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Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence
at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws
to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the
potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix
obtained from a digital elevation model (DEM) (map 10 × 10m, and height 1m) that corresponds to homogeneous region with
respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography
play amain role on its organization and evolution.We have investigated whether themultifractal analysis of a DEM shows common
features that can be used to reveal the underlying patterns and information associated with the landscape of the DEMmapping and
studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal
approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.

1. Introduction

Each landscape unit is defined by primary physiographic
characteristics. In the landscape, several abiotic and biotic
factors, as well as anthropic factors, interact to generate a
characteristic dynamic over time. The focus of this study is
an alluvial surface of arkose resulting from the erosion of
the granite of the Sierra del Guadarrama produced by the
factors cited above. These factors, along with their interac-
tions at different scales, produce a strong modelling effect
through erosion.The universal equation of hydraulic erosion
presented byWischmeyer and Smith (1978) [1] can be used to
evaluate the intensity of this process.Thismodel incorporates
abiotic factors such as soil type, soil erodibility as a function
of composition and structure, topographic factors described
by the slope and its length, rain erosivity as function of rain
volume, and precipitation intensity. In addition, the vegeta-
tion cover produces a biotic effect. In certain cases, anthropic

factors, such as soil management and conservation, dominate
the evolution of the landscape.

A digital elevation model (DEM) provides the informa-
tion basis used for many geographic applications, for exam-
ple, topographic studies, geomorphologic studies, and land-
scape analysis with geographic information systems (GIS).
The ability of a DEM to represent the earth’s surface depends
on the surface roughness and the resolution used [2, 3]. The
information in each DEM pixel depends on the scale used
and is characterised by two variables, the resolution and the
extension of the area studied [4]. DEMs can vary in resolution
and accuracy according to the method used to produce the
model [5, 6], although there are statistical characteristics that
remain constant or highly similar over a broad range of scales
[7]. Based on this property, several techniques have been
applied to characterise DEMs through multiscale analysis [8]
directly related to fractal geometry. In this way, the complex-
ity of natural landscapes can be revealed [9, 10].
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In the general mathematical framework of fractal geom-
etry, many analytical methods have been developed. For
example, textural homogeneity has been characterised using
the fractal dimension [11]. The fractal dimension has also
been used as a spatial measure for describing the complexity
of remote sensing imagery [12]. Changes in image complexity
have been detected through the spectral range of hyperspec-
tral images affecting the fractal dimension [13], dependence
of fractal dimension on the spectral bands of Landsat TM
imagery De Cola [14], Lam [15], and other authors [16].
The use of multifractal/wavelet techniques is becoming more
widespread in the analysis of remote sensing images [2, 17]; it
is not as popular in DEM analysis, although there are several
studies characterising soil surface microrelief [18].

Motivated by the fractal geometry of sets [19, 20], the
development of multifractal (MF) theory, introduced in the
context of turbulence, has been applied in many areas such as
earthquake distribution analysis [21], soil pore characterisa-
tion [22, 23], image analysis [24], and remote sensing [25–
35]. Research into relationships between landscape pattern
and process has been influenced by the introduction of
fractal geometry and the advent of fractal analysis [36].
With the increasing availability of high-resolution digital
elevation data from increasingly larger areas, together with
advances in geocomputation and geomorphometry, fractals
have become of increasing interest for local-level environ-
mental applications [37].

The acquisition of remotely sensed multiple spectral
images is thus a unique source of data for determining the
scale-invariant characteristics of the radiant fields related to
many factors such as the chemical composition of soil and
bedrock, their moisture content, and their surface tempera-
ture [28–30, 38–42]. In theMF scheme used, the digital eleva-
tion data are considered to represent a singular measure. The
analysis then proceeds through an MF spectrum, which
gives either geometrical or probabilistic information about
the height distribution having the same singularity. Gagnon
et al. [43] demonstrated on purely statistical grounds that
monofractals are not sufficient to describe topography and
that multifractals are needed. A profound review on how this
topic has advanced can be found in Gagnon et al. [44].

