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Abstract: Reservoirs play an important role in the urban water supply, yet reservoirs receive an
influx of large amounts of pollutants from the upper watershed during flood seasons, causing a
decline in water quality and threatening the water supply. Identifying major pollution sources and
assessing water quality risks are important for the environmental protection of reservoirs. In this
paper, the principal component/factor analysis-multiple linear regression (PCA/FA-MLR) model
and Bayesian networks (BNs) are integrated to identify water pollution sources and assess the water
quality risk in different precipitation conditions, which provides an effective framework for water
quality management during flood seasons. The deterioration of the water quality of rivers in the
flood season is found to be the main reason for the deterioration in the reservoir water quality. The
nonpoint source pollution is the major pollution source of the reservoir, which contributes 53.20%,
48.41%, 72.69%, and 68.06% of the total nitrogen (TN), phosphorus (TP), fecal coliforms (F.coli), and
turbidity (TUB), respectively. The risk of the water quality parameters exceeding the surface water
standard under different hydrological conditions is assessed. The results show that the probability of
the exceedance rate of TN, TP, and F.coli increases from 91.13%, 3.40%, and 3.34%, to 95.75%, 25.77%,
and 12.76% as the monthly rainfall increases from ≤68.25 mm to >190.18 mm. The risk to the water
quality of the Biliuhe River reservoir is found to increase with the rising rainfall intensity, the water
quality risk at the inlet during the flood season is found to be much greater than that at the dam site,
and the increasing trend of TP and turbidity is greater than that of TN and F.coli. The risk of five-day
biochemical oxygen demand (BOD5) does not increase with increasing precipitation, indicating that
it is less affected by nonpoint source pollution. The results of this study can provide a research basis
for water environment management during flood seasons.

Keywords: pollution source; apportionment; reservoir; water quality; risk evaluation; flood season

1. Introduction

The uneven distribution of water resources and water pollution problems pose great
challenges to water resource management on a global scale [1–3]. Reservoirs play an
important role in flood control and water supply, but rapid socio-economic development
has led to a decline in reservoir water quality, which has a significant impact on water
resource utilization [4,5]. For the regions influenced by the monsoon climate, runoff is
mainly concentrated in the flood season, it is necessary to store water for multiple uses of
water supply, power generation, irrigation, etc. The flood season is also a period with a high
incidence of water pollution emergencies, when pollutants in the watershed are washed
into surface water by storm runoff, leading to water quality degradation [6–8]. Water
contamination during flood seasons has been widely reported around the world [9–13].
For drinking water reservoirs, storm runoff is often impounded during the flood season,
resulting in large amounts of pollutants entering the reservoirs, which have great impacts
on the reservoir water supply. Water quality in reservoirs during flood seasons is influenced
by multiple factors. Complex pollution sources and highly fluctuating hydrological factors
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increase the uncertainty of water quality during flood seasons. By identifying the major
sources of pollutants entering reservoirs during floods, and analyzing their characteristics
driven by precipitation, we can develop effective water quality management measures.

The apportionment of the water pollution sources is the foundation of environmental
management in regard to surface water ecosystem, and general pollution source analysis
methods include qualitative identification, quantitative identification, and a combination
of qualitative and quantitative analysis [14–16]. Qualitative identification is to identify
the main influencing factors by analyzing the intrinsic relationships in monitoring data,
through principal component analysis, cluster analysis, and other multivariate statistical
methods [16–18]. In quantitative analysis, receptor models are often used to analyze the
contribution of pollution sources to the receptor environment by analyzing the physico-
chemical characteristics of the sources and the receptor environment. The receptor models
mainly include the chemical mass balance model (CMB), positive definite matrix factor
decomposition model (PMF), and principal component/factor analysis-multiple linear re-
gression (PCA/FA-MLR) model [15,19,20]. Isotope tracer techniques have also been widely
employed to resolve pollution sources and their contributions towards an environmental
impact [21,22]. In addition, numerical modeling based on pollutant characteristics has been
utilized to simulate the output and transport processes of pollutants, to determine the pollu-
tion sources and their contributions [23]. In other cases, the combination of remote sensing
and hydrological characteristics provides a new approach to calculate the annual load of
pollution sources [24]. Among the above methods, the CMB model requires a complete
spectrum of emission source components, which is difficult to ascertain in reality, and the
isotope method is limited to some extent by its high equipment requirements and complex
analysis process [25]. Numerical modeling requires a comprehensive understanding of the
transportation and transformation mechanisms of the pollutants, as well as a large amount
of data to support it [26]. In contrast, the PMF and PCA/FA-MLR models depend less on
the source component spectrum and mainly use the variation of water quality parameters
to analyze the potential pollution sources and their contributions [15,27]. However, the
model requires researchers to judge the number of pollution sources and their types, which
may cause bias in the pollution source analysis on account of the different perceptions of
the researchers [28,29].

