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Summary

Computational prediction of toxicity has reached new heights as a result of decades of growth in 

the magnitude and diversity of biological data. Public packages for statistics and machine learning 

make model creation faster. New theory in machine learning and cheminformatics enables 

integration of chemical structure, toxicogenomics, simulated and physical data in the prediction of 

chemical health hazards, and other toxicological information. Our earlier publications have 

characterized a toxicological dataset of unprecedented scale resulting from the European REACH 

legislation (Registration Evaluation Authorisation and Restriction of Chemicals). These 

publications dove into potential use cases for regulatory data and some models for exploiting this 

data. This article analyzes the options for the identification and categorization of chemicals, moves 

on to the derivation of descriptive features for chemicals, discusses different kinds of targets 

modeled in computational toxicology, and ends with a high-level perspective of the algorithms 

used to create computational toxicology models.
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“Big Data is like teenage sex: everyone talks about it, nobody really knows how to 

do it, everyone thinks everyone else is doing it, so everyone claims they are doing 

it.”

Dan Ariely, Professor of Psychology and Behavioral 

Economics at Duke University

1 Introduction

The explosive growth of data from biology, physics and chemistry enables the creation and 

validation of powerful predictive models for toxicological endpoints. Data growth has been 
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paralleled by the creation of new computer science packages for chemical manipulation and 

model building. The ease of access to chemical data paired with numerous modeling 

packages has resulted in an increase in the power of computational models for toxicology. 

“The goal is”, as Carly Fiorina, the former CEO of Hewlett-Packard said, “to turn data into 
information, and information into insight.” This is an integral part of the systematic 

development of the safety sciences (Busquet and Hartung, 2017; Hartung, 2017).

Data sources like PubChem show incredible development in the numbers of included 

compounds, substances and particularly bioassays that they provide in the last few years. In 

PubChem terminology, a substance is a chemical sample description provided by a single 

source and a compound is a normalized chemical structure representation found in one or 

more contributed substances1. Figure 1 shows that the number of compounds catalogued by 

PubChem went from less than 1 million in 2005 to 9.3 million today. The number of 

substances shows similar growth. The number of bioassays underwent tremendous growth in 

just the last few years due to the addition of data sources implementing high-throughput 

systems. But PubChem is just one source of chemical/biological data (Zhu et al., 2016); the 

number of data sources with overlapping but distinct focuses is also expanding, including 

REACH data – resulting from the chemical regulation REACH (Registration Evaluation 

Authorisation and Restriction of Chemicals) in Europe (Luechtefeld et al., 2016a; Hartung, 

2010), ChEMBL2 – a large-scale bioactivity database for drug discovery (Gaulton et al., 

2012), and BindingDB3 – a massive catalogue of the binding affinities of chemicals with 

protein targets (Liu et al., 2007), to name just a few. The combination of these databases 

provides an important challenge with great potential reward. One example of an effort to 

combine databases is Chem2bio2rdf4, which creates semantic links between chemicals, 

diseases, symptoms and more (Chen et al., 2010).

The term “quantitative structure activity relationship” (QSAR) is used to describe 

quantitative relationships between chemical structures and properties. QSARs are built and 

validated by software development. Development activity can be estimated by querying 

GitHub5 (a web platform for publishing code repositories). Table 1 shows that there are 

hundreds to thousands of relevant coding repositories for machine learning, statistics, 

chemistry, biology and, more specifically, cheminformatics and QSARs. These repositories 

exist in all popular programming languages (Python, Java, R, C, etc.).

The combination of data growth and package development creates new opportunities and 

dangers for modeling chemicals. Effective models can speed up drug development, improve 

our environment, protect humans from dangerous exposures, accelerate industrial processes, 

and more. However, the ease with which these models can be made, paired with their 

potential commercial impact, creates dangers for development. Care must be taken to create 

models that can be validated and whose use can be realized in real applications (Fourches et 

al., 2010; Zvinavashe et al., 2008). Nate Silver, author and founder of the blog 

1https://pubchemblog.ncbi.nlm.nih.gov/2014/06/19/
2https://www.ebi.ac.uk/chembl/
3https://www.bindingdb.org/
4http://cheminfov.informatics.indiana.edu:8080/c2b2r/
5https://github.com
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FiveThirtyEight, wrote “When human judgment and big data intersect there are some funny 
things that happen”. Nevertheless, toxicological modeling already impacts drug development 

(Cronin, 2000; Patlewicz, 2006), chemical synthesis (Santana et al., 2006), hazard 

estimation (Gerner et al., 2004; Fjodorova et al., 2008), and many more real-world 

applications (Puzyn et al., 2010; Roy, 2017).

1.1 OECD QSAR guidelines

The Organization for Economic Co-operation and Development (OECD) recognizes the 

potential for QSARs to (1) save animal lives, (2) reduce the cost of testing and (3) strengthen 

chemical regulation (Fjodorova et al., 2008). The OECD created QSAR guidelines in 20047, 

which form a reference point for many sections in this article (Worth et al., 2005).

1. A defined endpoint: QSARs cover diverse physical, chemical, pharmaceutical, 

toxicological and ecological endpoints. These endpoints can be numeric (e.g., 

dose/response evaluation), categorical (e.g., chemical classification and labeling), 

time series (chemical degradation) and others (see Section 4).

2. An unambiguous and easily applicable algorithm: The set of algorithms used to 

derive relationships between chemical structures and endpoints is rapidly 

growing. Many QSARs use partial least squares or multiple regression. More 

recently, supervised learning models like neural networks have become popular 

(see Section 5).

3. A defined domain of applicability: Domain of applicability describes the set of 

chemicals and data a QSAR is built to model. The meaning of domain of 

applicability changes somewhat depending on the chemicals, data, and modeling 

techniques employed. This concept works well for QSARs that target chemicals 

with a specific shared feature (like a model built specifically for methacrylates). 

Extensions of this concept apply statistical techniques to identify the chemical 

space that works well for a QSAR (Eriksson et al., 2003). Domain of 

applicability is discussed in Sections 2 and 5.

4. Appropriate measures of goodness-of-fit, robustness and predictability: 
Justifying the use of a QSAR in commercial or regulatory applications requires 

an unbiased and valid measure of accuracy. Unfortunately, the rapid growth of 

statistical software packages and chemical descriptors allows researchers to 

quickly create new models without fully understanding the pitfalls of underlying 

features and models. This sometimes leads to a misrepresentation of the accuracy 

of these models (Fourches et al., 2010). Overfitting and publication bias play a 

prominent role in the discussion of goodness of fit, which is covered in Section 

5.

5. A mechanistic interpretation, if possible: A mechanism of action is a well-

defined biological interpretation of the means by which a chemical exerts its 

biological activity. Protein docking QSARs, which model the capacity of a 

chemical to bind with a receptor, have a clear mechanistic interpretation. QSARs 

7http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf (last accessed 11 Oct 2017)
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built on chemical similarity or “black box” machine learning methods such as 

neural networks do not provide a clean mechanistic interpretation. In these latter 

models, statistical techniques are sometimes derived to help elucidate the 

modeled mechanisms (Matthews et al., 2009). Section 4 discusses mechanistic 

interpretation.

1.2 Regulatory agency QSAR relevance

Public desire for safety of chemical products regarding human health and the environment 

has led to more regulatory pressure on chemical industries. Two major manifestations of 

regulatory pressure are the reform of the Toxic Substances Control Act (TSCA) in the US 

(Schmidt, 2016) and REACH (Schmidt, 2016) in the EU. Unfortunately, TSCA originally 

failed to regulate existing commercial substances and set onerous legal constraints for the 

EPA to take action (Matthews et al., 2009; Schmidt, 2016). The reformed TSCA governs 

existing commercial substances as well as new substances. As a result, more than 80,000 

commercial substances will need to be evaluated, which is far more than the EPA can 

evaluate using traditional methods. To accelerate chemical evaluation, the EPA is already 

using QSARs to evaluate ecologic and some health hazards (Malloy and Beryt, 2016).

The REACH legislation requires companies to submit detailed reports including ecological 

and toxicological information on all compounds used in excess of one ton per year. This 

legislation came into force in 2007 and has sparked similar efforts in China, Turkey, Japan, 

Taiwan, South Korea, Malaysia, USA, and India (Matthews et al., 2009; Silbergeld et al., 

2015). To satisfy REACH and the parallel Classification, Labeling and Packaging (CLP) 

legislation, companies must generate United Nations Globally Harmonized System (GHS) 

classification and labeling for each chemical (Winder et al., 2005). These labels are 

alphanumeric identifiers (e.g., H317 = skin sensitization), which form ideal “well-defined” 

endpoints for QSARs. Depending on the chemical and its usage level, some substances can 

satisfy reporting requirements with QSARs and chemical similarity approaches (termed 

read-across) (Patlewicz et al., 2014; Ball et al., 2016). QSARs used in such reporting cost a 

fraction of the replaced animal test and present a strong economic case for many companies 

(Scholz et al., 2013).

1.3 The academic QSAR community

Academic pursuit of QSARs provides research into and education for theory, software 

development, and evaluation of tool quality as well as potential impact in diverse 

applications. Development of many open source chemistry packages widely used in 

commercial and regulatory applications rely on academic effort including the Chemistry 

Development Kit (Willighagen et al., 2017), Chemminer (Cao et al., 2008), OpenBabel 

(O’Boyle et al., 2011), and RDKIT (Landrum, 2013).

A PubMed query of “QSAR”, which is a controlled MeSH term, reveals 15,328 publications 

as of July 20, 20178. There are more than 5,000 unique authors in the QSAR field.

8https://meshb.nlm.nih.gov/record/ui?ui=D021281
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Figure 2 on the left shows that the QSAR field is a tightly knit group. The nodes in the graph 

represent authors with more than 10 publications and the edges identify authors who have 

published more than 2 articles together. The graph is strongly connected with only a few 

dozen authors not part of the central connected component.

2 Chemical identifiers and their problems

Computational models that derive chemical activity from chemical structure are called 

QSARs. QSARs reduce chemicals to constituent atoms, bonds, charges and conformations 

(3 dimensional shapes). Additional properties can be constructed from these basic building 

blocks. A QSAR purist asserts that chemical activity is ultimately a function of chemical 

structure.

The first step in any model design is identification of what one seeks to model. This 

philosophical sounding point has surprising practical relevance in cheminformatics, where 

curating chemical sets to remove duplicates and identify distinctly encoded but matching 

chemicals is considered a paramount initial step (Fourches et al., 2010; Oprea et al., 2003). 

Chemicals have surprising means to avoid unique/unambiguous identification and the 

categorization of chemicals can be almost arbitrary. This chapter reviews the basics behind 

naming and categorizing chemicals based on their structure.