There are scientific debates over what is fractal. However,
a surface does not need to be multifractal to admit a multi-
fractal analysis (MFA). The most important issues are
whether MFA is a reliable method for determining fractal
parameters and how the results of the MFA are to be
interpreted in a given context [35].Wewant to remark that the
approach does not depend on the assumption that topogra-
phy is fractal. This observation leads us to the general aim
of the paper, which is to use MFA to characterise the infor-
mation contained in DEM based on the original elevation
data and on the absolute gradient. At the same time, we have
investigated how themap information is affected by analysing
the area under differing conditions, that is, for various water
levels in the reservoir.

2. Materials and Methods

2.1. Site Description. The study area is represented by a 1024 ×
1024 data matrix obtained from a DEM with a resolution

of 10 × 10m at each point and a height resolution of 1m,
which correspond with a region known as “Monte de El
Pardo” a property of Spanish national heritage (patrimonio
nacional Español) of 15,820Ha located at a short distance
from Madrid city with altitude ranging from 576 to 900m
and UTM coordinates Huse 30, Hemisphere Northern, 𝑋:
444312.312 to 434542.312 and𝑌: 4494542.408 to 4484312.408.
Manzanares River goes through this area from north to south
as it can be observed in Figure 1(a). In the southern area,
a reservoir is foundwith a capacity of 43 hm3, with an altitude
ranging from 576m to 632mwhen it is at the highest capacity
as it is represented in Figure 1(b). In the middle of the reser-
voir, the minimum altitude of this area is achieved. Geologic
characteristics of the area correspond to arkose deposits
coming from granite and gneisses erosion, basis of the Sierra
de Guadarrama. Several smooth slopes and a river network
very few branched can be found with a surface ravaging. The
potential vegetation is mainly of a Mediterranean occidental
forest; Q. ilex L. is the climax specie with several shrub
heliophilous vegetation and herbaceous (Gen. Cistus). There
are some Q. suber L. isolated. Actually, this forest has been
kept for hunting use.

The criteria of the selection of the study area were to
delimit a homogeneous area with respect to soil characteris-
tics and climatology, and then the topographic factor acquires
amain role. Regarding vegetation cover,Mediterranean forest
is present with some areas influenced by pasture character-
istics as a consequence of historical use for hunting and a
minimum soil management. With regard to anthropic fac-
tors, these have beenmuch less than in the surrounding areas
which have been cultivated, producing a high reduction in
the original trees and shrubs of the area. However, in 1973, the
construction of the reservoir on Manzanares River modified
the water level equilibrium of some local streams at the same
time than the main river in this area. A direct consequence
was an alteration of the dynamic processes that shape this
landscape.

2.2. Multifractal DEM Analysis. A multifractal analysis is
basically the measurement of a statistic distribution and
therefore gives useful information on a self-similar behaviour
[45].

A monofractal object can be measured by counting the
number 𝑁 of 𝛿 size boxes needed to cover the object. The
measure depends on the box size as

𝑁(𝛿) ∝ 𝛿
−𝐷0
, (1)

where

𝐷
0
= lim
𝛿→0

log𝑁(𝛿)
log (1/𝛿)

(2)

is the fractal dimension.𝐷
0
is calculated from slope of a log-

log plot.
There are several methods for implementing multifractal

analysis; in this section, the selected moment method is
explained [46]. This method uses mainly three functions:
𝜏(𝑞), known as the mass exponent function, 𝛼, the coarse
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Figure 1: Visualization of DEM (1024 × 1024 data points) at the area studied (a) and the localization of the reservoir in the map at different
filling levels (b) from emptiness (576m) to full capacity (630m).

Hölder exponent, and 𝑓(𝛼), multifractal spectrum. A mea-
sure (or field), defined in two-dimensional data grid embed-
ding space (𝑛×𝑛data points) andwith values based on altitude
(from 576 till 900 meters in this case), cannot be considered
as a geometrical set and therefore cannot be characterized by
a single fractal dimension.