Risk is generally used to indicate the likelihood of an adverse impact event, and water
quality risk is a quantitative description of the likelihood of the occurrence of water pollu-
tion based on objectivity, uncertainty, measurability, and dynamics, the consequences of
which are relatively controllable. Due to data limitations and the dynamics of the environ-
ment, the quantitative evaluation of water quality risk is complicated and difficult. Water
quality risk assessment models can be divided into mechanistic, statistical, fuzzy mathemat-
ical, grey system, and coupling models based on different theories [30–34]. The Bayesian
networks (BNs) model, developed based on Bayesian theory, is a widely-employed risk
analysis model [35]. It has been shown that Bayesian networks that are based on water
environment change mechanisms and statistical theory have great potential for water
environment risk analysis, which has obvious advantages for quantifying uncertainty and
calculating marginal risk, conditional risk, and the joint risk of water pollution incidents.
Water environment risk analysis can be conducted in the face of multiscale and interdis-
ciplinary problems [36]. Bertone et al. [37] develop a risk assessment tool based on BNs,
system dynamics (SDs), and participatory modeling for managing the water-related health
risks associated with extreme events. Liang et al. [38] utilized Bayesian networks to study
the contributions of nitrogen and phosphorus concentrations to chlorophyll-a in different
lake waters. Goulding et al. [39] studied the impact of sewage leaks on public health
under rainfall conditions, which proved the advantages of Bayesian networks for water
environment and water ecological uncertainty analysis. Besides this, some researchers
have combined Bayesian networks with mechanistic models to fully utilize the advantages
of both statistical and mechanistic models for the analysis of the water quality risks in
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sudden water pollution events, the results of which have been well-applied in different
situations [34,37,40].

In this paper, a drinking water reservoir in Northeastern China is selected for the
study of pollution sources and water quality risk during flood seasons. We first analyze the
water quality characteristics in general, then identify the main sources of pollutants in the
reservoir during the flood season, and analyze the contributions of each pollution source
to the key water quality parameters by PCA/FA-MLR models. On this basis, a Bayesian
network model is established to analyze the risk of water quality exceedance during the
flood season and propose recommendations for watershed environment management.

2. Materials and Methods
2.1. Study Area

The Biliuhe Reservoir (hereafter the BLH Reservoir) is a typical temperate reservoir
located in the Liaoning Province, Northeast China. It has a surface area of 65.2 km2 with a
mean and maximum water depth of 14.3 m and 31.0 m, respectively. The designed storage
capacity of the reservoir is 9.34× 108 m3. The studied reservoir has been the most important
water source for the city of Dalian since it was constructed in 1985. With an annual water
supply of 3.0 × 108 m3, it accounts for 80% of the domestic and industrial water supply to
this city. Besides this, its water has multiple uses for flood control, irrigation, and electricity
generation. The reservoir catchment reaches an area of about 2085 km2, with three main
tributary rivers. The reservoir watershed has a temperate monsoon climate with a mean
annual temperature of 10.6 ◦C, precipitation of 742 mm, and runoff of 6.14 × 108 m3. The
flood season (June–September) accounts for 75% and 82.4% of the total year’s precipitation
and runoff, respectively. In the other half of the year, a period of freezing temperatures
lasts from December to March. The primary land use types in the region are forests and
farmland. The geographical locations of water quality monitoring sites in the study area
are shown in Figure 1.
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The hydrological data and water quality data for this study have been provided
by the BLH Reservoir Bureau (BRB). The BRB has been monitoring the reservoir water
quality regularly since 1988. The sampling frequency is once a month, and additional
sampling will be conducted under special conditions such as floods. Samples are collected,
transported, and tested by BRB according to national standards. In Figure 1, the notations
DP, GYH, and ZL represent the entrance points of three main rivers, that is, the Biliuhe
River (BLR), Geli River (GLR), and Bajia River (BJR). Liudian (LD), meanwhile, represents
the central area of the reservoir, and DS represents the dam site (DS) area. A total of
12 parameters—pH, dissolved oxygen (DO), permanganate index (CODMn), five-day
biochemical oxygen demand (BOD5), ammonia (NH3-N), nitrate (NO3

−-N), total nitrogen
(TN), total phosphorus (TP), turbidity (TUB), fecal coliforms (F.coli), fluoride (F−), and
chloride (Cl−)—have been selected for analysis in this study. The PCA/FA method requires
all parameters to have the same timescale. As there are fewer recorded parameters and
some missing values at the beginning of the data period, the data used for the PCA/FA-
MLR model are those from 2006 to 2016. However, the Bayesian networks model is
employed to analyze the water quality risk of individual indicators, so that all available
data from 1988 to 2016 are included in the analysis.

2.2. Methods
2.2.1. The PCA/FA-MLR Receptor Model

In this study, the PCA/FA method is used to reduce the data dimensionality and
extract the most information from the original dataset based on the correlation of water
quality variables [41,42]. Several new factors are generated to explain the variance of the
whole dataset, and each component is identified as a pollution source [14,15]. Then, the
receptor model combines the multiple linear regression model and the absolute princi-
ple component scores generated from a varimax rotated PCA to analyze the pollution
contribution of each pollution source. This receptor model is one that was described in
detail by Thurston and Spengler [43]. The source contribution of each component to the
concentration of the variable can be described as follows:

Ci = b0i +
n

∑
p=1

(APCSp·bpi) (1)

where b0i is the constant term of the multiple regression for pollutant i, bpi is the multiple
regression coefficients of the source p for pollutant i, and APCSp is the scaled value of the
rotated factor p for the considered sample. The APCSp·bpi represents the contribution of
source p to Ci. In this study, SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA) is used to
perform the PCA/FA-MLR model.

