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A nickel-catalyzed cross-coupling amination with weak nitrogen
nucleophiles is described. Aryl halides as well as aryl tosylates can be efficiently
coupled with a series of weak N-nucleophiles, including anilines, sulfonamides,
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sulfoximines, carbamates, and imines via concerted paired electrolysis. Notably,

electron-deficient anilines and sulfonamides are also suitable substrates.
Interestingly, when benzophenone imine is applied in the arylation, the
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product selectivity toward the formation of amine and imine product can be

addressed by a base switch. In addition, the alternating current mode can be . 8,00, as base, C-N cross-coupling

successfully applied. DFT calculations support a facilitated reductive

elimination pathway.
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itrogen-containing molecules belong to one of the most

important classes of organic compounds due to their
wide application in the fields of synthetic, pharmaceutical, and
materials science.'™ As such, great efforts have been devoted
to the development of general and effective approaches for the
construction of C—N bonds.*”® In this regard, palladium-,”~""
copper-,">~" or nickel-catalyzed'®™*' aminations of organic
halides have had great impact in both academic research as
well as industrial applications.””>** In recent years, the
extension to other types of electrophilic coupling partners
has been investigated.”* "> Despite the advances made, many
of the protocols still suffer from drawbacks, which may include
the use of either air-sensitive or costly metal catalysts,
complicated ligand architectures, strong bases, or the need of
higher temperature, which results in a narrow application and
substrate scope. In order to address these issues, dual catalytic
strategies have been developed, which provided the amines
under milder reaction conditions.”® For instance, a photoredox
and nickel dual-catalyzed amination reaction of aryl halides
with aliphatic amines has been described by MacMillan.”
Concurrently, Johannes, Oderinde, and co-workers reported a
cross-coupling procedure for C—N bond formations by
focusing on the cross-coupling of primary arylamines with
aryl iodides via a dual-catalyzed methodology.”® Notably,
Johannes and co-workers also realized the amination of aryl
halides with aryl azides via a similar strategy.”’ These
transformations proceeded under very mild reaction conditions
with high efficiency and selectivity in the absence of specialized
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ligands due to the generation of unstable Ar—Ni'"'~NR;R,
intermediates resulting in a facile reductive elimination.
Recently, organic electrochemistry has attracted the attention
of organic chemists due to possible advantages, which may
include energy economy, sustainability, mild reaction con-
ditions, adjustability, as well as scalability.*>** With the use of
renewable electricity and by simply adjusting the current or
voltage, various organic transformations could be
achieved.”* ™"’

In particular, paired electrolysis represents an attractive
platform wherein the half-reactions at both the anode and
cathode are simultaneously used to generate the desired
intermediates or products.44_47 Importantly, the combination
of electrolysis and nickel catalysis led to considerable advances
in C—C and C—heteroatom bond formations under mild
conditions.”® " In this context, the Baran group developed a
nickelaelectrocatalyzed amination reaction of aryl halides and
triflates with aliphatic amines*® and extended the scope to
amino acid esters, nucleosides, and oligopeptides afterward.*®
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However, in this leading work, challenging coupling partners
such as electron-rich aryl halides as well as weak nucleophilic
anilines and sulfonamides remained problematic (Figure la).
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Figure 1. (a) Paired electrolysis for N-arylation reactions with
aliphatic amines and limitations. (b) Nickel-catalyzed redox-neutral
cross-coupling with weak N-nucleophiles including anilines, sulfona-
mides, sulfoximines, carbamates, benzylamines, and imines via paired
electrolysis.
Given our interest in the electrochemical transformations,”®~°!
the high importance and demand of amines in chemistry, and
the current cross-coupling limitations, we decided to develop a
more general amination protocol. Herein, we report a
nickelaelectrocatalyzed cross-coupling C—N bond formation
of aryl electrophiles with a series of weak nucleophiles
including anilines, sulfonamides, sulfoximines,®> carbamates,
benzylamines, and imines via paired electrolysis (Figure 1b).
We started our investigation by evaluating the cross-coupling
of 4-bromobenzonitrile 1a and p-toluidine 2a (Table 1). A
series of optimization experiments were conducted, and the
best reaction conditions with regard to yield and product
selectivity were obtained with NiCl,-dme as the catalyst,
dtbbpy as the ligand, Et;N as the base, "Bu,NBr as the
electrolyte, DMA as the solvent, and with graphite/nickel foam
as the electrodes in an undivided cell at room temperature.
The evaluation of bases showed that inorganic bases and other
organic bases resulted in inferior results when compared to
Et;N (entries 2—6). This may due to the fact that bases such as
DBU better coordinate to the Ni intermediate, thus increasing
the overall activation energy.63 The use of other solvents,
including DMF and MeCN, provided lower yields (entries 7
and 8). Replacement of the graphite anode and nickel foam
cathode with other electrodes such as Cu foam, stainless steel,
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Table 1. Optimization of the Reaction Conditions”

