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Abstract 
We present here a novel multi-parametric approach for the 
characterization of multiple cellular features, using images acquired 
by high-throughput and high-definition light microscopy. We 
specifically used this approach for deep and unbiased analysis of the 
effects of a drug library on five cultured cell lines. The presented 
method enables the acquisition and analysis of millions of images, of 
treated and control cells, followed by an automated identification of 
drugs inducing strong responses, evaluating the median effect 
concentrations and those cellular properties that are most highly 
affected by the drug. The tools described here provide standardized 
quantification of multiple attributes for systems level dissection of 
complex functions in normal and diseased cells, using multiple 
perturbations. Such analysis of cells, derived from pathological 
samples, may help in the diagnosis and follow-up of treatment in 
patients.
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Introduction
Advanced precision medicine enables the use of genetic and pro-
teomic information for the characterization of disease states, 
based on the correlation with detailed medical records and spe-
cific pathological manifestations1–11. Indeed, multi-component 
“omics” profiling can report a large number of components 
of the genome, transcriptome, proteome, interactome and  
metabolome (to name a few), and detect even a small frac-
tion of them, indicating significant changes from normal12–16, yet 
this fraction may not fully overlap with the currently used rep-
ertoire of medical manifestations in complex diseases such as  
heterogeneous cancers17–26. We address here the possibility of  
using multi-parametric characterizations of cellular features for 
identifying novel signatures of functional cell states, and offer 
quantitative diagnostic, as well as mechanistic measures, of  
disease progression or suppression following therapy.

It is widely recognized that meaningful understanding of dis-
ease states needs to be achieved in the context of the whole 
body physiology and tissue functional morphology, yet cell-
level functional abnormalities lie at the basis of many patholo-
gies, and may thus be identified by recordable cellular attributes. 
Developments in quantitative light microscopy, either in two- 
dimensional or in three-dimensional model settings, has been 
combined with live cell microscopy and recent adaptation of 
microfluidics technologies to screening and personalized treat-
ment optimization with primary cells, spheroids, organoids and 
tissue biopsies27–33. The difficulty in quantitative characteriza-
tion of multiple cellular features of biological specimens with 
diverse morphological and molecular properties creates an urgent 
need for methodologies that can be standardized, yield strong 
statistical scores and can be automated for effective application  
in systems-level biomedicine.

The value of multi-parametric analysis is well recognized in 
flow cytometry34, and is mandatory when the strategies aiming 
at functional screening depart from cell reporters for specific 
drug-target interactions. The application of multi-parametric 
analysis to cell screening has become a common place.  
Perlman et al.35,36 have designed a titration-invariant similar-
ity score (TISS) based on multi-parametric doze response matrix 
for each drug, allowing comparison of drug effects to reflect 
similarity of mechanisms of action. Classification of patterns dis-
played by tagged proteins in cells37–43 is a powerful way to sort  
sub-cellular localizations, but is bound to cellular responses 
reflected by the labeled epitopes (e.g. nucleus vs. cytoplasm 
localization). Tanaka et al.44 based their analysis on multi-param-
eter evaluations, using Principal Components Analysis (PCA) 
to reduce the number of independent parameters so that the  
multi-dimensional state vectors of cells treated with drugs could 
be displayed in 3D plots to differentiate or correlate effects  

and infer similar mechanisms. Melnick et al.45 obtained their 
multi-parametric data vectors from 35 tyrosine-kinase-activated  
cellular assays responding to 1400 kinase inhibitors, and used  
clustering in Euclidian space to sort perturbations similar in 
action to known drugs. Screens have also been developed to dis-
sect cellular mechanisms42,46 and identify proteins involved in  
cellular processes using interference RNA perturbations43,47.  
Rather than prior definition of the type of effect (e.g. cell 
death) or a marker to a specific function, the analysis developed 
here quantifies drug effects on cell phenotypic and molecular  
attributes in high dimensionality space.