2.2.2. The Bayesian Networks Model

The study employs the Bayesian networks (BNs) model to analyze water quality
risks in reservoirs. Bayesian networks have a flexible structure that can be adapted to the
purpose of the study, which is a distinct advantage when dealing with interdisciplinary or
complex problems [44]. A Bayesian network is a probabilistic inference model based on
Bayesian theory and graph theory, consisting of a network structure G (Directed Acyclic
Graph (DAG)), which qualitatively represents the dependencies between nodes, and a
conditional probability table (CPT), which quantitatively represents the relationships
between variables [35]. The joint probability distribution of BNs can be expressed as:

P(Xi) = ∑ P
(
πXi

)
P
(
Xi

∣∣πXi

)
(2)

P(X1, X2, · · · , Xn) = ∏ P
(
Xi

∣∣πXi

)
(3)

where P(πXi) is the prior probability, P(Xi) is the node probability, P(Xi|πXi) is the con-
ditional probability, and P(X1, X2, . . . , Xn) is the joint probability. The Bayesian network
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inference is essentially a process that combines a priori information with new information
to obtain a posteriori probabilities based on the Bayes Equation:

P(πXi |Xi ) =
P
(
πXi

)
P
(
Xi

∣∣πXi

)
∑n

j=1 P
(

πXj

)
P
(

Xj

∣∣∣πXj

) (4)

Bayesian networks have great advantages in the identification of relationships between
the different influencing factors of complex systems. The Bayesian network modeling pro-
cess mainly includes the following steps: determining the network structure, identifying
network parameters, and drawing network inference [45,46]. In this study, the proba-
bilistic inference was performed using the Bayesian network inference software, Genie2.0
(BayesFusion, LLC, Pittsburgh, PA, USA), a theoretical decision model for the graphical
development environment of the building blocks, which can be easily utilized for Bayesian
network inference due to its excellent operation mode and visual interface [47].

In flood seasons, pollutant migration is mainly influenced by hydrological factors.
This study focuses on the water quality risk posed by rainfall and runoff. Therefore, we
take hydrological factors such as rainfall, runoff, water level, and reservoir discharge as
input variables and assume that the emission of the pollution source is stable and changes
little in different years. The water qualities at the inlet and dam site are taken as the output
variables. For hydrological factors, the precipitation (P) is the most important hydrological
elements for the hydrological cycle and material transportation, which is taken as the
root node. The runoff (R), water level (W), and discharge (D) are directly or indirectly
influenced by precipitation, which are taken as sub-nodes. Among them, the runoff and
water level both determine the magnitude of reservoir discharge, while the discharge
can also influence the water level. Because feedback loops must be avoided in Bayesian
networks, it is assumed that the water level is mainly associated with the runoff in flood
seasons. Further, the study constructs the relationship between hydrological parameters
and water quality at the river entrance points (DPWQ, GYHWQ, ZLWQ) and the dam
site (DSWQ) based on expert opinions. The relationship between hydrological factors
and reservoir water quality is as follows: pollutants carried by storm runoff mainly affect
the water quality at the river entrance area of the reservoir, which further influences the
water quality at the dam site. The flood may also directly influence the water quality at the
dam site in the form of the current density. Besides this, factors such as water level and
discharge can also affect reservoir water quality to some extent. The water level can affect
the thermal stratification and dilution storage of the reservoir, while discharge can affect
the water quality by decreasing the hydraulic residence time. For the BLH Reservoir, the
water level may affect the water quality at the river entrance points and dam site, while the
discharge mainly affects the water quality at the dam site. The final topological structure of
the Bayesian network is shown in Figure 2.

According to historical hydrological data, the frequencies of 75%, 50%, and 25% have
been used to discretize the rainfall, runoff, water level, and discharge data in flood seasons.
The discretization of water quality data is based on the environmental quality standard of
surface water (GB3838–2002, Table 1), which can be divided into three states of S1 (type
I), S2 (type II–III), and S3 (type IV–V) for most water quality parameters. The situation
of total nitrogen is special, the concentration of TN is much higher than the standard of
type III and even worse than that of type V in most cases. Therefore, three states of TN
corresponding to the water quality of type I–III, type IV–V, and worse than type V. The
discretization standards of hydrological parameters and main water quality parameters
are shown in Tables A1 and A2. According to the observed precipitation data of the
BLH reservoir, the prior probabilities of precipitation in the S1 (<68.25 mm), S2 (68.25–
119.46 mm), S3 (119.46–190.18 mm), and S4 (≥190.18 mm) states are 0.2500, 0.2727, 0.2500,
and 0.2273, respectively. The conditional probabilities of other nodes are determined
based on measured hydrological and water quality data from 1988–2016. Then, Bayesian
networks are employed to determine the probability of exceedance (WQR|P) of water
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quality parameters at the entrance points of DP, GYH, and ZL, and the dam site (DS),
under different rainfall conditions. Besides this, the Bayesian network model is also used
to calculate the probability of exceeding the water quality standard at the dam site for
different water quality states at the river entrance points (DSWQR|DBWQR, GYHWQR,
ZLWQR).
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Table 1. Water quality standard of surface water in China (GB3838–2002) mg/L.