2.1 Chemical identifiers

Well-curated data creates stronger models that can have more applications. One principle of 

database design is the use of chemical identifiers. Unfortunately, the world of small 

molecules suffers from a naming problem. It is difficult to combine data from databases that 

reference chemicals by common names or use internal identifiers. Issues in data quality also 

have a pernicious ability to pollute databases that seek to integrate data between different 

sources (Oprea et al., 2003). Some instructive and commonly used chemical identifiers 

include MOL files, InChi keys, and SMILES notations (Fig. 3).

– MOL files: a MOL file defines the atoms, bonds and conformation of a chemical 

completely. Figure 3 shows an example MOL file for benzene: the top 3 lines are 

header information, line 4 defines number of atoms and number of bonds, lines 

5-10 (for this atom) describe atom x,y,z locations (in angstroms) and charges. 

Lines 26 through 31 describe bonds (first atom, second atom, bond type) (Dalby 

et al., 1992). MOL files are a unique description of a specific conformation of a 

compound. Because MOL files are unique at the level of conformation, they 

make a very strong identifier.

– InChi: InChi is supported by the International Union of Pure and Applied 

Chemistry (IUPAC). It is an algorithm that generates a unique single-line string 

for a compound. It captures atom, bond and charge information but does not 

capture atom locations. InChi keys use a canonicalization algorithm that 

guarantees that the same structure will always be mapped to the same string17. 

17https://meshb.nlm.nih.gov/record/ui?ui=D021281
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While InChi keys do not support exact conformation, they do support 

stereochemistry and can discern between stereoisomers.

– SMILES: SMILES (Simplified Molecular Input Line Entry System), the most 

widely used chemical identifier (Heller et al., 2015), encodes chemical structures 

as single-line strings. The SMILES encoding breaks down into four separate 

encodings depending on the desired resolution (Willighagen et al., 2017):

• generic: Also termed non-canonical. The same structure can have 

different SMILES strings which order atoms differently.

• unique: Also termed canonical. The same structure will always output 

the same SMILES. Canonical SMILES do not handle isotopes or 

stereochemistry.

• isomeric: Non-canonical. The same chemical can have multiple 

SMILES strings with different atom orders. Isotope and 

stereochemistry is encoded.

• absolute: Canonical encoding that handles isotope and stereochemistry.

The flexibility of SMILES makes it a popular format. It is easy to create a 

SMILES encoding for every chemical in a set without knowing details about the 

chemicals. This is a strength in that identifiers can always be generated, but it is 

a weakness because non-expert usage can lead to loss of information and 

potential identifier collisions and non-uniqueness. Additionally, the lack of a 

consensus supporter for the SMILES algorithm leads to a variety of 

implementations in different packages (Heller et al., 2015). DAYLIGHT 

chemical information systems9 gives a comprehensive description of each kind 

of SMILES. For this review, it is sufficient to understand that SMILES have 

differing levels of resolution and that absolute SMILES must be used to provide 

a unique and unambiguous chemical encoding (up to the level of conformation).

– Non-algorithmic identifiers: MOL files, InChi keys, and SMILES strings are all 

algorithms that derive identifiers from chemical structure. There are many non-

algorithmic identifiers that include common names, vendor names, and internal 

database names (such as PubChem’s CID). When databases use non-algorithmic 

identifiers, this can lead to poor data quality and more difficulty integrating data 

sources. CASRN (Chemical Abstract Service Registry Number)10 is an 

important example of a non-algorithmic identifier. CASRN is supported by the 

American Chemical Society and provides a naming service for chemicals and 

substances (combinations of chemicals). It is widely used in publication and 

analysis of chemicals.

9www.daylight.com/dayhtml/doc/theory/theory.smiles.html
10https://www.cas.org/content/chemical-substances/faqs
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2.2 Problems of chemical identifiers

The problem of identifier collisions (many chemicals → one identifier)—When 

different chemicals map to the same chemical identifier, this results in an identifier collision. 

Collisions are a problem for integrating databases and compiling chemical information. This 

can happen when a common chemical name actually refers to many different but related 

chemicals (e.g., lactic acid has three associated CAS numbers). An ideal experiment 

observes a property for a specific chemical structure. That observation is stored in databases 

by pairing a chemical identifier, an observation identifier (such as a property name), and a 

value. But if the identifier can be mapped to multiple chemicals, users of the database cannot 

determine which structure was really used in a given experiment. Identifier collisions are 

actually quite common in practice. Although collisions generate significant concern for 

experimental reproducibility (Fourches et al., 2010), their impacts on QSARs can vary from 

severe to non-issue. Identifiers like generic SMILES, which may result in identifier 

collisions, impose strong constraints on the chemicals that may collide. Chemicals with 

structures that are similar enough to map to the same generic SMILES will often have 

similar properties. This is the chemical similarity hypothesis and it is reviewed in Section 5. 

A more critical problem for computational models is when the same chemical can map to 

different identifiers. In an analysis of the prevalence of these collisions, Akhondi et al. 

(2012) found that stereochemistry accounted for the majority of identifier problems and that 

this was a common problem even in large databases. This analysis can be done with the use 

of FICTS rules to modify structures by (F) removing small organic fragments, (I) ignoring 

isotopic labels, (C) neutralizing charges, (T) generating canonical tautomers, (S) ignoring 

stereochemistry.

The problem of non-uniqueness (one chemical → many identifiers)—When one 

chemical can be mapped to multiple identifiers, there is a non-uniqueness problem. QSARs 

use training data in the form of observations on chemical identifiers. When data is duplicated 

or attributed incorrectly, QSARs suffer bias. If chemicals that are in fact the same map to 

different identifiers, then they may bias an otherwise well-diversified dataset. Non-

uniqueness has more critical effects when combining data from different sources. If a drug 

has one name in DRUGBANK13 and a different name in ChEMBL, then training data built 

using both sources will fail to attribute properties correctly to this chemical. It is important 

to consider that QSARs do not operate directly on chemical identifiers. Instead, QSARs use 

feature vectors for chemicals, these vectors describe important characteristics of chemicals 

and define the resolution at which a QSAR can evaluate a chemical. If a QSAR uses a single 

feature, the water octanol coefficient for example, then chemicals that map to the same water 

octanol coefficient are indistinguishable to the QSAR. Because chemical identifier mistakes 

are non-random, their impact on a QSAR can vary from severe (many duplicates, 

misattributions) to minor (incorrect identifiers that map to the same feature vector). This 

subject is revisited in Section 5.

The problem of mixtures—QSARs are constructed from experiments that assign 

properties to chemical feature vectors (built from chemical structures). In reality, it is very 

13https://www.drugbank.ca
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difficult to causally link a specific chemical to a specific property. Experiments are done in 

the context of an environment that can include other chemicals such as the solvent used to 

dissolve the target chemical and transformations of the target chemical. Attributing risk to a 

specific compound is not only difficult but also not what is ultimately needed. An ideal 

model determines risk in real world scenarios, where compounds never exist in a vacuum. 

This is why, for example, pesticides are retested if even a relatively inert constituent is 

changed (Lydy et al., 2004).

Identifying mixtures relies on non-quantitative methods including the chemical abstract 

service registry (CASRN numbers) and PubChem’s substance identifier (SID)14. These 

identifiers can cause problems when integrating data between databases.

Mixtures are important in the context of purity as well. Adverse reactions to drugs can be the 

result of impurities. These impurities are the target of their own QSARs (Valerio and Cross, 

2012) show for example an effective mutagenicity QSAR for pharmaceutical impurities). 

Training data for QSARs is impacted when observations are the result of impurities rather 

than target compounds. To handle impurities, some databases require curation of chemical 

data guaranteeing high purity. One example of this is the Bundesinstitut für Risikobewertung 
(BfR – Federal Institute for Risk Assessment) database in Germany, which requests for 

purity in excess of 95% for all chemicals (Gerner et al., 2004). Careful curation of chemical 

purity is an important part of data maintenance; however, it is neither necessary nor 

sufficient to determine a causal link between chemicals and their observed properties.

One reason for the insufficiency of chemical purity to determine causal linkages is the 

transformation of chemicals in different exposure environments. Thus, a negative result for a 

pure chemical does not rule out the possibility of transformation to a more hazardous 

compound. Efforts to computationally model chemical transformations are sometimes 

incorporated directly into QSARs. These models can be considered integrated testing 

strategies, which first break a target compound into all its possible transformations and then 

seek to model the whole set (Dimitrov et al., 2005). QSARs taking this approach include 

CATABOL (Dimitrov et al., 2005), TIMES (Mekenyan et al., 2004) and DEREK (Ridings et 

al., 1996).

2.3 Chemical categorization

Chemical categorization is useful in the creation and validation of QSAR models. Narrow 

QSARs are designed specifically for a single “group” of chemicals. This group is termed the 

model’s “domain of applicability” (Sushko et al., 2010) and its definition is required in the 

OECD QSAR guidelines (Fjodorova et al., 2008). Chemicals can be grouped into disjoint 

sets or into hierarchical groups. These groups can be expertly defined, algorithmically 

defined, or use enrichment analysis to combine expert definitions and algorithmic 

definitions.

Expert-defined groups—Expert-defined chemical groupings group chemicals by shared 

properties. These shared properties can take on diverse forms such as biological roles, 

14https://pubchem.ncbi.nlm.nih.gov/search/search.cgi
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environmental action, or shared functional groups. PubChem provides many of these 

categorizations, for example:

– ChEBI15 biological roles: an ontology defined on chemical biological roles like 

“glutathione depleting agent” (Hastings et al., 2013).

– FDA pharmacologic classification: The FDA provides drug classes defined by 

chemical structure, mechanism of action, and physiological effects (FDA, 2009).

– MeSH terms: The NCBI medical subject headings (MeSH) terms are a powerful 

controlled vocabulary defining many different subjects. In the context of 

chemical grouping, these terms are defined based on concepts such as structure, 

biological effect, pharmaceutical preparations and more.

The last example, NCBI Chemical MeSH Terms for Chemicals and Drugs, is a hierarchy of 

keywords, a subset of which groups chemicals by shared functional groups and atomic 

characteristics. Examples of this grouping include “aldehydes”, “alcohols” and 

“hydrocarbons”, all of which are groups of chemicals with shared substructures or atom 

types.

A specific example of this is the MeSH grouping for “thiazolidenedione”16. This MeSH 

term is defined as:

D02.886.675

D03.383.129.708

THIAZOLES with two keto oxygens. Members are insulin-sensitizing agents, which 

overcome INSULIN RESISTANCE by activation of the peroxisome proliferator 

activated receptor gamma (PPAR-gamma).