In this study we have determined the effects of the NCI COMBO 
drug collection [48, Plate number 3948] on five cell lines; 
the well-established cervical carcinoma-derived HeLa cells 
and four cell lines derived from bladder cancers49, and used 
light microscopy-based screening to record multiple cellular  
responses to the tested drugs. Parameters such as total protein 
levels, cytoplasmic-nuclear distributions and cell death were 
analyzed at low magnifications (X10/0.25 objectives)50, while 
high-definition imaging, providing detailed intracellular data 
about fine protein localization (e.g. cytoskeletal fibers, sub- 
cellular organelle morphology, etc.) used higher power objec-
tives (60x/.95), providing multi-dimensional information needed 
to link drug responses with molecular mechanisms and cellular  
functions.

In order to be able to read properties of cells and measure as 
many aspects of system-level response to the treatments, we 
developed an analysis platform for multi-parametric charac-
terization of cellular features and unbiased scores, based on  
Mahalanobis distances, for identifying the potency of drugs pro-
ducing a wide variety of effects. The multi-parametric score is a 
single value representing the difference from control cells, that 
contain, however, the complete information on the individual 
contributions of each of the measured parameters, enabling us to 
identify those that are mostly affected by each perturbation. Fur-
thermore, the score allows quantification of time-dependencies, 
examination of cell-line differential responses, and prediction of  
expected synergy of drug combinations.

Methods
Cells
HeLa, and four cell lines derived from bladder cancers (UMUC3, 
TCCSUP, HT1376 and RT41) were obtained from the ATCC. 
Cell lines were maintained in DMEM supplemented with 
10% FBS (Sigma-Aldrich, Rehovot, Israel) and penicillin/ 
streptomycin antibiotics. Cells were grown in polystyrene petri  
dishes.

Drugs
Drugs were obtained from the National Cancer Institute (NCI). 
The COMBO plate number 394848 includes 77 compounds, 23 
of which are FDA-approved anti-cancer drugs. Mechanisms of 
action include anti-metabolite activity, tubulin binding, DNA  

1RT4 cells were received to the lab in November 2006 from the ATCC. RT4 cells 
are much smaller than HeLa and have different morphology. We could clearly see 
that there was no HeLa contamination in our RT4 cells.

           Amendments from Version 1
Replaced additional data DOI that includes figure legends 
(missing in previous DOI)

Any further responses from the reviewers can be found at 
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damage, Hsp90 binding, as well as inhibition of topoisomerases, 
kinases, the proteasome, angiogenesis, ion channels, palmitoyla-
tion, phosphodiesterase, cyclooxygenase, and aromatase.

Sample preparation
Cells were suspended and transferred to 384 well plates (thin 
plastic bottom, Cat #781091 Greiner-Bio One, D-72636  
Frickenhausen) using BioMek FX liquid handling robot 
(Beckman Coulter, Fullerton, CA 92834) at a density of 
1000 cells/well and cultured for one day. Drugs were then 
added at the ten three-fold dilutions, concentration range: 
(10-5x10-4)*GI

50
, (GI

50
 is the concentration of the least sensi-

tive line in the NCI60, see Extended data: Table S151). Fol-
lowing the specified incubation time with the drugs, cells 
were fixed, labeled with DAPI for nuclei (Life, Molecular 
Probes D1306), FITC-Phalloidin for F-Actin (Life, Molecu-
lar Probes F432) and indirectly immunolabeled for tubulin  

(Primary Antitubulin antibodies (SIGMA T6199)) and Cy3-labled 
secondary antibodies (Alexa Fluor546 –Life, Molecular Probes 
A11030), and washed by the robot. For drug effect measure-
ment, ten 3-fold dilutions in duplicates were arranged in plate 
rows, starting from 50 times the median effect concentration 
specified for the COMBO collection. The transfer order and 
concentrations from the 96-well COMBO drugs plate into six 
384-well plates for each of the 5 cell lines are listed in 
Extended data: Table S151.