A,

10 mol% NiCl,-dme
10 mol% dtbbpy
2 eq. Et3N

Br NH,
O O e
NC 2 eq. "BuyNBr

H
N

1a 2a 4 mLDMA, 4 mA, rt, 16 h 3a
(+)graphite/(-)nickel foam
undivided cell

entry variables yield (%)”
1 none 76 (72)
2 DBU as base NR
3 DIPEA as base 56
4 TMG as base 40
S BTMG as base 27
6 K;PO, as base 64
7 DMF as solvent 47
8 MeCN as solvent 64
9 Cu foam as cathode 29
10 stainless steel as cathode 8
11 Pt as cathode 9
12 Pt as anode 40
13 bpy as ligand 53
14 d(4-OMe)-bpy as ligand 21
15 2, 6,8 mA 20, 65, 41
16 4 equiv of LiBr as electrolyte 62
17 "Bu,NPFq as electrolyte 53
18 no electricity NR
19 no nickel NR
20 no ligand 13
21 no electrolyte 9
22 no base 6

“Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), NiCl,-dme
(0.02 mmol), dtbbpy (0.02 mmol), Et;N (2 equiv), "Bu,NBr (2
equiv) in 4.0 mL of DMA in an undivided cell at rt under argon for 16
h. I = 4 mA. Anode: graphite, cathode: nickel foam. bGe yield using
dodecane as an internal standard. Isolated yield in parentheses.

and Pt led to lower yields (entries 8—12). The use of other
bipyridine ligands also resulted in lower yields (entries 13 and
14). The adjustment of current indicated that 4 mA provided
better yields (entry 15). The use of other electrolytes showed
no improvement (entries 16 and 17). The control experiments
demonstrated that electricity, nickel, ligand, electrolyte, as well
as base are all essential for the success of this nickel-
aelectrocatalyzed protocol (entries 18—22). With the opti-
mized reaction conditions in hand, the scope for the cross-
coupling of aryl bromides and anilines was examined. As
shown in Table 2, a series of electronically and sterically
diverse aryl bromides participated in this newly developed
nickelaelectrocatalyzed protocol, and the corresponding
products were isolated in good yields. The chemoselectivity
of the transformation is good as illustrated by the tolerance of
functional groups including cyano, ester, ketone, sulfone,
trifluoromethyl, trifluoromethoxyl, and trifluoromethylthio
moieties (3a—3j). Importantly, an ortho substituent is also
compatible with the reaction conditions (3c). Furthermore,
reactive functional groups such as fluoro- or chloro-
substituents or boronic esters are tolerated, providing the
possibility for further late-stage functionalization (3k—3m).
Disubstituted aryl bromides also underwent the reaction with
good efficiency (3n and 30). Electron-neutral and electron-rich
aryl bromides can also be applied in the amination reaction
(3p and 3q). In addition, the reaction also proceeds with good
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Table 2. Scope of Substrates”