Applying a nonoverlapping covering by boxes in an “up-
scaling” partitioning process, we obtain the partition function
𝜒(𝑞, 𝛿) [47] defined as

𝜒 (𝑞, 𝛿) =

𝑁(𝛿)

∑

𝑖=1

𝜇
𝑞

𝑖
(𝛿) =

𝑁(𝛿)

∑

𝑖=1

𝑚
𝑞

𝑖
, (3)

where 𝑚 is the mass of the measure, 𝑞 is the statistical
moments order, 𝛿 is the length size of the box, and𝑁(𝛿) is the
number of boxes in which 𝑚

𝑖
> 0. Based on this, the mass

exponent function (𝜏(𝑞)) shows the moments of the measure
scales with the box size,

𝜏 (𝑞) = lim
𝛿→0

log ⟨𝜒 (𝑞, 𝛿)⟩
log (𝛿)

= lim
𝛿→0

log ⟨∑𝑁(𝛿)
𝑖=1

𝑚
𝑞

𝑖
⟩

log (𝛿)
, (4)

where ⟨ ⟩ represents statistical moment of the measure 𝜇
𝑖
(𝛿)

defined on a group of nonoverlapping boxes of the same size
partitioning the area studied. This method is known as the
method of moments [48].

The singularity index (𝛼) can be determined by the
Legendre transformation of the 𝜏(𝑞) curve [46] as

𝛼 (𝑞) =
𝑑𝜏 (𝑞)

𝑑𝑞
. (5)

The number of cells of size 𝛿 with the same 𝛼, 𝑁
𝛼
(𝛿), is

related to the cell size as 𝑁
𝛼
(𝛿) ∝ 𝛿

−𝑓(𝛼), where𝑓(𝛼) is a
scaling exponent of the cells with common 𝛼. Parameter𝑓(𝛼)
can be calculated as

𝑓 (𝛼) = 𝑞𝛼 (𝑞) − 𝜏 (𝑞) . (6)
Multifractal spectrum (MFS), that is, a graph of 𝛼 versus

𝑓(𝛼), quantitatively characterizes variability of the measure
studied with asymmetry to the right and left indicating
domination of small and large values, respectively. The width
of the MF spectrum indicates overall variability [23, 49].

Schertzer and Lovejoy [7, 50] proposed a multifractal
model based on the codimension 𝑐(𝛾). In this model, the
scale ratio 𝜆 (𝜆 = 𝑛/𝛿) is used instead of 𝛿 itself being 𝑛
the maximum length size considered (in this case is 1024
pixels). The measure or field (𝜇

𝜆
) is characterized by its

probability distribution or by the corresponding law for
statistical moments [50]:

Pr (𝜇
𝜆
≥ 𝜆
𝛾
) ∝ 𝜆

−𝐶(𝛾)
,

⟨𝜇
𝑞

𝜆
⟩ ∝ 𝜆

𝐾(𝑞)
,

(7)

where ⟨ ⟩ represents the mathematical expectation of the
statisticalmoment, 𝑐(𝛾) is termed the codimension of a subset
with field order greater than 𝛾, and 𝐾(𝑞) is the moment
scaling function. The relations between 𝐾(𝑞), 𝑐(𝛾), and 𝛾
were derived as [7]

𝐾(𝑞) = max
𝛾
(𝑞𝛾 − 𝑐 (𝛾)) ,

𝑐 (𝛾) = max
𝑞
(𝑞𝛾 − 𝐾 (𝑞)) .

(8)
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The characteristics of both functions have been discussed
in detail by Schertzer and Lovejoy [7] who proposed a univer-
sal model for fitting 𝑐(𝛾) based on three parameters: 𝐻, 𝐶

1
,

and 𝐴. From a statistical point of view,𝐻 defines the scaling
on the mean field, 𝐶

1
measures the mean homogeneity of the

field or measure the sparseness of the field, and 𝐴 expresses
the deviation from themean of the field values or the “degree”
of multifractality.

In the case that 𝐻 = 0 the case studied is a conservative
multifractal field, otherwise (𝐻 > 0) is not and then the
analysis applying (4)–(6) to the originalmeasure is insensitive
to all the singularities below a critical value so that the ranges
of 𝛼 and 𝑓(𝛼) are highly restricted.

In addition, the relationships between their model and
the multifractal formalism based on 𝜏(𝑞), 𝛼, and 𝑓(𝛼) are the
following equations [43]:

𝜏 (𝑞) = (𝑞 − 1) 𝐸 − 𝐾 (𝑞) , (9a)

or

𝐾(𝑞) = (𝑞 − 1) 𝐸 − 𝜏 (𝑞) , (9b)

𝑓 (𝛼) = 𝐸 − 𝑐 (𝛾) ,

𝛼 = 𝐸 − 𝛾,

(10)

where 𝐸 is the Euclidean dimension where the measure is
embedded.