A total of 16 binary combinations were selected from 20 drugs 
that showed cellular effects. Matrices with two-fold dilutions in 
duplicate with drug concentrations up and down from the median 
effect concentrations, as listed in Table 1, were prepared for 
two cell lines (TCCSUP & UMUC3). Four such matrices were 
arranged in one 384-well plate, and rearranged for presentation,  
including duplicate averaging, as “virtual plates”.

Table 1. List of drugs that induced cellular responses. Median-effect values 
were fitted to the scores in Figure 1 using the equation in the Methods. The 
table lists Dm the column number of half effect for the drug rows marked by 
arrows in Figure 1. The higher the Dm number is, the more effective the drug 
is at higher dilutions. The corresponding concentration for a specific drug is 
10*GI50 *3^(1-Dm/2) (3-fold dilutions in duplicates from initial 50 fold dilution of 
the COMBO supplied concentration, set as 500 times the drug GI50).

Plate [row] Drug name HeLa TCCSUP UMUC3 HT1376 RT4

1 [I] Curcurbitacin 7 8 6 - 1

2 [E] Angiogenesis*** - 1 5 1 -

3 [B] Miconazole - 4 5 2 -

3 [E] Tetrandrine - 4 2 - -

3 [J] Pimozide - 3 3 - -

3 [K] Helenalin - 9 9 - -

3 [O] Curcumin - 2 4 - -

4 [H] Radicinin 4 6 6 5 2

4 [I] Methdilazine 3 4 4 3 1

4 [M] Perezone - 4 8 2 2

4 [O] Ursolic acid 4 3 4 2 1

5 [G] Celecoxib - 3 2 1 -

5 [J] Rhizoxin 1 2 2 3 2

5 [K] Brasilin - 4 5 2 -

5 [L] Maytansine - 4 6 2 -

5 [M] BCNU 2 3 6 - -

6 [B] Colchicine - 4 4 2 2

6 [F] Vincristine sulfate - 3 4 - -

6 [G] Valinomycin - - 2 - -

6 [L] Nocodazole 9 11 12 7 1

6 [M] Paclitaxel (Taxol) - 1 4 - -
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Imaging
Plate scanning and multi-color image acquisition was per-
formed by WiScan Argus (Idea-biomedical, Rehovot 76705,  
Israel; https://idea-bio.com) a fast, high-resolution screening 
microscope system52–54. Images were stored locally during 
the screen, and transferred to 60 TeraBytes storage [NetApp, 
Sunnyvale, CA 94089] accessible to the analysis workstations 
via fast local Ethernet for visualization of raw images, interac-
tive optimization of the analysis strategy and tuning of user- 
controlled parameters (see below). The automated analysis 
pipeline was then run, accumulating analyzed results to a data 
base, allowing results display and interpretation.

Analysis pipeline
In order to process the images, we used a computer cluster 
(Sun Microsystems), consisting of AMD dual-core computer 
nodes running Linux RedHat. The software used was WiSoft  
Minerva (Idea-biomedical).