Parameters
National Surface Water Quality Standard (GB3838-2002)

I II III IV V

pH 6~9 <6 or >9
DO (mg/L) ≥7.5 6.0 5.0 3.0 2.0

CODMn (mg/L) ≤2.0 4.0 6.0 10.0 15.0
BOD5 (mg/L) ≤3.0 3.0 4.0 6.0 10.0

NH3-N (mg/L) ≤0.15 0.5 1.0 1.5 2.0
TN (mg/L) ≤0.2 0.5 1.0 1.5 2.0
TP (mg/L) ≤0.01 0.025 0.05 0.10 0.20
F.coli (A/L) ≤200 2000 10,000 20,000 40,000
F− (mg/L) ≤1.0 1.0 1.0 1.5 1.5
Cl− (mg/L) ≤250 >250

NO3-N (mg/L) ≤10 >10
Turbidity (NTU) -

3. Results
3.1. General Water Quality Characteristics in Different Seasons

As a major water source for the city of Dalian, the water quality of the BLH Reservoir
should meet the requirements of surface water quality standard type III. The general water
quality characteristics in non-flood and flood seasons of the BLH Reservoir are shown in
Table 2. Among all of the water quality parameters, pH, DO, NH3-N, BOD5, and CODMn
could meet standard type II most of the time. However, DO and BOD5 occasionally exceed
the water quality standard. As for the nutrients, the concentration of TN exceeds the
standard severely in both non-flood and flood seasons, with a concentration slightly lower
in the flood period than in the non-flood period; the maximum value was 5.14 mg/L in
the flood period, which is more than twice that specified by standard type V (2.0 mg/L).
The mean concentration of TP was 0.021 mg/L during the flood seasons and TP exceeded
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standard type III occasionally. The TN and TP did not pass the significance test, but the
highest value of TN and TP both occurred in the flood season. The BLH Reservoir is
a phosphorus-limited reservoir, which is prone to eutrophication when the phosphorus
concentration increases. The parameters of F.coli and turbidity, which are closely related to
rainfall and runoff, were found to be significantly higher during flood seasons than that in
non-flood seasons (Mann-Whitney U test, p < 0.01), especially for F.coli, which exceeded
standard type III (10,000 A/L) during the flood seasons. There were no obvious changes
in the concentrations of F− and Cl− between flood and non-flood periods, indicating that
they are less affected by rainfall and runoff. From the statistical results, it was found that
the general water quality during the flood season was worse than in the non-flood season,
with the exceedance risk of TN, TP, F.coli, and BOD5. The excessive presentation of fecal
coliform suggests the fecal pollution of the water body, which will have a great impact on
the water supplied from the source. The increase in TN and TP will lead to a severe level
of eutrophication and water quality degradation. The BOD5 indicates organic pollutants,
which will reduce the level of dissolved oxygen in the water, produce odor, and affect the
utilization of the water source. In the next step, it is necessary to analyze the pollution
sources for those parameters that exceed the standard.

Table 2. General water quality characteristics of the BLH Reservoir 1.

Parameters
Non-Flood Seasons Flood Seasons

Mean SD Min Max Mean SD Min Max

pH 7.8 0.3 7.0 8.5 8.0 0.4 7.1 9.0
DO 10.41 1.84 6.20 14.20 7.56 1.33 5.16 11.70

CODMn 2.22 0.48 1.10 3.30 2.51 0.50 1.58 4.41
BOD5 1.95 0.84 0.52 4.51 1.72 0.77 0.35 4.15

NH3-N 0.17 0.14 0.01 0.61 0.15 0.13 0.01 0.66
NO3

−-N 1.62 0.93 0.10 3.68 1.45 0.90 0.10 3.26
TN 2.45 0.95 0.38 4.83 2.34 1.08 0.28 5.14
TP 0.018 0.009 0.004 0.051 0.021 0.013 0.001 0.097

F.coli 84 126 2 841 875 2392 2 16,165
TUB 2.9 5.3 0.1 37.6 5.5 6.4 0.4 34.3
F− 0.20 0.05 0.08 0.34 0.19 0.04 0.04 0.29
Cl− 10.82 1.40 6.71 13.23 10.88 2.58 6.56 29.20

1 pH, -; F.coli, A/L; TUB, NTU; others, mg/L.

3.2. Pollution Source Apportionment during Flood Seasons
3.2.1. Data Structure Determination and Source Identification Using PCA/FA

The Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity tests were performed on the
datasets before conducting the PCA/FA. The KMO value for the flood seasons was 0.688
and the Bartlett’s sphericity test value was 314.042 (p = 0.00 < 0.05), which indicated that
the PCA/FA was effective in reducing the dimensionality of the water quality datasets.
According to previous research, the absolute factor loading values of >0.75, 0.5–0.75, and
0.3–0.5 are considered to be ‘strong’, ‘moderate’, and ‘weak’, respectively. The larger the
factor loading value of a water quality parameter, the greater the influence of that principal
factor on the water quality [12]. In general, factors with initial eigenvalues greater than one
were selected for analysis, but only 59.663% of the variance was explained. Therefore, an
additional factor was added, and a total of 74.319% of the variance was explained, for four
of the principal factors extracted. The calculated results of the factor analysis are shown in
Table 3.
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Table 3. Water quality index load in flood seasons.