The tree number “D02.886.675” identifies parent terms to thiazoles, which are D02 = 

organic chemicals and D02.886 = sulfur compounds. MeSH terms can belong to multiple 

MeSH trees as identified by the secondary tree number “D03.383.129.708”, which 

corresponds to heterocyclic compounds [D03], 1-ring [D03.383], azoles [D03.383.129]. 

These parent terms give context for the definition of thiazoles as organic sulfur compounds 

that are 1-ring heterocyclic azoles. The verbal definition given below the tree numbers 

identifies thiazolidenediones as thiazoles, which means they contain a thiazole group. This 

definition is visualized in Figure 4 by highlighting the red thiazole group in three thiazoles.

One common grouping shared by MeSH is the divide between organic and inorganic 

chemicals. The hierarchy under “organic chemicals” is shown in Figure 5. The parent term 

“organic chemicals” is divided into many child terms, which are divided into more child 

terms. This is visualized as a tree and cut off at 3 levels for visualization purposes.

As we have seen, some hierarchical groupings support multiple inheritance, where a single 

concept/compound can be shared between multiple groups. For example, the left compound 

in Figure 4, lobeglitazone, is both a thiazolidenedione and a pyrimidine (it has a pyrimidine 

15https://www.ebi.ac.uk/chebi/
16https://www.ncbi.nlm.nih.gov/mesh/68045162
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heterocyclic ring substructure). Ultimately, expert systems define their groupings to help 

humans think about the chemicals within a group. Inorganic and organic chemistry are 

defined because chemicals in each group are expected to behave differently and have 

relevance in different contexts. Expertly defined chemical groupings are a good way to 

attach human meaning to groups of chemicals. However, expert systems suffer when they do 

not provide complete definitions of the inclusion/exclusion criteria for chemicals. For 

example, the given thiazolidenediones definition does not make clear whether non-insulin 

sensitizing agents with two keto oxygens and a thiazole group are thiazolidenediones. 

Quantitative approaches to chemical grouping do not suffer this problem, but also lack the 

same human relevance that can easily be achieved in expert systems.

Quantitative grouping—Non-hierarchical quantitative clustering usually involves two 

steps:

1. Users select features that are relevant to a specific interest such as the presence/

absence of chemical substructures (Barnard and Downs, 1992) or biological 

features such as binding affinities to different receptors (Zhou et al., 2014).

2. Users employ an algorithm that groups “similar” feature vectors. These 

algorithms usually explicitly (k-means) or implicitly (self-organizing map) 

employ a distance metric such as Euclidean distance between feature vectors.

Hierarchical quantitative clustering works by comparing each chemical and iteratively 

creating groups of compounds. Once the first partitioning is done (assignment of chemicals 

to distinct groups), partitioning is repeated on the groups of compounds. This requires that a 

distance metric be definable on both the feature vectors describing the compounds and on 

groups of compounds.

Quantitative grouping is reviewed in more detail in Section 5. It is mentioned here to make 

the reader aware of alternatives to expert defined chemical groupings. Expert defined 

chemical groupings and quantitative groupings are not entirely distinct as quantitative 

approaches can use expertly defined features (such as MeSH term assignments).

Example application—In the context of QSARs, one might ask which compounds have 

been modeled most often in publications. NCBI labels articles with MeSH terms 

corresponding to chemical groupings (described above) and also captures the concept of 

QSAR (MeSH term D02128117). To answer this question, all articles matching QSAR in 

Pubmed (15,000 articles) were reduced to those mentioning MeSH term D02 “organic 

chemicals” (5,000 articles) and the prevalence of different subgroups of organic chemicals in 

item (2) corpus (Fig. 6, top) was determined. Figure 6 (top) is a treemap of all the 5,409 

QSAR articles with the “organic chemicals” MeSH term. Chemical categories that are 

children of the “organic chemicals” MeSH term are labeled in the top treemap. Larger 

subgroups are chemical groups that are more prevalent. Sulfur compounds are the most 

commonly labeled subgroup of organic chemicals in QSAR papers. From this it can be 

surmised that sulfur compounds are commonly modeled in QSAR publications. This process 

can be repeated for all sulfur compounds. 963 articles remain after filtering out all articles 

that are not labeled with “sulfur compounds”. In these articles, the sulfur compound 
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subgroup thiazoles is the most common subgroup (Fig. 6, middle) although other prominent 

subgroups like the sulfones and organothiophosphorus compounds (which have no child 

groups) are also prevalent. The subgroup thiazolidenediones are the most commonly 

referenced child of the “thiazole” group in the 218 publications labeled by thiazole (Fig. 6, 

bottom). They are also a MeSH term “leaf” node, meaning that there are no 

subcategorizations.

The value of chemical categorization is apparent in this toy example as it lets us find groups 

of chemicals that are targeted by model developers. Since thiazolidenediones appear to be a 

relevant target of QSARs, we find the terms that are more prevalent for this group (papers 

matching QSAR and thiazolidenediones) relative to all QSAR publications. 

Thiazolidinedione QSARs model humans much more often than most publications about 

QSARs. They employ molecular models more often, and use techniques like molecular 

docking simulation, molecular conformation, and x-ray crystallography. They also 

investigate antineoplastic/antitumor activity more often, which links to the “insulin-

sensitizing agents, which overcome INSULIN RESISTANCE by activation of the 

peroxisome proliferator activated receptor gamma (PPAR-gamma)” MeSH term definition of 

thiazolidines.

This example explored the ability for chemical categorization to identify targets of QSAR 

development. It went further and identified differential concepts associated with thiazoles. 

This analysis termed “enrichment analysis” here, is the heart of all chemical modeling. 

Algorithms seek to find discerning features of chemicals by correlating these features or 

functions of these features to biological activities. MeSH headings themselves have been 

used for computational modeling: Keiser et al. (2007) correlated MeSH headings to 

biological activity class and successfully identified that methadone, an NMDA antagonist, is 

also an M3 muscarinic receptor antagonist (a previously unknown property) (Nigsch et al., 

2009).

3 Features of chemicals

The second step in model development, after identifying chemicals, is identifying 

descriptive features for each chemical. For example, in our earlier work to predict potency of 

skin sensitization (Luechtefeld et al., 2015), we used CAS numbers (see Section 2) to 

identify chemicals. The descriptive features, also termed the “manifest”, included: CD86 – 

an in vitro assay for dendritic cell activation, DPRACys – the direct peptide reactivity assay 

for cysteine which measures the ability of chemicals to bind to cysteine, DPRALys – the 

same as DPRACys but for lysine, and KEC1.5 and KEC3 – the KeratinoSens 1.5-fold and 3-

fold in vitro luminescence measure for KEAP1-NRF2 activation. For this example dataset, 

we sought to define a function for the target feature LLNA (local lymph node assay), i.e., 

F(CD86, DPRACys, DPRALys, KEC1.5, KEC3) = LLNA or a conditional probability 

distribution P(LLNA|CD86, DPRACys, DPRALys, KEC1.5, KEC3).

The QSAR hypothesis is that all chemical activity is a function of chemical structure – the 

bonds and atoms found within the molecule (Hoffmann and Hartung, 2006). While this 

hypothesis may be true, machine learning requires large amounts of data to fit parameters 
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and build probabilistic relationships. Sometimes structural information alone fails to provide 

the magnitude of data required for strong predictive models.

Thus, QSAR models may use biological or physical properties of chemicals that may be 

much more information dense than structural features. The features in our study 

(Luechtefeld et al., 2015) were selected from over 1000 structural and biological features as 

the most “important” features for skin sensitization modeling (feature selection is discussed 

in Section 5). Biological features like these can outperform structural features due to their 

mechanistic relationship with the target (in this case skin sensitization).

To collect more information, model builders look for all predictive features that can be 

aggregated and assigned to chemical structures. In principle, model builders can use any 

property with direct or indirect causal relationships with an endpoint. One reason for the 

common use of structural features is the ease of their assignment. Once a chemical structure 

is known, structural features can be generated for free (or at least at the cost of electricity). 

Other features, such as biological assays, can be expensive and slow to collect. A few 

common chemical descriptors include:

1. Molecular graph: Chemical structures are treated as a mathematical graph with 

atoms as nodes and bonds as edges. Features are derived by different methods of 

traversing the graph (Leach and Gillet, 2007).

2. Quantum mechanical: Chemicals are modeled via the molecular wave function 

and features related to bond strength, electron distribution, and electromagnetic 

force are derived (Puzyn et al., 2008).

3. In vivo and in vitro: When building models for human hazards, toxicologists 

typically use animals or cells. For example, the mouse LLNA exposes mice to a 

chemical and measures response in lymph nodes (Gerberick et al., 2001). The 

result of this in vivo assay is a feature used in modeling human skin sensitization. 

Due to their expensive nature, in vivo endpoints are often the target of their own 

models.

4. Molecular biology: Microarrays, proteomics, metabolomics, RNA-sequencing, 

genetic sequencing, methylation bisulfite sequencing and other means to assess 

genetic impact provide rich features for describing the impacts of chemical 

exposure (Low et al., 2011).

5. Semantic: Semantic databases capture relationships between entities such as 

Chemical A → is similar to → Chemical B. When chemicals are present in a 

semantic database, their relationships to other entities can be used as chemical 

features. Chen et al. (2012) use metapathways as features to describe chemicals. 

For example, when modeling ligand-receptor relationships, the metapathway 

Chemical A → is similar to → Chemical B → is ligand of → receptor i is a 

useful descriptive feature for predicting whether chemicals are ligands of a given 

receptor (Chen et al., 2012; Fu et al., 2016).

6. Ensemble: The output of models can be used as inputs to other models in 

ensemble machine learning methods (Leach and Gillet, 2007).
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The recent growth in magnitude and diversity of experimental data for these features is one 

reason for the recent success of QSAR modeling (Cherkasov et al., 2014).

In this review we discuss physics based and molecular graph descriptors in more detail due 

to their prevalence in the field (Voutchkova et al., 2010). The book “An Introduction to 
Chemoinformatics” by Leach and Gillet (2007) is an excellent introductory source of 

cheminformatics features discussion (and other cheminformatics knowledge).

3.1 Molecular graphs

Chemicals can be modeled as graphs, where nodes are atoms and edges are bonds. Treating 

a molecular structure as a graph allows graph traversal algorithms to characterize the 

structure. These traversal algorithms are broadly called vectorizers because they map 

structures to numeric vectors. Most cheminformatics packages implement simple functions 

for deriving different kinds of vectorizers. Specific graph traversal algorithms include 

hashed and Morgan fingerprints, topological indices and dictionaries.

3.1.1 Hashed fingerprints—Hashed fingerprints map a molecular graph to a set of 

subgraphs and map those subgraphs into integers. Hashed fingerprints are able to generate 

features for any set of chemicals without requiring an a priori definition of each subgraph of 

interest. From a practical perspective, hashed fingerprints can require a two-pass algorithm 

where first all the subgraphs present in a chemical set are aggregated and then vectors are 

generated for each chemical.