10 mol% NiCl,-dme 10 mol% NiCl,-dme
10 mol% dtbbpy 10 mol% dtbbpy H

N_/
X NH, 2 eq. EtsN ‘ ‘/X HN. //o 2 eq. BTMG _ //S/‘R
. + s’ > g
7R
) b - ™
1 2

2 eq. "BuyNBr 2 eq. "BuyNBr

4mLDMA, 4 mA, rt, 16 h 1 4 4mLDMA, 4mA,rt, 16 h 5
(+)graphite/(-)nickel foam (+)RVC/(-)RVC
undivided cell undivided cell
H H N H H H H
o, OO oYY o : : :
w 7 JORCUNSSRGN
N /©/ @ OMe @( S0,Me
o] o]
3a, 72% 3b, 82% 3c, 53% 3d, 79% 3e, 74% 3f, 47% 3g, 73%
o
H H H H H H H
N N N N N N N CFs
oo, o0, o0, o0, o0, O, T
CFy OCF3 SCF3 F Cl B
o CFs
3h, 62% 3i, 58% 3j, 60% 3k, 55% 31, 72% 3m, 65% 3n, 60%
/© 1o /© U /© ., /© /© /©/ N,/@/ T
CO,Me
30, 62% 3p, 56% 3q, 73 %[ 3r, 85% 3s, 65% 3t, 74% 3u, 56%
o)
SRS ed SNROWeRe o, o 9\
(o] 1y
SN ><o o 0 N O%f W/ By Bu Bu
o
3v, 55% 3w, 63%°, from Galactopyranose 3x, 62%!°°], from Fenofibrate 3y, 58%! 3z, 81%!! 3aa, 46%°!
X =Cl
H H H H H H H
o hAONSACTENCACINOACINORACHOAG!
eO Bu Bu Bu cl Bu CFy Bu NC Bu Bu
F CN
3ab, 69%!"! 3ac, 91%[° 3ad, 44 %[ 3ae, 35%[° 3af, 43%[°) 3ag, 60%° 3ah, 74%[P<l
H H NHTs NHTs NHTs NHTs NHTs NHTs
N MeO NN
o i MeO.
\ N _~ - NC CF3 cl
Bu CN o o)
OMe
3ai, 66%! 3aj, 37%P 5a, 86 %! 5b, 95%!°! 5¢, 72%9) 5d, 80%I9¢l 5e, 73%°] 5f, 89%°!
NHTs NHTs NHTs NHTs NHTs NHTs MeO NHTs NHTs
N
By MeO Y = CFy N7 Z N7
! ™S
59, 83% 5h, 86%!9 5i, 92%, X = Br 5§, 72% 5k, 70%!9! 51,91% X = Br 5m, 76%!°! 5n, 86%L-€l 50,70 %
76%, X = Cl 93% X = OTf
72%, X =
69%, X = OTf

T e T

o -
5p, 61%, from cholestanol 5a, )6(6:/1’ from adamantanecarboxylic acid 5r, 80%, from galactopyranose

5s, 71%, from fenofibrate
X=Cl

S0 S SO SO

5t, 41 %9 5u, 58%! 5v,93 % 5w, 72% 5x, 48 %

H H
NO ¥ ov© NP N2
S ) ~
ré qr (e Ty
eO MeO MeO MeO

5y, 58%!9 52,83 % 5aa, 75% 5ab, 64 %

“General reaction conditions for arylation of anilines: aryl halide 1 (0.2 mmol), anilines 2 (0.4 mmol), NiCl,-dme (0.02 mmol), dtbbpy (ligand,
0.02 mmol), Et;N (base, 2 equiv), and "Bu,NBr (electrolyte, 2 equiv) in 4.0 mL of DMA at rt under argon for 16 h. I = 4 mA. Anode: graphite,
cathode: nickel foam. General reaction conditions for arylation of sulfonamides: aryl halide 1 (0.2 mmol), sulfonamides 2 (0.4 mmol), NiCl,-dme
(0.02 mmol), dtbbpy (ligand, 0.02 mmol), BTMG (base, 2 equiv), and "Bu,NBr (electrolyte, 2 equiv) in 4.0 mL of DMA at rt under argon for 16
h. I = 4 mA. Anode: RVC (retlculated vitreous carbon), cathode: RVC. X = Br, except specified. Yields after purification. b Anode: RVC, cathode:
RVC. “TMG (2 equiv) as base. “4 as the limiting reagent (0.2 mmol); 2 equiv of 1 (0.4 mmol) was used. “Reaction time 3 h.
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a. Scale-up reactions