Parameters Factor 1 Factor 2 Factor 3 Factor 4 Factor
Commonality

pH 0.065 0.088 0.097 0.859 0.765
DO 0.019 0.103 0.067 0.865 0.744

CODMn 0.319 0.778 −0.083 −0.083 0.732
BOD5 0.006 0.802 0.108 0.415 0.812

NH3-N 0.130 0.492 0.748 0.042 0.752
NO3-N 0.582 0.180 0.570 0.156 0.711

TN 0.646 0.077 0.447 −0.044 0.668
TP 0.625 0.394 0.189 −0.084 0.578

F.coli 0.877 0.131 0.134 0.064 0.854
TUB 0.903 0.232 0.079 0.113 0.910
F− 0.382 0.704 0.184 0.153 0.719
Cl− 0.214 −0.142 0.784 0.139 0.638

Initial Eigenvalue 4.859 1.771 1.370 0.918
% of Variance 25.385 19.068 15.210 14.656
Cumulative % 25.385 44.453 59.663 74.319

As shown in Table 3, factor 1 explained 25.853% of the total variance, with strong load-
ing values for fecal coliform and turbidity, and moderate loading values for nitrate, total
nitrogen, and total phosphorus. Considering the characteristics of the watershed, turbidity
can be understood to reflect sediment erosion in the area, which is largely influenced by the
flushing effects of rainfall and runoff. The fecal coliform mainly comes from the manure
produced by livestock and poultry breeding, the nitrogen and phosphorus are associated
with agricultural activities such as the application of fertilizer and manure [48]. Therefore,
Factor 1 was identified as an agricultural nonpoint source of pollution driven by rainfall
and runoff.

Factor 2 accounted for 19.07% of the total variance and had strong and positive loading
values for CODMn and BOD5, a moderate loading value for F−, and weak loading values
for NH3-N and TP. The parameters of CODMn and BOD5 indicated organic pollutants that
are closely related to domestic and industrial wastewater discharges. Therefore, Factor 2 is
identified as a source of rural and urban sewage discharge.

Factor 3 explained 15.21% of the total variance, with a strong loading value for Cl−,
moderate loading values for NH3-N and NO3-N, and a weak loading value for TN. The
concentration of chloride was relatively low in the reservoir. The chloride in the surface
water is mainly influenced by the leaching of soil and rock, which may come from the
groundwater input. Existing studies have shown that groundwater inputs are an important
source of nitrogen for surface water ecosystems [20]. Therefore, Factor 3 could be identified
as a groundwater pollution source.

Factor 4 accounted for 14.65% of the total variance and had strong and positive
loading values for pH and DO. The DO in the surface water is mainly influenced by the
reaeration rate and the microbial and chemical oxidation processes of organic and reducing
compounds. The concentration of organic pollutants and reducing compounds in the
BLH Reservoir was low, DO was closely related to meteorological factors, such as air
temperature and wind, which can influence the reaeration rate. Therefore, Factor 4 could
be identified as meteorological factors.

3.2.2. Source Apportionment Using APCS–MLR Models

Once the identification of pollution sources in the region was complete, the contri-
butions of the different pollution sources to different water quality parameters could be
determined using an APCS–MLR receptor model. The calculation results are shown in
Table 4. It can be seen from the table that meteorological factors contributed 77.41% and
82.10% to pH and DO, respectively, indicating that the pH and DO variations in the BLH
Reservoir are mainly influenced by meteorological factors. The CODMn and BOD5, mean-
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while, were greatly influenced by domestic and industrial sewage discharge sources, with
contributions of 61.59% and 60.28%, respectively. The groundwater input contributed
52.98% to NH3-N. For the nutrients in the reservoir, an agricultural nonpoint pollution
source was found to have contributed the most, with 53.20% and 48.41% for TN and TP,
respectively. The F.coli and turbidity resulted mainly from agricultural nonpoint pollution
sources, contributing 72.69% and 68.06%, respectively. Fluoride was influenced by sewage
discharge sources, with a contribution of 49.45%, and chloride most was influenced by
groundwater input, with a contribution of 61.31%. The results demonstrated that an agri-
cultural nonpoint source was the main contributor to pollution during the flood seasons;
this source contributed in the largest proportion to the water parameters that exceeded the
standard. Besides this, other sources such as sewage discharge and groundwater pollution
also need attention due to the visible contributions.

Table 4. Source contributions to concentrations of water quality parameters (%) 1.

Parameters Source 1 Source 2 Source 3 Source 4 Adjusted R2

pH 5.86 7.97 8.77 77.41 0.73
DO 1.77 9.81 6.32 82.10 0.74

CODMn 25.25 61.59 6.57 6.59 0.69
BOD5 0.43 60.28 8.13 31.16 0.81

NH3-N 9.20 34.83 52.98 3.00 0.80
NO3-N 39.12 12.12 38.27 10.49 0.69

TN 53.20 6.38 36.83 3.59 0.59
TP 48.41 30.50 14.60 6.50 0.55

F.coli 72.69 10.86 11.13 5.31 0.79
TUB 68.06 17.45 5.99 8.51 0.88
F− 26.86 49.45 12.90 10.78 0.67
Cl− 16.71 11.11 61.31 10.86 0.67

1 Source 1, agricultural nonpoint source of pollution driven by rainfall and runoff; Source 2, rural and urban
sewage discharge source; Source 3, groundwater pollution source; Source 4, meteorological factors.