The analysis scripts pipeline (Extended data55; scripts can be 
used with any software) combines throughput with modular-
ity. Analysis of different specimens and diverse assays requires a 
wide range of alternative algorithms and interactive capability to  
select between them and optimize user-defined parameters 
before processing the whole data. To achieve such flexibility, we 
broke the analysis into modular steps categorized by their func-
tionality (Pre-processing, Segmentation and Quantification see 
Extended data: Figure S151). Sequences of the analysis modules 
can be integrated like in a jigsaw puzzle and looped in cycle on 
all images acquired in an experiment. While such modular struc-
ture typically compromises performance, we implemented fast 
communication of images and data between modules via Shared  
Memory, achieving processing time as fast as would have been 
the processing time of an integrated optimized program. Every  
image is annotated during the acquisition (time, fluorescent color 
or transmitted light, position inside well, well in plate, plate in 
whole experiment), and the analyzed data carries these annota-
tions, keeping track of the experimental organization (metadata). 
Calculation and display of statistics of the analyzed results is 
therefore directly linked with the experimental design structure. 
The “Plate GUI” is used to display plate-wide scores, and to  
interactively show (by a mouse click on a well) the original images 
and the corresponding numerical and statistical analyzed data. 
The access to all levels of the data is necessary for rational min-
ing of the TeraBytes of digital information at all levels: original 
images, montages of image tiles, segmented objects, quanti-
fied parameters and statistical profiles. The scoring algorithm 
used here is based on Mahalanobis distances in multi-parametric 
space (see Extended data: Figure S251). The attributes calculated  
for each cell are listed in Extended data: Table S251.

Drug combination effect analysis
Combination matrix scores were fitted using Loewe-additivity  
and Bliss-independence models56–58 using the following steps:

I.    Fitting D
m
 and s in Chou’s medial effect equation to the 

single-drug response curve (first rows and columns  
in the combination matrices):

Af+B=A/[1+(D
m
/D)s]+B 

where: 

f            the fractional effect, here from the Mahalanobis score,

A+B    the measured score amplitude at infinite drug 
concentration,

B         the score baseline at zero drug concentration.

D
m
       the median effect concentration of the drug

s          the Hill parameter

The parameters A,B were first evaluated from the scores response 
curve minimum and maximum, D

m
 and s were obtained from 

the linearized equation for the log of normalized fractional  
effect data: log(1/f-1)=s*log(D

m
/D)

The four parameters A,B,D
m
,s were then used as initial  

estimates for a non-linear Marquet-Levenberg fit. 

II.    Using the parameters s
1,2 

for each of the two drugs to 
“span” the combination effect matrix, f

comb
, as a function 

of the two concentrations, D
1,2

, and solving f
comb

 from  
Loewe additivity equation:

D
1
/[f

comb
/(1-f

comb
)1/s1] + D

2
/[f

comb
/(1-f

comb
)1/s2] = 1

III.    Using the medial effect parameters D
m1,2

,s
1,2 

for each of 
the two drugs to “span” the combination effect matrix,  
f

comb
, assuming Bliss independence:

f
comb

=f
1
*f

2
=1/[1+(D

m1
/D

1
)s1] /[1+(D

m2
/D

2
)s2]

IV.    Fitting the four parameters D
m1,2

,s
1,2 

using all the values  
in the combination matrix simultaneously, based on  
Loewe or Bliss models.

Results
Five established cell lines; four derived from urinary-blad-
der cancers, and one from cervical carcinoma, were plated in  
384-well plates at a density of 1000 cells per well. Following  
incubation for 24h, the cells were treated with serial dilutions of 
the COMBO plate drugs48 (ten, three-fold dilutions, concentration 
range: (10-5×10-4)*GI

50
 , where GI

50
 is the concentration of the 

least sensitive line in the NCI60, see Extended data: Table S151)  
and further incubated for 18h (see Methods). The cells were 
then fixed and labeled (see Methods). Images were acquired in 
these three fluorescent channels (see top panels, Figure 1), and 
analyzed as described in the Methods and in Extended data:  
Figure S151. The analysis yielded, for each well, a list of seg-
mented cells, each characterized by a “vector” of quantified  
features (‘attributes’).