According to numerous analyses of remote sensing
images, the value of 𝐻 is typically around 0.1-0.2 depending
on the site and resolution [16, 29, 30, 33, 40, 43]. If 0 < 𝐻 < 1,
then taking the absolute gradients (𝜇), instead of the original
measure (𝑚) of the field, is enough to be able to calculate the
full range of singularities. It is therefore important to estimate
𝐻; in order to do this, a structure function method has been
used [51], and based on a bilog plot of the correlation function
(𝑀
2
(𝛿)) and 𝛿, this value was obtained as follows:

𝑀
2
(𝛿) ≡ ⟨

Δ𝑚𝛿 (𝑥, 𝑦)


2
⟩ , (11)

Δ𝑚𝛿 (𝑥, 𝑦)


≈

𝑚 (𝑥, 𝑦)

− ((𝑚 (𝑥 + 𝛿, 𝑦) + 𝑚 (𝑥, 𝑦 + 𝛿)

+𝑚 (𝑥 − 𝛿, 𝑦) + 𝑚 (𝑥, 𝑦 − 𝛿)) × (4)
−1
)

,

(12)

where𝑚 refers to the original height value at the point (𝑥, 𝑦)
in the DEM.

Then, the original measure was replaced by 𝜇(𝑥, 𝑦) =
|Δ𝑚
1
(𝑥, 𝑦)| and, based on this, absolute gradient Hölder

exponents and MFS were calculated for each case based on
(4)–(6), then 𝐾(𝑞) was estimated based on (9b).

3. Results and Discussion

3.1. Fractal Dimension at Different Threshold Height. First, a
preliminary fractal analysis was performed to study how

1.0
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Figure 2: Box-counting dimension (𝐷
0
) including points with an

altitude less or equal to 𝑥-axis value with the water reservoir empty.
The blue arrow points out𝐷

0
value when the reservoir is full.

a change in the altitude threshold would affect the fractal
dimension (𝐷

0
). The intuitive notion of the 𝐷

0
of a set of

points is that the number of disjoint boxes of size 𝛿 (𝑁(𝛿))
needed to completely cover the set varies according to (1).
Several altitude thresholds (altitude maxima) were applied to
DEMdata to extract the𝐷

0
of the set of pointswith an altitude

equal or less than a certain value. An increasing 𝐷
0
function

was obtained by increasing the altitude maximum (see
Figure 2).

As the threshold increased, the value of𝐷
0
approached 2

as expected (see Figure 2). However, the function describing
this tendency exhibits an inflection point if the maximum
altitude considered is the height of the reservoir at its maxi-
mum capacity. As the threshold value increases from 630m
to 675m, the spatial distribution of altitude in the area
presents a different pattern from that observed for lower
threshold values. The pattern continues to change with
further increases in the threshold until 700m is used as the
maximum altitude.

3.2. Multifractal Spectrum of the Altitudes. The altitude fre-
quencies for different water levels of the reservoir are shown
in Figure 3(a). The only difference among these frequency
distributions is the pattern of the lower values. As the water
level increases, the minimum altitude increases along with its
frequency. We will apply an MFA to each case in which the
frequency and the position of the altitude values have a
quantitative influence.

The original measure (altitude) was analysed by first
calculating the mass exponent function (𝜏(𝑞)) for reservoir
water levels of 576, 600, 610, 620, and 630m. All of them show
highly similar 𝜏(𝑞) behaviour, with a high degree of linearity
expressing a lowmultifractal tendency (Figure 4(a)).The null
value for 𝜏 (𝑞 = 1) confirms the conservative character of the
measure.

The MF spectra for the five water levels analysed show
that the differences among the five spectra with respect to
altitude and frequency amplitude are almost null (seeTable 1).
The value of the Hölder exponent at the box dimension (𝛼

0
)
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Figure 3: Frequencies distribution, with the water reservoir at different filling levels of (a) altitudes and (b) absolute gradient (frequency in
logarithmic scale).
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Figure 4: (a) Mass exponent function (𝜏(𝑞) versus 𝑞) and (b) multifractal spectrum (𝑓(𝛼) versus 𝛼) based on the original measure (altitude).
Each colour represents the water reservoir at different filling levels.