Hashed fingerprint molecular subgraphs are usually built via a graph traversal. Python code 

snippet shows how to generate Morgan fingerprints using RDkit (Landrum, 2013). Line 5 

shows that a list of integers defines the numeric vector for sarin (which has SMILES code 

“FP(=O)(OC(C)C)C”):

1. from RDkit import Chem

2. from RDkit.Chem import AllChem

3. sarin = Chem.MolFromSmiles(“FP(=O)(OC(C)C)C”)

4. AllChem.GetMorganFingerprintAsBitVect(sarin, radius=2,nBits=2048)

5. > res[0] = [192,1,2017,486,1057 …

Hashed fingerprints are usually high dimensional (there are many possible subgraphs) and 

sparse (any specific chemical lacks most of the catalogued subgraphs). To store hashed 

fingerprints more efficiently, most cheminformatics packages write hashed fingerprints as 

sparse vectors that only store information on the subgraphs present for a given chemical and 

assume a default value of 0 or false for subgraphs that cannot be derived from a parent 

chemical. The fingerprint in line 4 is a sparse vector (sometimes represented by a bit set).

3.1.2 Morgan fingerprints—Morgan fingerprints (also circular fingerprints) are an 

example of hashed fingerprints. They take a central atom and then select all the atoms within 

a radius of that central atom. This selection of atoms is mapped to an integer via a hashcode. 

Morgan fingerprints sometimes simply encode the presence/absence of different subgraphs 
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and sometimes actually count the number of times each subgraph occurs in a chemical. 

Figure 8 shows the subgraph creation process for Morgan fingerprints. In the top row we see 

all the subgraphs of radius 0 (0 neighbors selected around a central atom). The second row 

shows subgraphs of radius 1. The maximum radius is a parameter selected by the user.

3.1.3 Topological indices—Topological indices are numeric functions of graphs. A 

topological index (TI) transforms a molecular graph (G) into a numeric value, i.e., TI(G) → 
R:

An important class of topological indices are degree-based topological indices, which are 

functions of the connectivity matrix of a molecular graph. The connectivity matrix for a 

molecule with n atoms is an n x n-matrix that designates a 1 when u ~ v, i.e., when atom u 

and v are bonded. These indices are summations over bonded atoms (u ~ v) where du 

denotes the degree (number of bonds) of atom u and dv the degree of atom v.

The first topological index was the Randic index (Randic, 1975). It purports to characterize 

“molecular branching”. The Randic topological index takes on lowest values for linear 

molecules (like short chain fatty acids) and takes on the highest values (n/2 for an n atom 

molecule) for molecules where all atoms are bonded to each other. The Randic topological 

index is a powerful predictor for drug related QSAR endpoints (Gutman, 2013).

While some topological indices are strong predictors of chemical properties, their flexible 

nature has led to an incredible proliferation (Gutman, 2013). Unfortunately, the generation 

of large number of features with questionable causal relationships to QSAR endpoints leads 

to models that are overfit and impossible to interpret. Topological indices must be carefully 

considered before inclusion in any QSAR models.

3.1.4 Dictionaries—Dictionary fingerprints indicate the presence or absence of different 

substructures or graph traversal results in a chemical. Dictionary fingerprints might specify a 

6-carbon ring as a subgraph of interest, or they might ask whether more than 12 hydrogens 

are present in a chemical structure. Unlike hashed fingerprints, dictionary fingerprints define 

the subgraphs of interest before evaluating chemicals. This means they only require one pass 

over the given chemical library to generate a vector for each chemical.

Dictionaries seek to identify all the subgraphs of interest and as such they may miss 

important subgraphs particular to a given chemical set/endpoint. Dictionary fingerprints can 

be built for specific purposes; this sometimes involves a feature selection process wherein a 

dictionary is reduced to a smaller number of “important” features (Luechtefeld et al., 2015).
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PubChem2D: The PubChem2D fingerprinter (Kim et al., 2016a) is a dictionary containing 

7 “sections” with a combined total of 881 features. A PubChem2D fingerprint can be 

derived using the chemistry development kit (Willighagen et al., 2017). For example, a 

fingerprint for 1,4-pentanediamine contains 22 out of the 881 molecular graph PubChem2D 

features. Each section in PubChem2D represents a different kind of molecular graph 

feature18. These sections are described below.

Hierarchic element counts: These features simply look for the presence of different atoms. 

Individual atoms can have large impacts on molecular properties (i.e., the absence of any 

carbon atoms in a compound excludes it from normal organic chemistry). Examples include: 

≥ 4 hydrogens, ≥ 8 hydrogens and ≥ 1 Hg. Note that the first two examples are not 

independent features. Feature independence can be a desirable property and is reviewed in 

Section 5.

ESSSR ring set: Extended smallest set of smallest rings (ESSSR) ring sets count the 

number of rings (defined as 3 or more atoms with a graph cycle) in a structure. Examples 

include ≥ 1 any ring size 3 or geq1 saturated or aromatic carbon-only ring size 3. Rings are 

important in cheminformatics due to their stability and relative inertness.

Simple atom pairs: Atom pairs identify the presence or absence of different pairs of atoms. 

Examples include: Li-H, C-F and N-H.

Simple atom neighbors: Simple atom neighbors identify the presence or absence of 

neighbors for a given atom (without regard to bond order). Simple atom neighbors use the ~ 

symbol to denote “any neighbor” and the ~ symbol to denote that the neighbor is part of a 

ring. Examples include C(~ C)(~ Si) and C(~ Cl)(:C)

Detailed atom neighborhoods: Like simple atom neighbors, except bond order is encoded 

as – (single), = (double), # (triple). Examples include C-C-C#C, S-S-C:C and N-C=N-C.

SMARTS patterns (simple and complex): SMARTS (Smiles arbitrary target specification) 

are regular expressions for SMILES identifiers. The SMARTS language provides a syntax 

for matching patterns in SMILES strings19. For example, the SMARTS expression” 

[OH]c1ccccc1” captures all chemicals with a phenol ring.

3.2 Physics-based descriptors

Quantum and molecular mechanics based descriptors use computational chemistry to 

estimate molecular wave functions. The molecular wave function can be used to derive 

features describing electron density, charge, binding potential and more.

3.2.1 Quantum mechanics—Quantum mechanical (QM) features are derived from the 

molecular wave function. While it is beyond the scope of this review to investigate the 

mathematics behind these features, it is important to understand their general descriptions 

18ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
19http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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and calculation. Molecular wave functions extend Schrödinger’s equation to describe many-

bodied systems (molecules). A complete molecular wave function can be used to calculate 

electron densities and resulting electronic properties of molecules. Solving the molecular 

wave function is a computationally difficult task. QM solvers are divided between ab initio 
and semi-empirical approaches, where ab initio computation attempts to solve the molecular 

wave function from first principles and semi-empirical approaches are parameter-driven 

approaches with parameters fit by empirical data (Puzyn et al., 2008). Wave function solvers 

are an area of active research. Features derived from different solvers can be significantly 

different, but they tend to be biased in the same direction for different compounds (Thiel, 

2014). Like QSARS, semi-empirical solvers sometimes incorporate machine learning in 

parameter estimation (Thiel, 2014). QSARs using features based on these solvers must be 

careful of compounding errors wherein bias/error in modeled features are magnified by their 

use in statistical models.

A brief description of the categories of QM descriptors grouped by Karelson et al. (1996) is 

given below:

– Charges – Charge descriptors measure aggregate statistics for atomic charges in 

a molecule. The sum of squares of all atomic charges is one example (Buydens 

et al., 1983). All chemical interactions are either through electrostatic (polar) 

interactions or covalent (orbital) interactions. Atomic charge is a major 

governing feature for such interactions.

– HOMO and LUMO energies – When atoms bond to form molecules, their 

atomic orbitals combine to form molecular orbitals. Molecular orbitals describe 

the location and density of electrons in a molecule. Frontier orbital theory 

describes reaction mechanisms primarily as interactions between the HOMO 

(highest unoccupied molecular orbital) and LUMO (lowest unoccupied 

molecular orbital) of molecules (Fukui et al., 1952). HOMOs and LUMOs are 

not numeric features, they are distributions of electron density. HOMOs and 

LUMOs can be used to derive related features like the energy of each and the 

difference in energies between each.

– Atomic and molecular polarizabilities – Polarizability measures the potential for 

an atom or molecule to form a dipole (separation of positive and negative 

charges). Polarizability is an important property of all molecules as it is a strong 

predictor of how the molecule will behave with other non-polar or polar 

molecules. Polar surface area (PSA) is a sum of the contribution of polar atoms 

to the total surface area of a molecule and is a powerful predictor of endpoints 

such as intestinal absorption, blood-brain barrier and more (Prasanna and 

Doerksen, 2009).

QM approaches to QSARs are extremely powerful but also susceptible to misuse. Several 

packages, such as dragon descriptors20, generate thousands of features derived from QM 

20http://www.talete.mi.it/products/dragon_molecular_descriptors.htm
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calculations. Models built from these features are vulnerable to overfitting due to the large 

number of features and difficulty in interpreting features.

3.3 Comparative molecular field analysis (CoMFA) and simulated QSARs

While not covered in depth here, some approaches to computational models perform direct 

simulations on chemical structures. Rather than building statistical models from chemical 

descriptors, these models create a virtual 3-dimensional physical model of the chemicals and 

receptors. Models of receptor-ligand binding can simulate physical interactions between 

molecules and protein receptors. One important example of this approach is comparative 

molecular field analysis (CoMFA) (Cramer et al., 1988). In a CoMFA analysis, a set of 

compounds known to interact with the same receptor are selected. A training subset is 

selected and potential pharmacophores (functional groups that interact with the receptor) are 

generated via superposition of the training set. CoMFA approaches can become much more 

complex, but in general they operate by virtual manipulation of 3-dimensional structures 

(with charges).

4 Toxicological targets

QSARs can be used to address diverse targets in toxicology: These targets include (but are 

not limited to) physicochemical properties, environmental effects, and human health effects. 

To build a QSAR, some form of reference data is needed, usually in the form of an 

experimental observation. When the desired endpoint is difficult, expensive or dangerous to 

generate directly, an experimental surrogate or biomarkers for the endpoint can be used. For 

example, the LLNA (Luechtefeld et al., 2016a) is performed on mice and used as a stand-in 

for the human patch test to evaluate human skin sensitization (Gerberick et al., 2001).

4.1 Problems to address a well-defined endpoint

The OECD QSAR guidelines suggest that QSARs should have a well-defined endpoint. 