3.3. Water Quality Risk Evaluation during Flood Seasons
3.3.1. Water Quality Risks Based on the Prior Bayesian Network

According to the results of Sections 3.1 and 3.2, TN, TP, F.coli, and BOD5 were the
main water quality parameters with the risk for exceeding the standard in flood seasons.
These four parameters were selected for further analysis. The probabilities of TN, TP, F.coli,
and BOD5 in different water quality states, based on prior probabilities, are shown in
Figure 3. It can be seen from the figure that the probabilities of TN exceedance (S2, S3) were
92.29%, 91.16%, 96.91%, and 88.66% at the DP, GYH, ZL, and DS locations, respectively,
indicating that the risk of TN concentration exceedance was high, though the probability
of exceedance at the dam site was slightly lower than that at the three river entrance points.
The probabilities of TP exceedance (S3), on the other hand, were 18.10%, 8.97%, 24.59%,
and 1.31% at the DP, GYH, ZL, and DS locations, respectively. The risk of exceedance
was lower at the dam site and significantly higher at the three river entrance points. The
risk of exceedance at ZL was higher than that at DP and GYH. The exceedance rates for
F.coli (S3) were 7.85%, 12.30%, 1.69%, and 3.94% at the DP, GYH, ZL, and DS locations,
respectively. The risks at the DP and GYH locations were higher than at the ZL and DS
locations. The exceedance rates for BOD5 (S3) at the DP, GYH, ZL, and DS locations were
9.94%, 9.96%, 6.04%, and 1.24%, respectively. As such, it can be seen that the risk of
exceedance at the dam site was much lower than that at the entrance. The risk of exceeding
the water quality standard was: TN > TP > BOD5 > F.coli. According to the pollution
source apportionment results, it can be understood that these water quality parameters
were influenced by different factors, and demonstrated different characteristics under
different conditions of precipitation and runoff.



Int. J. Environ. Res. Public Health 2021, 18, 1873 10 of 17

Int. J. Environ. Res. Public Health 2021, 18, x  10 of 17 

  

  
(a) (b) 

  
(c) (d) BOD5 

Figure 3. Water quality risk of different variables (a) total nitrogen (TN), (b) phosphorus (TP), (c) fecal coliforms (F.coli), 
and (d) five-day biochemical oxygen demand (BOD5) based on the prior Bayesian network. 

3.3.2. Water quality risk under different rainfall conditions 
The results on the probability of each water quality condition at the river entrance 

points and dam site under different precipitation conditions are shown in Table 5 and 
Figure 4. As can be seen from the table that the probabilities of exceedance for TN, TP, 
and F.coli increased from 91.00%, 4.30%, and 3.51% to 95.83%, 25.98%, and 12.53% as the 
monthly rainfall gradually increased from ≤68.25 (S1) to >190.18 (S4). However, the prob-
ability of exceedance for BOD5 showed a downward and then upward trend. Specifically, 
the probability of TN exceedance at the dam site increased from 85.79% to 93.21% with 
the increase in rainfall, and the probability of exceedance at the entrance of DP and GYH 
increased from 90.75% and 90.17% to 98.06% and 96.85%, respectively, all of which 
showed a clear upward trend. The exceedance rate of TN at ZL was relatively higher and 
did not change much with the increase in rainfall. For TP parameters, with the increase in 
rainfall intensity, the risk of exceeding the water quality standard at the dam site increased 
from 0.58% to 2.71%, with a slightly increasing trend, while the exceedance rates at the 
entrance area increased from 2.38%, 1.27% and 12.98% to 31.40%, 23.93%, and 45.89%, 
with a very obvious increasing trend. For the parameter of F.coli, the exceedances at DP 
and GYH increased from 3.21% and 5.22% to 22.41% and 20.92% as the rainfall increased, 
while it at the DS location showed a slight increase. The results indicate that F.coli in the 
BLH Reservoir mainly comes from the BL River and the GL River. For BOD5, the exceed-
ance rate fluctuated mainly at the river entrance points, with little change at the dam site. 
The risk of BOD5 exceedance did not increase with increasing precipitation, indicating that 
it is less affected by nonpoint source pollution, which is consistent with the results of pol-
lution source apportionment. 

S1 S2 S3
0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

Water quality state

 DP
 GYH
 ZL
 DS

TN

S1 S2 S3
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Water quality state

 DP
 GYH
 ZL
 DS

TP

S1 S2 S3
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Water quality state

 DP
 GYH
 ZL
 DS

F.coli

S1 S2 S3
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Water quality state

 DP
 GYH
 ZL
 DS

BOD5

Figure 3. Water quality risk of different variables (a) total nitrogen (TN), (b) phosphorus (TP), (c) fecal coliforms (F.coli),
and (d) five-day biochemical oxygen demand (BOD5) based on the prior Bayesian network.

3.3.2. Water Quality Risk under Different Rainfall Conditions

The results on the probability of each water quality condition at the river entrance
points and dam site under different precipitation conditions are shown in Table 5 and
Figure 4. As can be seen from the table that the probabilities of exceedance for TN, TP,
and F.coli increased from 91.00%, 4.30%, and 3.51% to 95.83%, 25.98%, and 12.53% as
the monthly rainfall gradually increased from ≤68.25 (S1) to >190.18 (S4). However,
the probability of exceedance for BOD5 showed a downward and then upward trend.
Specifically, the probability of TN exceedance at the dam site increased from 85.79% to
93.21% with the increase in rainfall, and the probability of exceedance at the entrance of
DP and GYH increased from 90.75% and 90.17% to 98.06% and 96.85%, respectively, all
of which showed a clear upward trend. The exceedance rate of TN at ZL was relatively
higher and did not change much with the increase in rainfall. For TP parameters, with the
increase in rainfall intensity, the risk of exceeding the water quality standard at the dam
site increased from 0.58% to 2.71%, with a slightly increasing trend, while the exceedance
rates at the entrance area increased from 2.38%, 1.27% and 12.98% to 31.40%, 23.93%, and
45.89%, with a very obvious increasing trend. For the parameter of F.coli, the exceedances
at DP and GYH increased from 3.21% and 5.22% to 22.41% and 20.92% as the rainfall
increased, while it at the DS location showed a slight increase. The results indicate that
F.coli in the BLH Reservoir mainly comes from the BL River and the GL River. For BOD5,
the exceedance rate fluctuated mainly at the river entrance points, with little change at
the dam site. The risk of BOD5 exceedance did not increase with increasing precipitation,
indicating that it is less affected by nonpoint source pollution, which is consistent with the
results of pollution source apportionment.
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Table 5. Risk of the reservoir water quality under different precipitation conditions.