Table 1: Parameters extracted from the multifractal spectrum based on the original measure (altitude) with the water reservoir at different
filling levels. Holder exponent at 𝑞 = −5 (𝛼max), 𝑞 = 0 (𝛼0), 𝑞 = 1 (𝛼1), 𝑞 = +5 (𝛼min), and 𝛼max − 𝛼min (Δ𝛼). Multifractal value at 𝛼max
(𝑓(𝛼max)), 𝛼min (𝑓(𝛼min)), and 𝑓(𝛼max) −𝑓(𝛼min) (Δ𝑓).

𝛼min 𝛼
0

𝛼
1

𝛼max Δ𝛼 𝑓(𝛼min) 𝑓(𝛼max) Δ𝑓

El Pardo 576 1.995 2.001 1.999 2.005 0.010 1.986 1.989 0.003
El Pardo 600 1.995 2.001 1.999 2.005 0.010 1.986 1.989 0.003
El Pardo 610 1.995 2.000 1.999 2.005 0.010 1.986 1.990 0.004
El Pardo 620 1.994 2.001 1.999 2.006 0.012 1.983 1.989 0.006
El Pardo 630 1.995 2.001 2.000 2.004 0.009 1.987 1.991 0.004
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Figure 5: Absolute gradient, |Δ𝑚
𝛿
(𝑥, 𝑦)| ≈ |𝑚(𝑥, 𝑦) − (𝑚(𝑥 + 𝛿, 𝑦) + 𝑚(𝑥, 𝑦 + 𝛿) + 𝑚(𝑥 − 𝛿, 𝑦) + 𝑚(𝑥, 𝑦 − 𝛿))/4|, where 𝑚 refers to the

original altitude value at the point (𝑥, 𝑦) in DEM and 𝛿 = 1. (a) With the water reservoir empty (minimum altitude 576m). (b) With the
water reservoir full (minimum altitude 630m).

is approximately 2 and 𝛼
1
is 1.999 and constant in all cases.

In contrast, the differences between𝑓(𝛼min) and 𝑓(𝛼max) are
approximately +0.004, indicating a stronger scaling at high
values than at low values, with very tight symmetry in the
spectrum (see Figure 4(b)). As the water level of the reservoir
increases from 576m to 610m, the multifractal parameters
are very similar (Table 1), changing slightly for water levels of
610m and 620m.

3.3. Multifractal Spectrum of the Absolute Gradient. The same
type of analysis was applied after the data were transformed
(see (12)) to an absolute gradient. The results of this trans-
formation for the cases of an empty reservoir and a reservoir
at maximum capacity are illustrated in Figures 5(a) and 5(b).
A comparison of this figure with Figure 1(a) highlights the
differences between the results of the analysis for the original
measure and the transformed data. In the analysis of the
absolute gradient, the points showing the greatest differences
from the points surrounding them (edges) are the higher
values. In contrast, the lower values of the absolute gradient
show almost no differences from the surrounding points
(darker colour in Figure 5).

These differences are even more pronounced if the fre-
quencies of the absolute gradient are plotted for each case
study (see Figure 3(b)).Thedistributions for the different case
studies are similar. However, the cases considered show a
pattern as the water level increases. As the water level of the
reservoir increases to 630m, the distribution becomes steep-
est. This tendency is a result of the increase in the area of the
reservoir as the reservoir is filled. This process increases the
frequency of 0 and 1 values of the absolute gradient.When the
water level of the reservoir is 630m, the distribution shows its
greatest slope for absolute gradient values less than or equal
to 5m. The frequencies are lower ranging from 5 to 11m. For
values greater than 11m, the behaviour for the water level of

630m is similar to that for the other water levels. Although
the differences shown in Figure 3(b) appear to be minimal,
they have implications for the MFA, as we will show below.

The nonlinearity observed in 𝜏(𝑞) (Figure 6(a)) implies
a scale dependence of the dimensionless moments and,
therefore, a pronounced MF character versus the behaviour
shown in theMFA of the original measure (Figure 4(a)).This
richness in multiscaling behaviour is shown in Figure 5. The
spatial distribution of the mean absolute gradient displays a
more complex pattern, highlighting the points with a greater
number of rough edges. At the next step, the MF spectrum
shows different amplitudes for the different water levels of the
reservoir (Figure 6(b)). This behaviour is clear from Table 2.