Whole cell segmentation was commonly achieved by dif-
fuse cytoplasmic staining (e.g. “cell mask”, Invitrogen), with 
enhanced nuclear concentration. Cytoplasmic fluorescence 
(due to the monomer fraction of tubulin and actin and even cell 
autofluorescence) plus the definition of the nucleus by DAPI 
(often excluding cytoskeletal proteins) provided highly reliable  
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Figure 1. Cell imaging and multi-parameter analysis. Five cell lines were cultured each in six 384 plates treaded with concentration-
dilution series of the COMBO drug plate (see Table 1 for drug order, each plate row is a dilution series in duplicates). Cells were imaged in 
three fluorescent colors (Red: Acin, Green:Tubulin & Blue:Nucleus, See image examples in top pannels). Individual cells were segmented, and 
for each cell an array of attributes was quantified. Attributes include cells and nuclei morphological and fluorescence intensities attributes 
and microtubules and actin fiber attributes (see Methods and Extended data: Table S2). Color coded Mahalanobis Scores (see Extended data: 
Figure S2) are presented here for each well in six plates for the five cell lines. A number of drugs with strong cellular effects are displayed 
(red rows), and indicate some cell-line dependence. Robot error effects were minimized in the analysis by rejecting outliers lying outside 
the robust PCA ellipsoids.
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segmentation of individual cells, even in densely-packed cell 
islands. This approach enabled us to ‘free’ color channels for 
labeling cells for additional cellular markers of interest. In addi-
tion, the segmentation process allowed us to also calculate 
the total covered cell area which can report on cell spreading/ 
proliferation/death during the time of treatment of each of the 
tested cell lines. Notably, although all lines are of epithelial 
origin, the RT4 cells (and to some extent HT1376) grow in 
islands even at low plating density, while TCCSUP and UMUC3 
cells grow, primarily as isolated cells, and may be more 
susceptible to shrinking or contraction. For this reason, the 
analysis is based primarily on “per-cell” attributes.

The profiling of drug responses based on a single attribute may 
be misleading, as demonstrated in Figure 2. Dose-response 
profiles of a single drug (nocodazole) is displayed by eight dif-
ferent attributes (cell area, MT intensity/ area/ texture, actin  
intensity/ area, nucleus intensity/ area) for two cell lines (TCCSUP, 
UMUC3). The results are displayed as a “virtual plate”. Various 
attributes display different responses: tubulin-related attributes in 
the first four rows indicate the disruption (Blue) of the microtu-
bule network; attributes related to the actin cytoskeleton show 
little effect after 18 hours; nucleus-related attributes show an 

increase (Red) in DNA content per cell, possibly due to cell-cycle  
arrest.

In order to define an unbiased score that will accumulate drug-
induced changes from multi-parametric characterization of 
cell properties, we have to consider three factors: (1) different 
attributes have different dimensions and scales; (2) the  
cell-by-cell variability of each attribute can be quite different; 
(3) it is not easy to select independent attributes. For example, 
cell content of a specific detected protein (either by expression of  
fluorescent derivative or by specific immune-labeling) is highly 
correlated with cell size. While average protein concentra-
tion accounts for this dependency, there are less obvious cor-
relations, reflecting regulated cellular properties, which may  
become relaxed or tightened in response to drug treatments.

PCA is a well-established method for the characterization of 
multi-dimensional variability and correlations. We have applied 
PCA to the quantified attributes in the control wells to best fit a 
multi-dimensional hyper-ellipsoid, where elongated axes indi-
cate correlated attributes. Using this hyper-ellipsoid, we defined 
a score based on Mahalanobis distances between each treated 
cell to the control cells (see Methods and Extended data: 

Figure 2. Different parameters report different response profiles. TCCSUP and UMUC3 cell lines were treated by nocodazole. Image 
analysis recorded nuclei, cells microtubule and actin-related scores. The response curves clearly depend on the attribute used to quantify 
the effects, and the strength of the effect depends on the cell line.
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Figure S251). This score balances the scales and variability of the 
measured attributes and accounts for correlations between them. 
In addition, the hyper-ellipsoid for each of the treated wells pro-
vides a multi-parametric scale for identifying outliers, created by 
technical artifacts such as bubbles, dead cells, cell clumps etc.  
Figure 1 shows the multi-parametric Mahalanobis scores for 
all the COMBO plate drugs applied to the five cell lines tested. 
The figure compiles 360 Gigabytes of image data (12GB/plate) 
imaged from 30 multi-well plates. The scores coded in spec-
tral colors are displayed in the plate format that is also used as a 
“Graphic User Interface” (Plate GUI) showing, upon a mouse-
click on a well, montages of the acquired images, outlined cell 
segments, as well as the full resolution image color components, 
and a wealth of statistical presentations and cell-by-cell numeri-
cal values, facilitating data mining within the large volume of  
information (see Extended data: Figure S151).