10 mol% NiCl,-dme
10 mol% dtbbpy

2 eq. Et3N

H
N

Br NH,
oy 1y
NC

10 mmol

2 eq.
200 mL DMA, 100 mA, rt, 16 h

AT T

51% (1.06 g)

"Bu,NBr

(+)graphite/(-)nickel foam
undivided cell

10 mol% NiCl,-dme
10 mol% dtbbpy

2 eq. BTMG

Br
/©/ +  Ts—NH,
NC

10 mmol

b. Alternating current

2 eq. "BuyNBr
200 mL DMA, 100 mA, rt, 2 h
(+)RVC/(-)RVC

/@,NHTS
NC

71% (1.94 g)

undivided cell

10 mol% NiCl,-dme
10 mol% dtbbpy

2 eq. BTMG

Br
/©/ +  Ts—NH,
NC

2 eq. "BuyNBr
4 mLDMA, rt, 3 h

f
’ o

/@,NHTS
NC

56%

alternating current, 2 Hz,

sine wave, 3 V
(+)RVC/(-)RVC
undivided cell

c. Other N-nucleophiles

10 mol% NiCl,-dme
10 mol% dtbbpy

2 eq. BTMG

Br
+ H-Nuc

2 eq. "BuyNBr

—
>

‘ENUC

4 mLDMA,4mA,rt, 16 h
(+)RVC/(-)RVC
undivided cell

Sulfoximines

N\\S/p N\\S//O N\\s/f3
MeO MeO NC

6a, 95% 6b, 65% 6¢c, 58%
Benzylamines Carbamates
SO
o ot
MeO MeO 0
6d, 35% 6e, 94%°

Figure 2. (a) Scale-up reactions. (b) Alternating current reactions. (c) N-Arylation reactions with other N-nucleophiles, including sulfoximines,

benzylamines, and carbamates. “MeCN as solvent.

efficiency with bicyclic substrates containing lactone, imide,
and quinoline motifs (3s—3v). Importantly, galactopyranose-
derived aryl bromide and fenofibrate could also be aminated
with good efficiency (3w and 3x), showing the potential of this
protocol in the functionalization of pharmaceutical-related
compounds. Anilines, irrespective of their electronic nature,
can be applied in the amination protocol. Whereas the use of
electron-neutral and electron-rich anilines provided the
products in good yields (3y—3ac), significantly weaker
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nucleophiles such as anilines bearing fluoro, chloro, trifluor-
omethyl, cyano, and acetyl groups also afforded the
corresponding products albeit in moderate to good yields
(3ad—3ai). Importantly, heterocyclic pyrimidine amine could
also be arylated (3aj). Given the good results obtained for the
synthesis of diarylamines applying the newly developed
nickelaelectrocatalyzed amination protocol of aryl halides
with anilines, we decided to also test other N-nucleophiles.
Sulfonamides are of vital importance in the pharmaceutical

https://doi.org/10.1021/jacsau.1c00148
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NH

Br
ISANOA’
NC

1a 7

10 mol% NiCl,-dme
10 mol% dtbbpy
2 eq. Cs,CO;4
2 eq. "BuyNBr,
4 mL DMA, 4 mA, rt, 16 h
(+)graphite/(-)nickel foam

10 mol% NiCl,-dme
10 mol% dtbbpy
2 eq. DBN
2 eq. "BuyNBr,
4 mL DMA,4mA,rt, 16 h
(+)graphite/(-)nickel foam

6f, 65% (0% 6h)

Acidic Hydrolysis

NC

69, 60%
over 2 steps

jon
NC

10 mol% NiCl,-dme
10 mol% dtbbpy

Wepet

6h, 85% (0% 6f)