Precipitation (mm) ≤68.25 68.25–119.46 119.46–190.18 >190.18

TN 91.13% 91.65% 90.86% 95.75%
TP 3.40% 9.82% 14.13% 25.77%

F.coli 3.34% 5.46% 4.96% 12.76%
BOD5 9.28% 7.30% 4.21% 6.53%
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Figure 4. Water quality risk to parameters (a) total nitrogen (TN), (b) phosphorus (TP), (c) fecal coliforms (F.coli), and (d)
five-day biochemical oxygen demand (BOD5) under different precipitation conditions.

3.3.3. The Relationship between Water Quality Risk at the River Entrance Points and Dam
Site

The water quality distributions at the dam site under different water quality states at
the entrance points are shown in Figure 5. It can be seen from the figure that the risk of the
entrance area and dam site were different due to the long distance from the entrance to the
dam site. The water quality risk at the dam site was much lower than that in the entrance
area. But there was a certain correlation between them. As can be seen from the figure,
the probability of exceedance at the dam site gradually increased with the deterioration
of water quality at the river entrance points. That is especially true for TN and TP, when
the concentrations of the entrance point were in the state of S3, the probabilities of those
in the state of S3 were 88.59% and 15.38% at the dam site, which meant that the water
quality exceedance rate at the dam site increased greatly with the exceedance of water
quality standards at the three river entrance points. As shown in Table 6, Spearman’s rank
correlation analysis between the dam site and the river entrance points also showed that
water quality at the entrance points significantly affected the water quality at the dam site.
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Figure 5. Water quality risk at dam site under different water quality (a) total nitrogen (TN), (b) phosphorus (TP), (c) fecal
coliforms (F.coli), and (d) five-day biochemical oxygen demand (BOD5) of the entrance area.

Table 6. Spearman’s rank correlation coefficients between the dam site and the river entrance points.

r DS

TN TP F.coli BOD5

DP 0.830 ** 0.580 ** 0.577 ** 0.618 **
GYH 0.890 ** 0.602 ** 0.622 ** 0.663 **
ZL 0.834 ** 0.468 ** 0.206 * 0.687 **

**, p < 0.01; *, p < 0.05.

4. Discussion

This study mainly analyzed the water quality risk under different rainfall conditions.
With the increase of rainfall, there was an increase in the water quality risk of parameters
influenced by non-point source pollution. The other hydrological factors included in the
Bayesian network had similar characteristics, that is, with the increase of hydrological
parameters, the water quality risk tended to increase on the whole. It can be explained
that the runoff, water level, and reservoir discharge are directly or indirectly influenced
by rainfall. Storm runoff is the main driver of material transport in the watershed area.
High flow events carrying large amounts of pollutants into reservoirs are a major cause
of water quality degradation during flood seasons. The risk analysis results indicated
that TP is strongly influenced by rainfall, and attention should be paid to TP during flood
seasons. The correlation analysis demonstrated that TN has a good correlation with runoff
and water level, while turbidity has a good correlation with rainfall and runoff (Table 7).
The parameters of TP and F.coli, meanwhile, are significantly correlated with turbidity,
indicating that TP and F.coli are mainly imported into the reservoir in the form of adsorbed
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sediment and suspended solids. The correlations between TP, F.coli and hydrological
factors were not significant, which indicated the biochemical processes of TP and F.coli are
much more complex than turbidity. Besides the hydrological factors, management practices
such as fertilization and plant uptake will also result in the non-linear relationship between
TP and hydrological factors. The above results confirm that nonpoint source pollution
caused by rainfall runoff is the major source of the pollutants in the BLH Reservoir.

Table 7. Spearman’s rank correlation coefficients between hydrological factors and the major water
quality parameters.

r P R W BOD5 TN TP F.coli TUB

P 1.000
R 0.701 ** 1.000
W 0.012 0.242 ** 1.000

BOD5 −0.059 −0.177 * −0.351 ** 1.000
TN 0.062 0.391 ** 0.448 ** 0.020 1.000
TP 0.105 0.145 −0.118 0.255 ** 0.154 1.000

F.coli −0.119 −0.131 −0.246 0.068 −0.183 0.247 1.000
TUB 0.548 ** 0.552 ** 0.042 0.209 * 0.439 ** 0.488 ** 0.677 ** 1.000