The scores display differential responses to some of the drugs 
for some of the cell lines. Table 1 lists the AC

50
 values obtained 

for these drugs, as described in the Methods. It should be noted 
that defined as a “distance”, Mahalanobis scores are always 
positive. The multi-parametric score is a faithful reporter of 
changes in any of the measured attributes for all drugs that 
showed effects. Moreover, once an effect is detected by scoring  
large Mahalanobis distance to the control ellipsoid, the largest  
contributions of each of the attributes to the score identify the 
most significant attribute changes (see examples in Table 2). The 
plate scores for individual high contributors were qualitatively 
similar (though not identical) to the multi-parametric Mahalanobis  
scores, yet the latter present in one picture what can only be 
exhaustively reviewed by many single attribute scores. Alto-
gether, this offers a fast and systematic method with internal  

standardization for navigating in multi-dimensional attribute 
space towards focusing on the cellular phenotype responding to  
perturbations.

Figure 3 depicts another important feature of cellular responses 
to drug treatments, namely, time dependence. The effect of 
drugs with specific molecular target is typically documented 
using reporter cells displaying target activation. However, the 
medical value of many drugs often stems from indirect effects.  
Multi-parametric cell-based measurements can probe both direct 
and indirect effects. Here the fast disruption of microtubules 
compared to the slower cell cycle arrest (depicted by DAPI-
labeled DNA content) can be seen. Fingerprints of drug effects,  
based on an array of features or time-dependent of a single fea-
ture, suffer from different scales and variabilities of the meas-
ured features. The Mahalanobis-scaled fingerprints can include 
many features at several times, and present more balanced meas-
ures for analyses such as multiparametric similarity of drug  
effects.

In conclusion, multi-parametric analysis of cellular responses 
to drugs, visualized by high-definition light microscopy screen-
ing, allows departing from target-guided drug screening and 
build essays more sensitive to cell-level functional effects. In 
addition, since systematic screen of all drug combinations is 
not practical, selection based on multi-parametric analysis may 
increase the chance of identifying interactions between different 
cellular mechanisms favorably affected by drug combinations.  
In Figure 4 we show matrices of the responses of one combination  
(Radicinin and Brasilin) out of 16 binary combinations tested 
at five 2-fold dilutions around the “AC

50
” concentration of the  

single drug treatments. Differences between the two treated cell 

Table 2. Mostly contributing attributes. Listed are examples for three 
drugs, Curcubitacin, Helenalin and Nocodazole, that strongly affected 
TCCSUP cells as seen in Figure 1 Plate 1 row 9, plate 3 row 11 and plate 
6 row 12 respectively. (A) Curcubitacin-treated TCCSUP indicate rounding 
up compared to the control cells (Shrinking cells long axis, compare to 
control cells, the top of Figure 1), loss of actin stress fibers (strongly stained 
condensed actin), and longer, strongly labeled tubulin fibers.  
(B) Helenalin-treated cells show stronger total per-cell staining of actin & 
tubulin fibers, and also stronger DAPI staining, compatible with cell cycle 
arrest. (C) Nocodazole-treated cells indicate loss of tubulin fibers with no 
disturbance of actin filaments. All the above descriptions based on image 
visualization are compatible with the three mostly-contributing attributes to 
the Mahalanobis distance from controls, listed below. Other attributes have 
normalized Mahalanobis contributions of less than 0.2.

