Figure 6b shows that the integral tendency of Z increased as the
content of NiS2@rGO composites increased (ZC > ZB > ZA). Although Sample A possesses the best
attenuation property and Sample C possesses the optimal impedance matching characteristic, the
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worst Z performance was shown by Sample A, and the poorest value of α was exhibited by Sample
C. It is worth noting that an excellent EMW absorber should consider both impedance matching and
energy conservation at the same time. For the Sample B, the value of the impedance matching ratio
and attenuation constant are both in the middle of the acceptable level; thus, we predict that sample B
will exhibit the most significant EMW absorption performance.
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To investigate the EMW absorption properties of the NiS2@rGO/PPy composite with different
doping ratios, the measured complex permittivity and permeability were used to calculate the reflection
loss values of the as-prepared composites by the following equation [43]:

Zin = Z0tanh
√
µr

εr

[
√
µrεr

(
2π f d

c

)
j
]

(6)

RL = 20 log
∣∣∣∣∣ Zin −Z0

Zin + Z0

∣∣∣∣∣ (7)

where Zin is the input characteristic impedance, Z0 ≈ 378 Ω is the free space of impedance matching, ƒ
is the frequency of EMW, c is the velocity of light in a vacuum, d is the thickness of the composites, and
εr and µr are the complex permittivity and permeability, respectively. When the reflection loss value
is lower than −10, −20 and −30 dB, more than 90%, 99%, and 99.9% of the EM energy is absorbed,
respectively [44]. It is probable that bandwidths lower than −10 dB are effective EMW absorption
bandwidths. Figure 7 shows a plot of the RL versus the frequency of the samples with different filler
loading ratios at various thicknesses. For sample A (Figure 7a–c), it can be seen that the minimum
reflection loss was −20.56 dB at 8.28 GHz with a thickness of 4.0 mm, and a bandwidth of RL below
−10 dB is about 3.12 GHz (7–10.12 GHz), for which the thickness was too thick and the effective
EMW absorption bandwidth was narrow. As shown in Figure 7g, h, and i, the lowest reflection loss
value of Sample C was −19.05 dB at 15.36 GHz with a thickness of 2.0 mm, and an bandwidth of RL
below −10 dB is about 5.48 GHz (12.52–18.00 GHz). Compared with sample A, the effective EMW
absorption thickness was much thinner and the effective EMW absorption bandwidth was greatly
improved, but the maximum EMW absorption intensity was not satisfactory. This is because of the
weak attenuation capability caused by the relatively low dielectric constant. Nevertheless, it must be
mentioned that a satisfactory result among the three NiS2@rGO/PPy composites was shown not only
for the characteristics of the maximum EMW absorption intensity and the corresponding thickness but
also for the effective EMW absorption bandwidth of sample B. When the filler loading ratio reached
6 wt%, the lowest reflection loss was −47.15 dB at 16.15 GHz with a thickness of 2 mm, and the
broadest effective bandwidth, from 10.44 to 16.48 GHz (6.04 GHz), was obtained when the thickness
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was 2.5 mm. The effective EMW absorption bandwidth with a reflection loss of below −10 dB was
10.96 GHz (7.04–18.00 GHz) with a narrow thickness of 2.00–3.50 mm. In this work, the NiS2@rGO/PPy
sandwich-like structure composites exhibited outstanding EMW absorption performance, which can
be ascribed to the following reasons: firstly, the intensified polarization of the NiS2@rGO/PPy interface
is conducive to EMW absorption; secondly, the sandwich-like structure formed by the PPy coating can
increase the multiple losses of the incident EMW and effectively improve the impedance matching of
the NiS2@rGO/PPy composites.
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Figure 7. Reflection loss curves of sample A with filler loadings of 4 (a), 6 (b), and 8 wt% (c); sample B
with filler loadings of 4 (d), 6 (e), and 8 wt% (f); and sample C with filler loadings of 4 (g), 6 (h), and 8
wt% (i).

Regarding the thickness of the composites, many previous studies have mentioned am important
phenomenon whereby the thickness of the composites is an important index of EMW absorption
because it significantly affects the RL value and the maximum absorption frequency [15,41]. Hence,
to further evaluate the optimal EMW absorption properties of the NiS2@rGO/PPy composite, the RL
curves of sample B with a thickness from 1.80 to 2.45 mm at a filler loading ratio of 6 wt% are shown in
Figure 8a. Meanwhile, 3D representations of RL and the corresponding contour maps are presented
in Figure 8b and c to illustrate the relationship between EM absorption frequency and the reflection
loss intensity with thicknesses of 1–5 mm. As Figure 8 displays, when the thickness of sample B
with a filler loading of 6 wt% was between 1.95 and 2.3 mm, all of the lowest RL values were lower
than −30 dB and the corresponding maximum absorption frequency appeared in the Ku frequency
range. The minimum reflection loss was –58.7 dB at 16.44 GHz with a thickness of 2.03 mm, and the
bandwidth of RL below –10 dB is about 4.32 GHz (13.68–18.00 GHz) with a thickness of only 2.03 mm.
It is obvious that the NiS2@rGO/PPy composite has an excellent performance in the field of EMW
absorption. This is because the effective EMW absorption bandwidth of the as-prepared composite
almost covers the entire Ku frequency range, and the characteristics of strong absorption and thin
thickness make it an advanced EMW-absorbing material.
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4. Conclusions

To sum up, a novel ternary type of the NiS2@rGO/PPy sandwich-like structure composites was
synthesized by using a facile two-step method. The influence of the proportions of components on the
EMW absorbing performance was investigated. The as-prepared compound with 60 mg NiS2@rGO
binary composite added exhibited some distinctly strong EMW attenuation properties. From a practical
point of view, this novel NiS2@rGO/PPy sandwich-like structure composite showed an effective
EMW absorption bandwidth (RL < −10 dB) of about 10.96 GHz (7.04–18.00 GHz) with a thickness
of 2.00–3.50 mm. The optimal reflection loss was −58.7 dB at 16.44 GHz for a sample with 6 wt%
NiS2@rGO/PPy at a thickness of 2.03 mm. The superior performance of the as-prepared composites in
the field of EMW absorption could be attributed to the novel sandwich-like structure and multiple
relaxation and interfacial polarization processes, which contribute to the optimal compatibility of
impedance matching. Therefore, it can be reasonably pointed out that the NiS2@rGO/PPy composites
obtained in this work have the advantages of strong absorption capacity, absorption bandwidth,
and narrow thickness, and has a strong application significance in preventing electromagnetic
wave pollution.
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