Well-defined endpoints clearly identify the experimental target of a QSAR and minimize 

ambiguity in the assignment of target values to chemicals. There are a few problems, 

however:

4.1.1 Identifier based ambiguity—Publications often define QSAR targets using natural 

language, for example: “acute aquatic toxicity” (Lozano et al., 2010), “postmortem 

redistribution” (Giaginis et al., 2014) or ”placental clearance and transfer” (Hewitt et al., 

2007). These names vary from highly descriptive to vague. The uncontrolled nature of 

natural language names results in multiple names for the same target and ambiguous names 

that could refer to multiple targets. This problem is partially addressed by agencies that 

define unique identifiers for QSAR targets.

4.1.2 PubChem bioassays capturing activity across multiple targets—PubChem 

creates a unique identifier for bioassays (Wang et al., 2010), which refers to a specific 

screening test and the values generated thereof. Even experimental endpoints identified via 

alphanumeric identifiers can be difficult to define as screening assays capture activity across 

multiple targets. This multi-target identification leads to problems. If a QSAR models this 
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assay, does it also model assays that measure activity against a subset of the targets of this 

assay?

4.1.3 OECD guidelines result in variability—The OECD guideline identifier provides 

detailed descriptions of different experimental procedures. OECD TG 407, for example, is 

the OECD guideline for the test “Repeated Dose 28-Day Oral Toxicity Study in Rodents” 

(OECD, 2008). This is a 13-page guideline, which has a revision history (one major change 

in 1995) that covers important initial considerations, the principle of the test, and a detailed 

description of the method. These guidelines describe in some detail how to interpret the 

results of guideline studies and what parameters may be changed for the study. Parameter 

choices for TG 407 include selection of animal species (preferably rats, but any rodent with 

sufficient justification.) The ability to change parameter selection for guidelines allows 

greater experimental variance. OECD guideline outcomes make excellent QSAR targets. 

They are the result of a well-defined study with careful instructions on how to measure the 

results. However, even using results from OECD guidelines studies is not without peril. In a 

study of the consistency of the Draize rabbit eye irritation test (another OECD guideline 

study), we found a low rate of concordance between studies (Luechtefeld et al., 2016b). 

Variance in repeated guideline study results can be large and bias can exist between labs 

performing experiments.

4.1.4 UN GHS hazards and variety of assays used to determine them—The 

United Nations Global Harmonized System (GHS) of Classification and Labelling of 

Chemicals seeks to improve communication of chemical hazards. UN GHS hazards are 

identified by an alpha numeric such as H317 – May cause allergic skin reaction. GHS 

hazards are a communication tool rather than a means to identify a specific procedure for 

determining a chemical hazard. Multiple different kinds of studies can be aimed at 

determining the same UN GHS hazard. The mouse LLNA, guinea pig maximization test 

(GPMT) and Buehler test are all examples of animal models for H317 (Luechtefeld et al., 

2016a). It is up to regulatory agencies to specify preferred tests.

Classification and labelling datasets, like the one generated by the European Chemicals 

Agency from company submissions in service to REACH, catalogue UN GHS hazards for 

large numbers of chemicals. These databases can be powerful resources for computational 

model target data owing to their size and consistency. They are particularly data-rich for the 

topical and acute hazards (Luechtefeld et al., 2016a–d). However, the variability of methods 

used to classify different chemicals leads to the potential for bias in models built from 

different experimental methods. Commercial and regulatory entities sometimes use UN GHS 

hazards to define policies. Safety data sheets are one example of this commercial and 

regulatory use (Winder et al., 2005). When defining policies based on these labels, the 

question of when to perform which tests has not been well answered. Some UN GHS 

hazards are redundant, correlated to others, or conflict with others (Wilrich et al., 2017). 

These questions are being addressed by integrated testing strategies.
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4.2 Integrated testing

QSAR performance can be improved via the integration of many endpoints. The concept of 

a single, well-defined endpoint is a limiting concept. For instance, some of the UN GHS 

hazards are redundant and some are mutually exclusive. A chemical that is pyrophoric (UN 

GHS Hazard H250) is also a flammable liquid (UN GHS Hazard H228). While endpoint 

relationships create challenges for testing – i.e., should testing be required when the 

endpoint can be derived from a redundant existing label? (Wilrich et al., 2017) – they create 

opportunities for QSARs. We have discussed the opportunities of integrated testing earlier 

(Hartung et al., 2013; Rovida et al., 2015).

One form of integrated testing is weight of evidence (WoE) (Linkov et al., 2015). In this 

paradigm, multiple different experiments that purport to model a given endpoint are 

combined to give a stronger classification. When WoE is used in a quantitative manner, it 

typically refers to a majority vote or other simple aggregation of multiple test results (Weed, 

2005).

Adverse outcome pathways (AOP) encode logical relationships between biological events 

that end in one “adverse outcome” like skin sensitization, cholestasis, liver fibrosis, etc. 

(MacKay et al., 2013). An AOP provides a conceptual framework on which integrated 

testing strategies can be built (Tollefsen et al., 2014). It consists of (1) molecular initiating 

event, (2) intermediate key events and (3) an adverse outcome. The OECD definition of an 

AOP for skin sensitization (OECD, 2014) states that a skin sensitizer must (1) penetrate the 

skin and be metabolized, (2) be an electrophilic substance, (3) covalently interact with 

proteins, (4) interact with dendritic cells and keratinocytes and (5) cause the proliferation of 

activated T-cells in the lymph node. The ability of a chemical to pass each stage of this AOP 

can be tested in independent tests.

4.3 Probabilistic graphical models

Probabilistic graphical models (PGM) enable statistical models to operate on relationships 

between known values. These are discussed again in Section 5, but are important in the 

context of integrated testing strategies. PGMs can use adverse outcome pathways to combine 

the result of different endpoints in a stronger way than typical WoE (Jaworska, 2016).

One important example of PGM-based integrated testing strategies is the Bayesian Network 

Integrated Testing Strategy (ITS-3), which integrates a QSAR with multiple in vitro assays 

to model skin sensitization (Jaworska et al., 2015). The ITS-3 probabilistic graphical model 

is used for the mouse LLNA, an experimental model for skin sensitization. Each of the 

variables in this model is an in vitro, in silico or chemical property. Arrows between nodes 

denote probabilistic relationships. The model contains “hidden” nodes that are not directly 

observed but rather cluster observations from attached variables. In vitro variables include 

KEC3 and KEC1.5, which are results of KeratinoSens reactivity assays. The model uses 

DPRALys and DPRACys, which are direct peptide reactivity assays for cysteine and lysine. 

These variables map directly to the adverse outcome pathway for skin sensitization. The 

combination of AOP and PGM is a powerful method for improving upon WoE integrated 
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testing strategies. In addition to modeling endpoint results, they can be used to make 

estimates using incomplete information and thus enable sequential testing (below).

While not yet commonly used, sequential testing strategies promise to reduce the 

experimental cost of modeling QSAR endpoints. Models like the above-mentioned 

probabilistic graphical models can be used to determine optimal testing strategies that seek 

to achieve some required level of accuracy for an endpoint while minimizing the cost and 

number of tests. For instance, if a chemical is negative in several reactivity assays, it may be 

unnecessary to perform immunological assays such as the h-CLAT (an immunological in 
vitro assay in the Jaworska model).

5 Algorithms to predict toxicological properties of substances

This chapter reviews some of the main concepts behind algorithms used in QSAR 

development. It is not a deep dive into any statistical or machine learning approaches; rather 

it gives a high-level view of the important machine learning ideas relevant to computational 

toxicology models. James Governor (Principal Analyst and founder of RedMonk) nicely 

said “Data matures like wine, applications like fish” – in this sense we will not look for a 

snapshot of the currently available software but discuss some principles and problems.

5.1 Classification and regression

The primary goal of most QSARs is to use features (mostly structural) to model endpoints. 

These endpoints are typically binary, numeric or categorical.

Binary toxicological QSARs classify chemicals as true or false for a given property. Many of 

these QSARs attempt to classify chemicals as hazardous vs not hazardous. For example, the 

article Automatic knowledge extraction from chemical structures: the case of mutagenicity 
prediction (Ferrari et al., 2013) evaluates a mutagenicity classifier (mutagen vs non-

mutagen) called SARpy that identifies predictive structural fragments directly from SMILES 

strings.

Numeric toxicological QSARs often identify a parameter related to dose-response. An 

example is the Japanese Ministry of Environment’s Kashinhou tool for ecotoxicity (KATE) 

system, which evaluates the concentration which kills 50 percent of daphnia (LC50) 

(Furuhama et al., 2011). KATE is a linear equation relating chemical octanol/water partition 

coefficient (log P) with aquatic toxicity. Some analyses include a chemical categorization 

step for identifying domain of applicability (Furuhama et al., 2011).

Categorical QSARs classify chemicals as having one of several values for a given property. 

Categorical QSARs can be nominal (name only) or ordinal (ordered names).

Nominal categorical QSARs classify chemicals by some named property. The semantic link 

association prediction (SLAP) algorithm uses semantic links, i.e., chemical A → is similar 

to → chemical B or chemical B → treats → disease A to model drug-drug interactions, 

drug-disease relationships and other properties of chemicals (Chen et al., 2012). Nominal 

QSARs can often be built from multiple binary QSARs, which each model the truth of one 

value for the named property (i.e., chemical A treats hypertension).
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Ordinal QSARs impose an order on the named values for a property. Chemical potency, such 

as weak, medium, and strong skin sensitizers, is one one such ordinal category. The 

Jaworska Bayesian network predicts skin sensitization potency by using features like in vitro 
assays, in silico results (results from other models), and physical properties (Jaworska, 

2016).

The above examples are all statistical models. It is also possible to create classification 

models from expert knowledge. These are termed expert systems. Expert systems can be 

combined with statistical techniques to fit parameters in an otherwise human-defined rule 

set. Verma and Matthews (2015) publication An in silico expert system for the identification 
of eye irritants does just this by deriving rules for eye irritation using chemical 

hydrophobicity, molecular weight and several other physical properties. One example of a 

classification algorithm is given below. Many textbooks describing the creation of 

multitudes of classification algorithms.

5.2 Classification trees

Classification trees provide an excellent example of binary/categorical classifiers. Consider a 

dataset classifying chemicals as positive or negative for some hazard. Classification trees 

iteratively divide the data set as follows:

1. Create a measure of the “fitness” of a collection of data. A common choice is 

entropy or Gini coefficient. This fitness function will prefer datasets where all 

elements have the same label (all positive or negative).

2. Collect all data and measure fitness.

3. Choose a feature and separate the dataset into child datasets where all elements 

in a child have the same value for the chosen features. For example, if the chosen 

feature were “electrophile”, then dividing the dataset according to this feature 

would result in two datasets: one with all electrophiles and one with no 

electrophiles.