**, p <0.01; *, p <0.05.

The land use pattern of the BLH Reservoir upper watershed is shown in Figure 6. The
forest and farmland are the main land use types, accounting for 72.3% and 18.9% of the
reservoir upper watershed area. Agricultural nonpoint sources are closely related to the
land use types of farmland and building land in the watershed area, which corresponding
to the agricultural activities and residential sewage discharge. It can be seen that there are
a large number of farmland plots and residential areas along the river. When storm runoff
occurs, farmland runoff and rural domestic sewage can easily enter the river with the runoff
and eventually be transported to the reservoir. Specifically, the total area of farmland and
building land accounts for 22.8%, 18.6%, and 33.4% of the watershed area of the BL River,
the GL River, and the BJ River, respectively. The large proportion of farmland and building
land may lead to serious nutrient loss, which is consistent with the higher risk of TN and
TP at the entrance area of ZL. Compared to the BL River and the GL River, the entrance area
of the BJ River is relatively closer to the dam site, but the upstream catchment area of the
BJ River is much smaller than that of the BL River and the GL River. Therefore, the water
quality differed greatly between the ZL and DS. Besides, the BJ River is curved and there
are many bays between the entrance area and dam site, which will decrease the influence of
the ZL water quality on the DS water quality. To improve the water quality of the reservoir
and control the exceedance risk, the nutrients’ loss should be reduced firstly by eradicating
excessive fertilization and upgrading traditional agriculture. Second, it is necessary to
improve the facilities for livestock and poultry farms and build small sewage treatment
plants for the rural areas, which could decrease the fecal contamination effectively. In
addition, large amounts of floating debris could enter the reservoir during flood periods,
which require timely treatment. Besides this, the implementation of an artificial wetland in
the reservoir buffer zone presents an effective measure for intercepting the pollutants in the
residential areas around the reservoir, promoting the degradation of the pollutants before
they enter the reservoir, and preventing the threat of sudden water pollution events. The
water quality is dynamic during flood seasons. In general, the water quality is poor at the
beginning of the flood due to the eroded pollutants from the watershed, which then has a
dilution effect in the post-period of the flood [17]. Discharging runoff with higher pollution
concentrations and storing incoming flows with better water quality through reasonable
regulation measures can alleviate the water quality risks during flood periods. The water
quality risk to the BLH Reservoir can be decreased through comprehensive measures of
watershed management practices, entrance interception, and reservoir regulation.
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The proposed research framework in this paper, including water quality analysis,
pollution source identification, risk assessment, and water quality risk control, can be
applied to protect the water quality of reservoir water sources and, thus, ensure the safety
of the urban water supply. In the construction of the Bayesian network, the relationship
between hydrological parameters and water quality parameters is simplified, which will
cause a certain amount of error and uncertainty. A more accurate and specific description
of the structure about hydrological and water quality factors should be constructed to
reduce the uncertainty of the model. Besides, Bayesian networks can use the posterior
data to continuously improve the accuracy of the model. In the future, it is necessary
to increase the frequency of water quality sampling under special weather conditions
such as floods. For the BLH Reservoir basin, storm runoff is the main driving factor of
the pollutants transportation. Existing research has shown that the frequency of extreme
rainfall is increasing due to climate change, which means that the risk to water quality as a
result of storm runoff is increasing [49–51]. The changes to water quality risk induced by
climate change should be evaluated further to provide a basis for future water resource
management.

5. Conclusions

In this paper, the water quality characteristics of a drinking water reservoir during
flood seasons were selected for analysis, the main pollution sources were identified by the
PCA/FA-MLR model, and the water quality risk was evaluated by the Bayesian networks
model, then the management strategies were proposed to alleviate the water quality risk in
the watershed. The main conclusions are summarized as follows:

(1) General water quality data for the BLH Reservoir were analyzed to identify the water
quality parameters that exceeded the standard. The results showed that TN, TP, F.coli,
and BOD5 were the key risk factors during flood seasons.

(2) Based on the PCA/FA-MLR receptor model, it was found that agricultural nonpoint
source pollution has the greatest impact on the water quality of the BLH Reservoir
during flood seasons, contributing 53.20%, 48.41%, 72.69%, and 68.06% of the total
nitrogen, phosphorus, fecal coliforms, and turbidity, respectively.
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(3) A Bayesian network model was employed to assess the risk to water quality during
flood seasons, and the results showed that the risk of water quality exceedances
gradually increased with the increase of rainfall. The probability of exceedance for
TN, TP, and F.coli increased from 91.00%, 4.30%, and 3.51% to 95.83%, 25.98%, and
12.53% as the monthly rainfall increased from ≤68.25 to >190.18. The risk of BOD5
exceeding the standard, however, did not increase with the increase in rainfall. The
risk of exceedance of water quality standards at the entrance points was greater than
that at the dam site.

(4) Agricultural nonpoint source pollution driven by storm runoff is a major risk factor
for reservoir water quality and should be addressed as a priority. The proposed
research framework of water quality analysis, pollution source identification, risk
assessment, and water quality risk control can be applied to protect the water quality
of reservoir water sources and ensure the safety of the urban water supply.
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Appendix A

Table A1. Standard attribute table of hydrological factors’ discretization.

Hydrological
Factors

Attribute Values

S1 S2 S3 S4

Precipitation (mm) ≤68.25 68.25–119.46 119.46–190.18 >190.18
Runoff (106 m3) ≤14.14 14.14–66.74 66.74–175.92 >175.92
Water level (m) ≤59.47 59.47–63.24 63.24–67.12 >67.12

Discharge (106 m3) ≤15.93 15.93–29.43 29.43–41.64 >41.64

Table A2. Standard attribute table of water quality parameters’ discretization.

Water Quality
Parameters

Attribute Values

S1 S2 S3

TN (mg/L) ≤1 1.0–2.0 >2.0
TP (mg/L) ≤0.01 0.01–0.05 >0.05
F.coli (A/L) ≤200 200–10,000 >10,000

BOD5 (mg/L) ≤3 3–4 >4
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