(A) CURCUBITACIN Attribute by order of contribution to Score 

Att. Name: Cell_LongAxis Tub_Fib Len Act_Fib CelInt-Bck

Norm.Contr.Maha: 0.648291 0.347245 0.324186

(B) HELENALIN Attribute by order of contribution to Score 

Att. Name: Tub AvgInt-Bck Act CelInt-Bck Nuc TotInt

Norm.Contr.Maha: 0.572778 0.521640 0.505878

(C) NOCODAZOLE Attribute by order of contribution to Score 

Att. Name: Tub TotInt-Bck Tub CelInt-Bck Tub Len

Norm.Contr.Maha: 0.581077 0.430987 0.319133
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Figure 3. Comparison of short and long-term drug effects on attributes. Three plates were treated with 6 drugs for 3 times: 1, 5 & 18h 
(shown only Nocodazole for 2 cell lines for several attributes). The “virtual plate” displays in rows the different attributes evaluating cellular 
effects at different time points. Time-response fingerprinting based on a single attribute depends on the attribute chosen, and is not reliably 
reporting time-dependence of effects. For example, fast (minutes) disruption of microtubules, indirect effects on the actin filaments (an 
hour), changes in cell spreading, slower cell-cycle arrest (many hours) and cell death (days) are only reported by several time points.

Figure 4. Drug combination essays. The combinations were selected from 20 “responsive” drugs (Table 1). 16 two-drug combinations 
matrices were applied to two cell lines (TCCSUP & UMUC3). 5x5 matrices (10x5 wells including duplicates) + single-drug rows and columns + 
controls were prepared. 4 dual combinations were set in each plate, 8 plates total (4 for each cell line). Example of 7 single features response 
for the combination of Radicinin (rows) and Brasilin (columns) in concentrations of 4-0.25µM are displayed for the two cell lines (TOP). The 
data require preparation of larger matrices with more dilutions and repeats. Nevertheless we attempted to fit the Mahalanobis scores 
(BOTTOM) to Loewe or Bliss models (see Methods) but found no significant synergism.
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lines are seen for nuclear-related features. However, Loewe or 
Bliss model fitting to the Mahalanobis scores does not indicate  
synergism.

Discussion
Images recording cell, nuclear and cytoskeleton structures 
were analyzed for five cell lines treated with the COMBO drug 
library and revealed differential responses. Cell morphology and 
tagged protein intensity and distribution attributes depicted cel-
lular responses as reported by various features. The transition  
with time from direct and specific effects on the drug target 
to indirect and distributed responses manifest the advantages 
of high-resolution imaging for characterization of cell-level 
responses by multi-parametric scores. Identification of the features 
mostly affected by each treatment help guide to relevant cellular  
functions mediating these responses.

Both basic biological research and biomedical challenges need 
high-throughput technologies to address the complexity of cel-
lular mechanisms. The information-content in high-throughput 
experiments, initially confined to biochemical assays report-
ing a specific target protein, is extending to detailed quanti-
tative sub-cellular characterization, classically the basis for  
understanding cellular functions. This work developed analysis 
for high-resolution (recording cytoskeletal fibers) multi-color cel-
lular images from large-scale screens, and display of the results in 
a digestible form with cell-informatics mining capability. Multi-
parametric quantification of cellular effects offers a method to 
identify cellular responses to drugs without selecting in advance 
a specific drug targets as a reporter. Effective AC

50
 obtained from 

multi-parametric analysis integrate many cell-level responses 
and is therefore less essay-biased then measurements based 
on single-attribute analysis. Scores based on Mahalanobis dis-
tance offer standardized measures of responses in comparison to  
controls.

Perturbations to living systems, even when the treatment is 
directed towards a highly specific target with well-defined short-
term effects, cause at longer times distributed cellular responses.  
Characterization of the time-dependence of the direct and indi-
rect responses to drugs using multi-parametric analysis contain 
causal information to help dissect mechanisms, and may provide 
rational basis for optimization of temporal schedules for drug  
administration, already recognized valuable in chemotherapy51.