4. Measure the average fitness of the child datasets for the chosen features. Find the 

difference between this value and the fitness of the parent dataset.

5. Repeat steps (3) and (4) for each feature in the dataset and choose the “fittest” 

features

6. Repeat steps (2) through (5) until some terminal state.

Classification trees are one of the simplest approaches to supervised learning. Step (5) above 

is an example of a greedy search. It is sometimes possible to do better using non-greedy 

searches, but depending on the model used, the search space can be very large. For a dataset 

where all features are binary, 2n different trees can be created.

Toxtree is one example of a classification tree used in a public computational model. It uses 

“reactivity alerts” as features that identify chemicals that have the potential to be reactants in 

chemical reactions believed to be relevant to skin sensitization.
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In our recent publication analyzing Draize eye irritation testing and its prediction by mining 

REACH data (Luechtefeld et al., 2016b), a decision tree (reproduced in Fig. 9) is used to 

demonstrate that the guidelines for Draize eye irritation tests (Hartung et al., 2010) are in 

fact followed in the literature.

5.3 The problem of overfitting

The careful reader will note that, for the aforementioned decision tree example, if enough 

features are given for a dataset, spurious features may be chosen in the creation of a decision 

tree. Even random features will occasionally divide datasets into desirable child datasets. 

This realization is the root of overfitting. Or in other words: “Torture the data, and it will 
confess to anything.” – Ronald Coase (British economist and author, 1910-2013).

Overfitting is a pernicious problem in chemical modeling. Most toxicological datasets are 

extremely small relative to the chemical universe. Additionally, it is possible to generate 

thousands of features based on structure alone. These two features combined make it 

possible to build models that perform very well on the training set but then fail to perform 

well when given novel data.

Molecular interactions drive most toxicological phenomena. The interactions can be 

complex and sensitive to small changes in chemical structure. Because of this, models that 

capture relationships between certain chemical features and observed endpoints may only be 

valid for the training sets on which they are built.

There are methods to combat overfitting. Most involve hiding some portion of the existing 

data from the machine learning algorithm and then testing the algorithm on the hidden data. 

While this can be helpful, it will still fail when very large numbers of features are used.

The problem of overfitting can be combatted by using features that are well understood by 

the modeler, by using cross-validation or other data hiding methods in model evaluation, and 

ultimately by using the largest data sets possible. The OECD guidelines for QSAR 

development state that algorithms should have a mechanistic interpretation if possible. 

Mechanistic interpretations further guard against overfitting. Some machine learning models 

can be difficult to interrogate, but careful dataset building (including only relevant features) 

and the use of data visualization tools can help to provide a rational mechanistic hypothesis 

for model success.

5.4 Domain of applicability

The OECD guidelines for QSARs state that models should have a defined domain of 

applicability (DoA). The DoA for a model’s classifications is the set of chemicals for which 

those classifications are likely to work well. DoA is important for the creation, validation 

and application of QSARs (Roy, 2017). In development, DoA informs modelers on the kinds 

of data that should be used and the set of chemicals. Picking a narrow DoA may strengthen 

the predictive value of a model, but reduce its use cases. During validation, modelers should 

define their DoA to those chemicals they expect the model to perform well on. This has the 

effect of more accurately evaluating model performance. Finally, modelers must be careful 

that their models are not misused on chemicals that are not part of their DoA.
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Some models are designed to tackle a specific DoA and explicitly define their DoA. A few 

examples of QSAR publications with varying strictness of definition for DoA include:

1. Development of a novel mathematical model using a group contribution method 
for prediction of ionic liquid toxicities: Ismail Hossain et al. (2011) built a 

mathematical model focused on ionic liquids on the whole. This is a broadly 

defined DoA.

2. Therapeutic index modeling and predictive QSAR of novel thiazolidin4-one 
analogs against Toxoplasma gondii: Asdollahi-Baboli and Mani-Varnosfaderani 

(2015) built a QSAR specifically targeted at thiazolidin-4-one analogs. This is a 

very targeted and narrow DoA.

Some models implicitly define their DoA by the chemicals used in training. There are a few 

methods for defining applicability domain on learned models. Typically, these methods 

define a chemical similarity metric (or distance metric) and define chemicals as part of a 

DoA when they are sufficiently similar to chemicals used in training (Nikolova and 

Jaworska, 2003). Chemical similarity is a complex topic of its own. Both chemical similarity 

and DoA are areas of enormous development needs and opportunities.

6 Conclusions

The advent of big data in toxicology drives new approaches for the prediction of hazard 

(Hartung, 2016). To a large extent, it changes the common paradigm of a hypothesis-driven 

research, as it collects data first and then tries to mine them. We might call this a Sherlock 

Holmes approach, as Arthur Conan Doyle stated “It is a capital mistake to theorize before 
one has data. Insensibly, one begins to twist the facts to suit theories, instead of theories to 
suit facts”. Here, the basics of these approaches have been discussed.

This is not arguing for a blind belief in such statistical evaluation of data. To quote Alvin 

Toffler (1928-2016): “You can use all the quantitative data you can get, but you still have to 
distrust it and use your own intelligence and judgment”. We need to strike the right balance 

between the evidence-based and the eminence-based approaches in our field. We have 

stressed with this article once again the opportunities of an evidence-based toxicology 

(Hartung, 2009; Hoffmann and Hartung, 2006), here by proper mining of chemical and 

toxicological knowledge of the past. In fact, evidence-based toxicology is about treating data 

properly and about treating as much of it as we can possibly get. Because, as Swedish 

mathematician and writer Andrejs Dunkels (1939-1998) phrased it: “It’s easy to lie with 
statistics. It’s hard to tell the truth without statistics”.

Acknowledgments

This work was supported by EU H2020 project (EU-ToxRisk H2020-PHC-2015-681002). The authors would like 
to thank Mr Sean Doughty for help with editing this manuscript.

Luechtefeld and Hartung Page 23

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Akhondi SA, Kors JA, Muresan S. Consistency of systematic chemical identifiers within and between 
small-molecule databases. J Cheminform. 2012; 4:35.doi: 10.1186/1758-2946-4-35 [PubMed: 
23237381] 

Asadollahi-Baboli M, Mani-Varnosfaderani A. Therapeutic index modeling and predictive QSAR of 
novel thiazolidin-4-one analogs against toxoplasma gondii. Eur J Pharm Sci. 2015; 70:117–124. 
DOI: 10.1016/j.ejps.2015.01.014 [PubMed: 25661424] 

Ball N, Cronin MT, Shen J, et al. Toward good read-across practice (GRAP) guidance. ALTEX. 2016; 
33:149–166. DOI: 10.14573/altex.1601251 [PubMed: 26863606] 

Barnard JM, Downs GM. Clustering of chemical structures on the basis of two-dimensional similarity 
measures. J Chem Inf Comput Sci. 1992; 32:644–649. DOI: 10.1021/ci00010a010

Busquet F, Hartung T. The need for strategic development of safety sciences. ALTEX. 2017; 34:3–21. 
DOI: 10.14573/altex.1701031 [PubMed: 28105478] 

Buydens L, Massart DL, Geerlings P. Prediction of gas chromatographic retention indexes with 
topological, physicochemical, and quantum chemical parameters. Anal Chem. 1983; 55:738–744. 
DOI: 10.1021/ac00255a034

Cao Y, Charisi A, Cheng LC, et al. Chemminer: A compound mining framework for R. 
Bioinformatics. 2008; 24:1733–1734. DOI: 10.1093/bioinformatics/btn307 [PubMed: 18596077] 

Chen B, Dong X, Jiao D, et al. Chem2Bio2RDF: A semantic framework for linking and data mining 
chemogenomic and systems chemical biology data. BMC Bioinformatics. 2010; 11:255.doi: 
10.1186/1471-2105-11-255 [PubMed: 20478034] 

Chen B, Ding Y, Wild DJ. Assessing drug target association using semantic linked data. PLoS Comput 
Biol. 2012; 8:e1002574.doi: 10.1371/journal.pcbi.1002574 [PubMed: 22859915] 

Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: Where have you been? Where are you 
going to? J Med Chem. 2014; 57:4977–5010. DOI: 10.1021/jm4004285 [PubMed: 24351051] 

Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of 
shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988; 110:5959–5967. DOI: 
10.1021/ja00226a005 [PubMed: 22148765] 

Cronin MT. Computational methods for the prediction of drug toxicity. Curr Opin Drug Discov Devel. 
2000; 3:292–297.

Dalby A, Nourse JG, Hounshell WD, et al. Description of several chemical structure file formats used 
by computer programs developed at molecular design limited. J Chem Inf Comput Sci. 1992; 
32:244–255. DOI: 10.1021/ci00007a012

Dimitrov S, Dimitrova G, Pavlov T, et al. A stepwise approach for defining the applicability domain of 
SAR and QSAR models. J Chem Inf Model. 2005; 45:839–849. DOI: 10.1021/ci0500381 
[PubMed: 16045276] 

Eriksson L, Jaworska J, Worth AP, et al. Methods for reliability and uncertainty assessment and for 
applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect. 
2003; 111:1361–1375. [PubMed: 12896860] 

Ferrari T, Cattaneo D, Gini G, et al. Automatic knowledge extraction from chemical structures: The 
case of mutagenicity prediction. SAR QSAR Environ Res. 2013; 24:365–383. DOI: 
10.1080/1062936x.2013.773376 [PubMed: 23710765] 

Fjodorova N, Novich M, Vrachko M, et al. Directions in QSAR modeling for regulatory uses in OECD 
member countries, EU and in Russia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 
2008; 26:201–236. DOI: 10.1080/10590500802135578 [PubMed: 18569330] 

FDA – US Food and Drug Administration. Guidance for Industry and Review Staff-Labeling for 
Human Prescription Drug and Biological Products: Determining Established Pharmacologic Class 
for Use in the Highlights of Prescribing Information. Rockville (Maryland); 2009. https://
www.fda.gov/downloads/Drugs/Guidances/ucm186607.pdf

Fourches D, Muratov E, Tropsha A. Trust, but verify: On the importance of chemical structure curation 
in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010; 50:1189–1204. DOI: 
10.1021/ci100176x [PubMed: 20572635] 

Luechtefeld and Hartung Page 24

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fda.gov/downloads/Drugs/Guidances/ucm186607.pdf
https://www.fda.gov/downloads/Drugs/Guidances/ucm186607.pdf


Fu G, Ding Y, Seal A, et al. Predicting drug target interactions using meta-path-based semantic 
network analysis. BMC Bioinformatics. 2016; 17:160.doi: 10.1186/s12859-016-1005-x [PubMed: 
27071755] 

Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J 
Chem Phys. 1952; 20:722–725. DOI: 10.1063/1.1700523