2 eq. DBN
1a -
* 2 eq. "BuyNBr,
NH

4 mL d;-DMF, 4 mA, rt, 16 h

O O (+)graphite/(-)nickel foam

2 eq. DBN
2 eq. "BuyNBr,

Nopiet

83% isolated yield
No D-incorporated

4 mLDMA,4mA,rt, 16 h
(+)graphite/(-)nickel foam

H
o
IS
6h

with 10 mol% NiCl,-dme and dtbbpy, full conversion
w/o 10 mol% NiCl,-dme and dtbbpy, full conversion

Figure 3. N-Arylation reactions with imines.

industry.'”®* Gratifyingly, our newly developed protocol can
also be applied to the sulfonamidation reaction with little
changes in the reaction setup. The scope for the cross-coupling
of aryl electrophiles and sulfonamides was investigated with
(+)RVC/(=)RVC as the electrodes and BTMG as the base.
Similarly, a wide range of electron-rich and electron-poor aryl
bromides bearing diverse functional groups can be applied, and
the corresponding products can be isolated in good to
excellent yields (5a—5i). Notably, even an alkyne was tolerated
in this system (Sk).

The use of 2-bromotoluene afforded the sulfonamidation
product in high yield (Sg), demonstrating that the steric
hindrance has no dramatic influence on the activity of this
reaction. Furthermore, aryl bromides, aryl iodides, aryl
chlorides, as well as aryl tosylates can all undergo this new
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nickel-catalyzed sulfonamidation effectively (5i and SI).
Importantly, a series of pharmaceutically relevant heterocyclic
substrates containing pyridine, quinolone, and thiazole motifs
as well as natural-product-derived complex molecules are all
suitable in this reaction, providing access to bioactive
compounds (Sm—S5s). Electron-poor aryl sulfonamides also
showed good reactivity for this transformation (St and Su). In
addition, the use of an ortho-methyl-substituted aryl
sulfonamide provided the product in excellent yield (Sv).
Notably, both thiophene-2-sulfonamide and secondary aryl
sulfonamide participated with moderate to good efficiency
(5w—S8y). Moreover, benzyl-, methyl-, and cyclopropyl
aliphatic sulfonamides all underwent this electrochemical
protocol in good yields (5z—Sab).

https://doi.org/10.1021/jacsau.1c00148
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a. Divided Cell 10 mol% NiCl,-dme
10 mol% dtbbpy

NHTs
O
+ TsNH, -
NG NC

2 eq. "BuyNBr
4 mL DMA, 4 mA, rt, 16h
(+)RVC/(-)RVC
divided cell
all reagents in cathode-chamber, 2 eq. BTMG and 2 eq. "BuyNBr in anode-chamber, 0%
all reagents in anode-chamber, 2 eq. BTMG and 2 eq. "BuyNBr in cathode-chamber, 0%

b. Reaction Monitoring 10 mol% NiCl-dme
2

10 mol% dtbbpy NHTs
Br 2 eq. BTMG /@’
NC 2 eq. "BuyNBr

4 mLDMA, 4 mA, rt
(+)RVC/(-)RVC

Reaction completed

0.2 mmol scale within 50 min

100%
84% 86%

7%
80% | s °

60% 52%

40% | 3§"
20% L 17%
5% @
0%‘ . 1 1 1 1
0 10 20 30 40 50 60

Reaction Time [min]

Yield [%]

c. Reaction with Ni(cod), without electricity

Br Ni(cod),, dtbbpy NHTs
2 eq. BTMG
+ TsNH, > NG
NC 4 mLDMA,rt, 16 h

10 mol% Ni(cod), and dtbbpy, 11%
100 mol% Ni(cod), and dtbbpy, 5%

d. Reductive elimination energy barrier from Ni" and Ni"
— AAGE —
Aniline:
26.1

A-Ni"-TS

Sulfonamide:

B-Ni'-TS B-Ni"-TS

Figure 4. Mechanistic studies. (a) Reactions performed in divided cell. (b) Reaction process monitoring the yield versus the reaction time. (c)
Reaction with Ni(cod), catalyst without electricity. (d) DFT calculations of the reductive elimination energy barrier from Ni' and Ni™ complexes.
Free energies in solution (in kcal'mol™) at the SMD(DMA)-MO06/Def2-TZVPP//PBE/Def2-TZVP(Ni)/Def 2-SVP (other atoms) level are
displayed.
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Furthermore, the scale-up N-arylations of both aniline and
sulfonamide were performed successfully. Notably, the scale-up
reaction of sulfonamide was completed within 2 h, showing the
high efficiency and practicability of this amination protocol
(Figure 2a). In addition, the sulfonamidation reaction
proceeded smooothly using alternating current (sine wave,
+3 V, 2 Hz, Figure 2b). In addition, the newly developed
nickelaelectrocatalyzed amination protocol could be readily
extended to diverse N-nucleophiles. Sulfoximines, benzyl-
amines, as well as carbamates can all be employed and gave the
corresponding products in good yields (6a—6e, Figure 2c).

Interestingly, when the reaction was performed with
benzophenone imine, either imine or amine product is
selectively obtained by simply adjusting the type of base
(Figure 3, for optimization details, see SI). When Cs,CO; was
used, the electrochemical redox-neutral C—N cross-coupling
afforded the imine product, which after hydrolysis provided the
valuable primary amine with good efficiency (6f and 6g).
However, when the organic base DBN was applied, the cross-
coupling was followed by an imine reduction to provide the
benzhydryl-protected amine in high yield (6h). The control
experiment performed in d,-DMF gave no D-incorporated
product, suggesting that the hydrogen source is not from the
solvent. Also, imine 6f could be fully converted to amine 6h
under the electrochemical conditions using DBN as base in the
presence or absence of a nickel catalyst and dtbbpy ligand.
These results indicate that the amine is formed sequentially to
the imine, and the hydrogen source may be the organic base.*®

The sulfonamidation reaction was also conducted in a
divided cell, and no product was observed, showing that this
amination process is paired electrolysis, and both the anode
and cathode contribute to the formation of the product
(Figure 4a).

Monitoring the reaction progress showed that the reaction
finished within SO min (84% GC yield) when 4 mA of current
was applied, demonstrating the high efficiency of this protocol.
Of note, the current efficiency at 40 min was 154%, which
suggests the role of electricity is to suppress the comproportio-
nation of the unstable Ni' and Ni" intermediates (Figure
4b).%" Furthermore, the reaction of 4-bromobenzonitrile with
TsNH, using Ni(cod), without electricity proceeded with very
low efficiency, indicating the difficulty of reductive elimination
at the Ni' intermediate (Figure 4c), which is further supported
by DFT calculations. The calculations show that the reductive
elimination energy barrier from Ni" and Ni"' complexes in
amination reactions are 26.1 and 6.7 kcal/mol, while those for
the sulfonamidation reaction are 34.2 and 13.2 kcal/mol,
respectively (Figure 4d). These results underpin that Ni™
complexes are more prone to undergo reductive elimination in
this amination protocol.

In summary, we have developed an efficient and general
nickelaelectrocatalyzed protocol for different C—N bond
formations. A wide range of weak N-nucleophiles (70
examples) including anilines, sulfonamides, and carbamates
as well as sulfoximines and imines could be employed with
good efficiency under mild electrochemical conditions. The
successful application of electron-deficient anilines, pharma-
ceutical-related heterocycles, and complex molecules demon-
strate the effectiveness of this new protocol. Furthermore, a
base-controlled selectivity for imine versus amine formation
was also realized. The reaction can be scaled up, and the use of
alternating current is possible. Moreover, DFT calculations
support a facilitated reductive elimination of the generated
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Ni™ intermediate, thus allowing the amination to occur at
room temperature. Hence, this amination protocol provides a
complementary, widely applicable, and powerful way for the
synthesis of diverse N-containing compounds.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.1c00148.
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