Multi-component drug combinations are commonly used in 
chemotherapy, AIDS and also in antibiotic treatments to fight 
development of resistant bacteria clones. The effectiveness of 
such cocktails is often a result of interactions at the physiological 
level, and was optimized through slow clinical trials. Redundan-
cies and multi-functionalities in molecular networks mediating  
cellular mechanisms59–62 and the multi-genetic nature of diseases 
such as cancer, with abnormal protein interactions and modi-
fied cellular mechanisms, suggest a potential for the discovery 
and optimization of multiple-perturbation approaches using cell 
preparations. Many classical drug targets are shared by the dis-
ease phenotypes and the normal ones, causing undesired side 
effects at the potent dozes. Multiple-drug treatments offer degrees 
of freedom to optimize synergistic interference with a specific 
mechanism, preferably more effective in the diseased version 

and in a given cell lineage, with reduced side effects due to lower 
doses of each individual drugs in the mixture and minimize com-
pensation by alternative pathways. The benefits of compounds 
with lower affinity and multiple targets is therefore re-evaluated  
due to their potential in combinatorial therapies63–67.

The advancement in our understanding of the molecular mecha-
nisms of cellular functions serves as a basis for rational design 
of drugs. Combinatorial drug effect profiling is in fact a tool to 
probe normal network structures60–62. However, first principles 
quantitative modeling of complex cellular networks depends on 
many and not readily measurable parameters. Cell-based high-
content drug response profiling is therefore a practical method 
to study multiple perturbations, and to optimize mixtures with 
advantageous responses. Cell-based assays also open possi-
bilities for patient-specific profiling of abnormal pathways and  
personal optimization of treatments.

Data availability
Underlying data
The raw data includes 10 Terabytes of images and are therefore 
too large to share. The images are kept on storage disks as  
OME-TIFF files with .xml headers metadata for each image.  
Individuals wishing to access this data can apply to the cor-
responding author in order to obtain the files. In this situation, 
these files will be uploaded to and available from the Weizmann  
Institute of Science website. Example images for one plate are  
provided in the Extended data67.

Extended data
Figshare: Multi-parametric characterization of drug effects on  
cells, https://doi.org/10.6084/m9.figshare.12981518.v2.

This project contains the following extended data:
-    Table S1. The order of transfer from the COMBO  

96-well plates and the COMBO plate handout.

-    Table S2. The list of attributes calculated for each cell.

-    Figure S1. Analysis Flow Diagram.

-    Figure S2. Mahalanobis distance score.

Figshare: Multi-parametric characterization... Original Data,  
https://doi.org/10.6084/m9.figshare.12981875.v155.

-    Analysis scripts

-    Example images for one plate

-    Analyzed data for the example images (Excel file)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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subcellular resolution, this article captures an analytical strategy that is relevant to drug discovery, 
but also to fundamental analysis of cellular processes, their underlying mechanisms, and 
potentially, diagnostic assessment/identification of defective processes in disease states.  
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representation of drug effect strengths relative to control variation, whilst also embedding 
information about the (relative weights) of specific cellular features that capture/comprise the 
effects of any given perturbation (drug). Mahalanobis distance thus emerges as a powerful tool to 
assess, compare, sort, and visualise drug effects, especially when compared (as the authors show) 
with single feature responses, which are far less systematic in their indications.  
 
The authors also highlight the strengths of their approach for identifying complex temporal 
dynamics of drug response, i.e. how changes in different phenotypic features emerge at different 
times after treatment. Reflecting the way that even highly specific initial perturbation impacts are 
propagated outward over time within cellular information processing and responses networks, 
this is an important additional dimension that is precisely addressed using the authors' analytical 
strategy. 
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