Furuhama A, Hasunuma K, Aoki Y, et al. Application of chemical reaction mechanistic domains to an 
ecotoxicity QSAR model, the kashinhou tool for ecotoxicity (KATE). SAR QSAR Environ Res. 
2011; 22:505–523. DOI: 10.1080/1062936X.2011.569944 [PubMed: 21604231] 

Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. 
Nucleic Acids Res. 2012; 40:D1100–1107. DOI: 10.1093/nar/gkr777 [PubMed: 21948594] 

Gerberick GF, Robinson MK, Ryan CA, et al. Contact allergenic potency: Correlation of human and 
local lymph node assay data. Am J Contact Dermat. 2001; 12:156–161. DOI: 10.1053/ajcd.
2001.23926 [PubMed: 11526521] 

Gerner I, Spielmann H, Hoefer T, et al. Regulatory use of (Q)SARs in toxicological hazard assessment 
strategies. SAR QSAR Environ Res. 2004; 15:359–366. DOI: 10.1080/10629360412331297335 
[PubMed: 15669695] 

Giaginis C, Tsantili-Kakoulidou A, Theocharis S. Applying quantitative structure-activity relationship 
(QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic 
antidepressants. J Anal Toxicol. 2014; 38:242–248. DOI: 10.1093/jat/bku025 [PubMed: 
24682110] 

Gutman I. Degree-based topological indices. Croat Chem Acta. 2013; 86:351–361. DOI: 10.5562/
cca2294

Hartung T. Food for thought… On evidence-based toxicology. ALTEX. 2009; 26:75–82. DOI: 
10.14573/altex.2009.2.75 [PubMed: 19565165] 

Hartung T. Food for thought… On alternative methods for chemical safety testing. ALTEX. 2010; 
27:3–14. DOI: 10.14573/altex.2010.1.3 [PubMed: 20390236] 

Hartung T, Bruner L, Curren R, et al. First alternative method validated by a retrospective weight-of-
evidence approach to replace the draize eye test for the identification of non-irritant substances for 
a defined applicability domain. ALTEX. 2010; 27:43–51. DOI: 10.14573/altex.2010.1.43 
[PubMed: 20390238] 

Hartung T, Luechtefeld T, Maertens A, et al. Integrated testing strategies for safety assessments. 
ALTEX. 2013; 30:3–18. DOI: 10.14573/altex.2013.1.003 [PubMed: 23338803] 

Hartung T. Making big sense from big data in toxicology by read-across. ALTEX. 2016; 33:83–93. 
DOI: 10.14573/altex.1603091 [PubMed: 27032088] 

Hartung T. Evolution of toxicological science: The need for change. Int J Risk Assess Manag. 2017; 
20:21–45. DOI: 10.1504/ijram.2017.082570

Hastings J, de Matos P, Dekker A, et al. The ChEBI reference database and ontology for biologically 
relevant chemistry: Enhancements for 2013. Nucleic Acids Res. 2013; 41:D456–463. DOI: 
10.1093/nar/gks1146 [PubMed: 23180789] 

Heller SR, McNaught A, Pletnev I, et al. InChi, the IUPAC international chemical identifier. J 
Cheminform. 2015; 7:23.doi: 10.1186/s13321-015-0068-4 [PubMed: 26136848] 

Hewitt M, Madden JC, Rowe PH, Cronin MT. Structure-based modelling in reproductive toxicology: 
(Q)SARs for the placental barrier. SAR QSAR Environ Res. 2007; 18:57–76. DOI: 
10.1080/10629360601053893 [PubMed: 17365959] 

Hoffmann S, Hartung T. Toward an evidence-based toxicology. Hum Exp Toxicol. 2006; 25:497–513. 
DOI: 10.1191/0960327106het648oa [PubMed: 17017003] 

Ismail Hossain M, Samir BB, El-Harbawi M, et al. Development of a novel mathematical model using 
a group contribution method for prediction of ionic liquid toxicities. Chemosphere. 2011; 85:990–
994. DOI: 10.1016/j.chemosphere.2011.06.088 [PubMed: 21794892] 

Jaworska JS, Natsch A, Ryan C, et al. Bayesian integrated testing strategy (ITS) for skin sensitization 
potency assessment: A decision support system for quantitative weight of evidence and adaptive 
testing strategy. Arch Toxicol. 2015; 89:2355–2383. DOI: 10.1007/s00204-015-1634-2 [PubMed: 
26612363] 

Luechtefeld and Hartung Page 25

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jaworska J. Integrated testing strategies for skin sensitization hazard and potency assessment – State of 
the art and challenges. Cosmetics. 2016; 3:16.doi: 10.3390/cosmetics3020016

Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR studies. 
Chem Rev. 1996; 96:1027–1044. DOI: 10.1021/cr950202r [PubMed: 11848779] 

Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat 
Biotechnol. 2007; 25:197–206. DOI: 10.1038/nbt1284 [PubMed: 17287757] 

Kim S, Bolton EE, Bryant SH. Similar compounds versus similar conformers: Complementarity 
between PubChem 2-D and 3-D neighboring sets. J Cheminform. 2016a; 8:62.doi: 10.1186/
s13321-016-0163-1 [PubMed: 27872662] 

Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids 
Res. 2016b; 44:D1202–1213. DOI: 10.1093/nar/gkv951 [PubMed: 26400175] 

Landrum, G. RDKit documentation; Release 1. 2013. p. 1-79.http://www.rdkit.org/RDKit_Docs.
2012_12_1.pdf

Leach, AR., Gillet, VJ. An Introduction to Chemoinformatics. Springer Science & Business Media; 
2007. 

Linkov I, Massey O, Keisler J, et al. From “weight of evidence” to quantitative data integration using 
multicriteria decision analysis and Bayesian methods. ALTEX. 2015; 32:3–8. DOI: 10.14573/
altex.1412231 [PubMed: 25592482] 

Liu T, Lin Y, Wen X, et al. BindingDB: A web-accessible database of experimentally determined 
protein-ligand binding affinities. Nucleic Acids Res. 2007; 35:D198–201. DOI: 10.1093/nar/
gkl999 [PubMed: 17145705] 

Low Y, Uehara T, Minowa Y, et al. Predicting drug-induced hepatotoxicity using QSAR and 
toxicogenomics approaches. Chem Res Toxicol. 2011; 24:1251–1262. DOI: 10.1021/tx200148a 
[PubMed: 21699217] 

Lozano S, Poezevara G, Halm-Lemeille MP, et al. Introduction of jumping fragments in combination 
with QSARs for the assessment of classification in ecotoxicology. J Chem Inf Model. 2010; 
50:1330–1339. DOI: 10.1021/ci100092x [PubMed: 20726596] 

Luechtefeld T, Maertens A, McKim JM, et al. Probabilistic hazard assessment for skin sensitization 
potency by dose-response modeling using feature elimination instead of quantitative structure-
activity relationships. J Appl Toxicol. 2015; 35:1361–1371. DOI: 10.1002/jat.3172 [PubMed: 
26046447] 

Luechtefeld T, Maertens A, Russo DP, et al. Analysis of publically available skin sensitization data 
from REACH registrations 2008-2014. ALTEX. 2016a; 33:135–148. DOI: 10.14573/altex.
1510055 [PubMed: 26863411] 

Luechtefeld T, Maertens A, Russo DP, et al. Analysis of Draize eye irritation testing and its prediction 
by mining publicly available 2008-2014 REACH data. ALTEX. 2016b; 33:123–134. DOI: 
10.14573/altex.1510053 [PubMed: 26863293] 

Luechtefeld T, Maertens A, Russo DP, et al. Global analysis of publicly available safety data for 9,801 
substances registered under REACH from 2008-2014. ALTEX. 2016c; 33:95–109. DOI: 10.14573/
altex.1510052 [PubMed: 26863090] 

Luechtefeld T, Maertens A, Russo DP, et al. Analysis of public oral toxicity data from REACH 
registrations 2008-2014. ALTEX. 2016d; 33:111–122. DOI: 10.14573/altex.1510054 [PubMed: 
26863198] 

Lydy M, Belden J, Wheelock C, et al. Challenges in regulating pesticide mixtures. Ecol Soc. 2004; 
9doi: 10.5751/ES-00694-090601

MacKay C, Davies M, Summerfield V, Maxwell G. From pathways to people: Applying the adverse 
outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX. 2013; 30:473–486. 
DOI: 10.14573/altex.2013.4.473 [PubMed: 24173169] 

Malloy T, Beryt E. Leveraging the new predictive toxicology paradigm: Alternative testing strategies 
in regulatory decision-making. Environ Sci: Nano. 2016; 3:1380–1395. DOI: 10.1039/
C6EN00202A

Matthews EJ, Kruhlak NL, Daniel Benz RD, et al. Identification of structure-activity relationships for 
adverse effects of pharmaceuticals in humans: Part C: Use of QSAR and an expert system for the 
estimation of the mechanism of action of drug-induced hepatobiliary and urinary tract toxicities. 

Luechtefeld and Hartung Page 26

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rdkit.org/RDKit_Docs.2012_12_1.pdf
http://www.rdkit.org/RDKit_Docs.2012_12_1.pdf


Regul Toxicol Pharmacol. 2009; 54:43–65. DOI: 10.1016/j.yrtph.2009.01.007 [PubMed: 
19422100] 

Mekenyan OG, Dimitrov SD, Pavlov TS, Veith GD. A systematic approach to simulating metabolism 
in computational toxicology. I. The times heuristic modelling framework. Curr Pharm Des. 2004; 
10:1273–1293. DOI: 10.2174/1381612043452596 [PubMed: 15078141] 

Nigsch F, Macaluso NJ, Mitchell JB, Zmuidinavicius D. Computational toxicology: An overview of 
the sources of data and of modelling methods. Expert Opin Drug Metab Toxicol. 2009; 5:1–14. 
DOI: 10.1517/17425250802660467 [PubMed: 19236225] 

Nikolova N, Jaworska J. Approaches to measure chemical similarity – A review. QSAR Comb Sci. 
2003; 22:1006–1026. DOI: 10.1002/qsar.200330831

O’Boyle NM, Banck M, James CA, et al. Open Babel: An open chemical toolbox. J Cheminform. 
2011; 3:33.doi: 10.1186/1758-2946-3-33 [PubMed: 21982300] 

OECD. Test No. 407 Repeated Dose 28-Day Oral Toxicity Study in Rodents. OECD Publishing; 2008. 
http://www.oecd.org/env/test-no-407-repeated-dose-28-day-oral-toxicity-study-in-
rodents-9789264070684-en.htm

OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to 
Proteins. OECD Publishing; 2014. http://www.oecd-ilibrary.org/environment/the-adverse-
outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-
proteins_9789264221444-en

Oprea, T., Olah, M., Halip, L., et al. On the propagation of errors in the QSAR literature. In: Ford, 
M.Livingstone, D.Dearden, J., Van de Waterbeemd, H., editors. EuroQWAR 2002 – Designing 
Drugs and Crop Protectans. Blackwell Publishing; 2003. p. 314-315.