The value of the Hölder exponent at the box dimension
(𝛼
0
) is slightly greater than 2. 𝛼

1
ranges from 1.93 to 1.98, with

a tendency to increase as the water level increases.The values
of altitude and frequency amplitude for the five cases studied
are higher andmore significant than in theMF analysis of the
originalmeasure (compare Tables 1 and 2). In general,Δ𝛼 and
Δ𝑓 increase with the filling of the reservoir. However, there
are exceptions to this pattern. At El Pardo 620, Δ𝛼 shows a
decrease to 1.218, and there is a singular value of −0.840 at El
Pardo 610.

The general increase in Δ𝛼 implies an increase in overall
variability in space. As it is clear from Figure 5, the highest
values are concentrated around the limits of the reservoir
when the reservoir is empty. This tendency no longer holds
when the reservoir is full, as a more complex structure with
higher spatial variability develops. The differences in 𝑓(𝛼min)
and 𝑓(𝛼max) are all negative, indicating a stronger scaling at
low values than at high values, with no pattern of symmetry
in the spectrum (see Figure 6(b)).

If we transform the multifractal spectrum into a moment
scaling function (𝐾(𝑞)), we obtain a clear picture of the dif-
ference between the case of the full reservoir (El Pardo 630)
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Figure 6: (a) Mass exponent function (𝜏(𝑞) versus 𝑞) and (b) multifractal spectrum (𝑓(𝛼) versus 𝛼) based on absolute gradient. Each colour
represents the water reservoir at different filling levels.

Table 2: Parameters extracted from the multifractal spectrum based on the average absolute differences of altitudes with the water reservoir
at different filling levels. Holder exponent at 𝑞 = −5 (𝛼max), 𝑞 = 0 (𝛼0), 𝑞 = 1 (𝛼1), 𝑞 = +5 (𝛼min), and 𝛼max − 𝛼min (Δ𝛼). Multifractal value at
𝛼max (𝑓(𝛼max)), 𝛼min (𝑓(𝛼min)), and 𝑓(𝛼max) −𝑓(𝛼min) (Δ𝑓).

𝛼min 𝛼
0

𝛼
1

𝛼max Δ𝛼 𝑓(𝛼min) 𝑓(𝛼max) Δ𝑓

El Pardo 576 1,539 2,094 1,930 3,213 1,674 1,033 0,357 −0,676
El Pardo 600 1,539 2,098 1,932 3,226 1,687 1,033 0,409 −0,624
El Pardo 610 1,509 2,092 1,950 3,580 2,071 0,098 0,938 −0,840
El Pardo 620 1,527 2,045 1,960 2,745 1,218 0,873 0,528 −0,345
El Pardo 630 1,294 2,124 1,980 3,645 2,351 0,744 0,186 −0,558

and the other water levels (see Figure 7). In all of the cases
studied, the moment scaling functions are the same for 𝑞 ≤ 1.
The differences are found for 𝑞 > 1.

4. Conclusions

Thegoal of this study was to examine themultiscale statistical
properties of the altitude and the absolute gradient in an area
of homogeneous soil. In this area, the topography and the
reservoir constructed on the river played a main role. Such
characterisation is related to the spatial organisation of the
landscape and could shed light on its evolution.

Several clear results have emerged from this analysis.
First, topographic altitude exhibits a weak multiscale statisti-
cal structure and a negligible deviation from scale invariance
or monoscaling when a multifractal spectrum is obtained.
Second, if the original measure (altitude) is replaced by the
mean absolute gradient (or mean absolute difference), the
multiscale analysis reveals a higher degree of multifractality,
allowing a more informative analysis of the influence of the
water level of the reservoir.
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Figure 7: Moment scaling function (𝑘(𝑞) versus 𝑞) based on the
absolute gradient. Each colour represents the water reservoir at
different filling levels.
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By addressing the issues of structure and scale, the multi-
fractal formalism, unlike classical geomorphometrical tools,
provides scale-invariant attributes for characterising topog-
raphy and landscapes. The results of this study show that
the use of the multifractal approach with mean absolute gra-
dient data is a useful tool for analysing the topography
represented by the digital elevation model.
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