Patlewicz G. Computational methods to predict drug safety. Curr Comput Aided Drug Des. 2006; 
2:151–168. DOI: 10.2174/157340906777441735

Patlewicz G, Ball N, Becker RA, et al. Read-across approaches – Misconceptions, promises and 
challenges ahead. ALTEX. 2014; 31:387–396. DOI: 10.14573/altex.1410071 [PubMed: 25368965] 

Prasanna S, Doerksen RJ. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr Med 
Chem. 2009; 16:21–41. DOI: 10.2174/092986709787002817 [PubMed: 19149561] 

Puzyn T, Suzuki N, Haranczyk M, Rak J. Calculation of quantum-mechanical descriptors for QSPR at 
the DFT level: Is it necessary? J Chem Inf Model. 2008; 48:1174–1180. DOI: 10.1021/ci800021p 
[PubMed: 18510372] 

Puzyn, T., Leszczynski, J., Cronin, MT. Recent Advances in QSAR Studies: Methods and 
Applications. Springer Science & Business Media; 2010. 

Randic M. Characterization of molecular branching. J Am Chem Soc. 1975; 97:6609–6615. DOI: 
10.1021/ja00856a001

Ridings JE, Barratt MD, Cary R, et al. Computer prediction of possible toxic action from chemical 
structure: An update on the DEREK system. Toxicology. 1996; 106:267–279. DOI: 
10.1016/0300-483X(95)03190-Q [PubMed: 8571398] 

Rovida C, Alepee N, Api AM, et al. Integrated testing strategies (ITS) for safety assessment. ALTEX. 
2015; 32:25–40. DOI: 10.14573/altex.1411011 [PubMed: 25413849] 

Roy, K. Advances in QSAR Modeling: Applications in Pharmaceutical, Chemical, Food, Agricultural 
and Environmental Sciences. Springer; 2017. 

Santana L, Uriarte E, Gonzalez-Diaz H, et al. A QSAR model for in silico screening of MAO-A 
inhibitors. Prediction, synthesis, and biological assay of novel coumarins. J Med Chem. 2006; 
49:1149–1156. DOI: 10.1021/jm0509849 [PubMed: 16451079] 

Schmidt CW. TSCA 2.0: A new era in chemical risk management. Environ Health Perspect. 2016; 
124:A182–A186. DOI: 10.1289/ehp.124-A182 [PubMed: 27689758] 

Scholz S, Sela E, Blaha L, et al. A European perspective on alternatives to animal testing for 
environmental hazard identification and risk assessment. Regul Toxicol Pharmacol. 2013; 67:506–
530. DOI: 10.1016/j.yrtph.2013.10.003 [PubMed: 24161465] 

Silbergeld EK, Mandrioli D, Cranor CF. Regulating chemicals: Law, science, and the unbearable 
burdens of regulation. Annu Rev Public Health. 2015; 36:175–191. DOI: 10.1146/annurev-
publhealth-031914-122654 [PubMed: 25785889] 

Luechtefeld and Hartung Page 27

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.oecd.org/env/test-no-407-repeated-dose-28-day-oral-toxicity-study-in-rodents-9789264070684-en.htm
http://www.oecd.org/env/test-no-407-repeated-dose-28-day-oral-toxicity-study-in-rodents-9789264070684-en.htm
http://www.oecd-ilibrary.org/environment/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins_9789264221444-en
http://www.oecd-ilibrary.org/environment/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins_9789264221444-en
http://www.oecd-ilibrary.org/environment/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins_9789264221444-en


Sushko I, Novotarskyi S, Körner R, et al. Applicability domains for classification problems: 
Benchmarking of distance to models for Ames mutagenicity set. J Chem Inf Model. 2010; 
50:2094–2111. DOI: 10.1021/ci100253r [PubMed: 21033656] 

Thiel W. Semiempirical quantum-chemical methods. Wiley Interdisciplinary Reviews: Computational 
Molecular Science. 2014; 4:145–157. DOI: 10.1002/wcms.1161

Tollefsen KE, Scholz S, Cronin MT, et al. Applying adverse outcome pathways (AOPs) to support 
integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol. 2014; 70:629–
640. DOI: 10.1016/j.yrtph.2014.09.009 [PubMed: 25261300] 

Valerio LG Jr, Cross KP. Characterization and validation of an in silico toxicology model to predict the 
mutagenic potential of drug impurities. Toxicol Appl Pharmacol. 2012; 260:209–221. DOI: 
10.1016/j.taap.2012.03.001 [PubMed: 22426359] 

Verma RP, Matthews EJ. An in silico expert system for the identification of eye irritants. SAR QSAR 
Environ Res. 2015; 26:383–395. DOI: 10.1080/1062936x.2015.1039578 [PubMed: 25967253] 

Voutchkova AM, Ferris LA, Zimmerman JB, et al. Toward molecular design for hazard reduction – 
Fundamental relationships between chemical properties and toxicity. Tetrahedron. 2010; 66:1031–
1039. DOI: 10.1016/j.tet.2009.11.002

Wang Y, Bolton E, Dracheva S, et al. An overview of the PubChem BioAssay resource. Nucleic Acids 
Res. 2010; 38:D255–266. DOI: 10.1093/nar/gkp965 [PubMed: 19933261] 

Weed DL. Weight of evidence: A review of concept and methods. Risk Anal. 2005; 25:1545–1557. 
DOI: 10.1111/j.1539-6924.2005.00699.x [PubMed: 16506981] 

Weininger D. Smiles, a chemical language and information system. 1. Introduction to methodology 
and encoding rules. J Chem Inf Comput Sci. 1988; 28:31–36. DOI: 10.1021/ci00057a005

Willighagen EL, Mayfield JW, Alvarsson J, et al. The chemistry development kit (CDK) v2.0: Atom 
typing, depiction, molecular formulas, and substructure searching. J Cheminform. 2017; 9:33.doi: 
10.1186/s13321-017-0220-4 [PubMed: 29086040] 

Wilrich C, Brandes E, Michael-Schulz H, et al. UN-GHS – Physical hazard classifications of 
chemicals: A critical review of combinations of hazard classes. J Chem Health Saf. 2017; in press. 
doi: 10.1016/j.jchas.2017.03.005

Winder C, Azzi R, Wagner D. The development of the globally harmonized system (GHS) of 
classification and labelling of hazardous chemicals. J Hazard Mater. 2005; 125:29–44. DOI: 
10.1016/j.jhazmat.2005.05.035 [PubMed: 16039045] 

Worth, A., Bassan, A., Gallegos, A., et al. The characterisation of (quantitative) structure activity 
relationships: Preliminary guidance. EUR – Scientific and Technical Research Reports. 2005. EUR 
21866EN. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC31241/QSAR
%20characterisation_EUR%2021866%20EN.pdf

Zhou L, Griffith R, Gaeta B. Combining spatial and chemical information for clustering 
pharmacophores. BMC Bioinformatics. 2014; 15(Suppl 16):S5.doi: 10.1186/1471-2105-15-s16-s5

Zhu H, Bouhifd M, Donley E, et al. Supporting read-across using biological data. ALTEX. 2016; 
33:167–182. DOI: 10.14573/altex.1601252 [PubMed: 26863516] 

Zvinavashe E, Murk AJ, Rietjens IM. Promises and pitfalls of quantitative structure-activity 
relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol. 2008; 
21:2229–2236. DOI: 10.1021/tx800252e [PubMed: 19548346] 

Luechtefeld and Hartung Page 28

ALTEX. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC31241/QSAR%20characterisation_EUR%2021866%20EN.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC31241/QSAR%20characterisation_EUR%2021866%20EN.pdf


Fig. 1. PubChem compound (A), substance (B), and bioassay (C) counts by year
Recorded via Wikipedia logs6 and Google’s Wayback Machine (Kim et al., 2016b).

6https://en.wikipedia.org/w/index.php?title=PubChem&oldid=801836176
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Fig. 2. Co-authorship graph for the QSAR field
Left: Force layout graph of co-authorship of publications matching the “QSAR” PubMed 

query. Authors are nodes and edges are drawn between those who have co-authored a 

publication. Upper right: Number of authors with x number of coauthors. Lower right: 

number of authors (log scale) with number of publications matching “QSAR” PubMed 

query
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Fig. 3. Examples of chemical identifiers
(a) MOL file for benzene on Wikipedia11, (b) InChi key for benzene12 and (c) SMILES 

string for benzene (Weininger, 1988)

11https://en.wikipedia.org/w/index.php?title=Chemical_table_file&oldid=791936248
12http://www.inchi-trust.org/technical-faq/
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Fig. 4. Example thiazolidenediones structures
Three example thiazolidenediones (lobeglitazone, rosiglitazone and pioglitazone) are 

depicted with their matched thiazolidenedione substructure colored in red.
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Fig. 5. MeSH hierarchy for the MeSH term D02 – “organic chemicals”
This is one example of a chemical ontology. Organic chemicals are grouped together under 

D02, organic chemicals with a sulfur atom are grouped under “sulfur compounds”. 

Compounds and MeSH categories can have multiple parents, e.g., a sulfur compound can be 

inorganic or organic. Multiple inheritance is not visualized here.
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Fig. 6. Chemicals categorized under the MeSH term D02 – “organic chemicals”
Each block is named by a corresponding MeSH term and sized according to the number of 

articles containing the MeSH term or a child MeSH term. Blocks are subdivided by their 

child MeSH terms (up to 3 layers deep).
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Fig. 7. 
MeSH term importance for thiazolidinediones QSARs relative to QSARs in general
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Fig. 8. Morgan Fingerprint generation
Common central atom colored in blue on columns. First row = 0 neighbors. Second row = 1 

neighbor. Third row shows 2 neighbors. (Landrum, 2013)
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Fig. 9. A decision tree built from a large number of Draize eye irritation tests
In the Draize test, several features of the exposed animal eye are measured including cornea 

damage, conjunctivae damage, irreversibility of the observed damage and a few others. The 

decision tree built from the hundreds of Draize eye irritation tests closely matches the OECD 

guidelines (reproduced from Luechtefeld et al., 2016b).
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Table 1
Number of Github repositories for queries pertaining to QSAR development

Github.com was queried with the terms in the first column and the number of repositories counted.

Query Github repositories

machine learning 63,989

statistics 20,146

chemistry 2,189

biology 1,924

cheminformatics 128

QSAR 95
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