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Bronchiolitis obliterans organizing pneumonia (BOOP) is a chronic respiratory disease. Although the pathogenesis of BOOP is
still incompletely understood, BOOP is responsive to steroids and has a good prognosis. In our five pigs with chronic postweaning
multisystemic wasting syndrome (PMWS), typical BOOP lesions were revealed. All five porcine lungs showed typical intraluminal
plugs, and porcine circovirus type 2 (PCV2) was identified. They also exhibited similar pathologic findings such as proliferation
of type II pneumocytes and myofibroblasts (MFBs), extracellular collagen matrix (ECM) deposition, and fragmentation of elastic
fibers. MFBs migration correlative molecules, for instance, gelatinase A, B and osteopontin, appeared strongly in the progressing
marginal area of polypoid intraluminal plugs of fibrotic lesion. These molecules colocalized with the active MFBs. Both gelatinase
activity and intercellular level of active MFBs were significantly increased (P < .05). Porcine chronic bronchopneumonia leads to
BOOP and it is associated with PCV2 persistent infection. Swine BOOP demonstrates similar cellular constituents with human
BOOP. Perhaps their molecular mechanisms of pathogenesis operate in a similar way. Thus we infer that the swine BOOP can be
considered as a potential animal model for human BOOP associated with natural viral infection. Moreover, it is more convenient
to obtain samples.

1. Introduction

Bronchiolitis obliterans organizing pneumonia (BOOP),
described firstly in 1901 [1], was clarified as a distinct
histopathological and clinical entity in 1985 [2]. It is
characterized by the proliferation of fibroblastic tissues,
extending as polypoid plugs from lamina propria into the
lumen of terminal and respiratory bronchioles. Additional
features include a patchy inflammatory process involving
mononuclear inflammatory cells in interalveolar septa [3].
Although the pathogenesis of BOOP is still incompletely
understood, BOOP is responsive to steroids and has, in the
vast majority of cases, a good prognosis.

Postweaning multisystemic wasting syndrome (PMWS)
is considered as the essential infection of porcine circovirus
type 2 (PCV2). It is a global and multifactorial disease that
mainly affects nursing and fattening pigs in almost all farms
[4–6]. It thus has great economic impact [7]. Despite that
numerous studies have done in PMWS, the affected piglets
are regarded as worthless investment and they are destined
to be eliminated from farms. Due to this reason, the studies
of chronic pathological changes such as pulmonary fibrosis
usually have been neglected. Intriguingly, typical histological
features of BOOP in swine are not well documented in the
past.
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Since the constituents of swine BOOP have never
been described previously, we assume that they consist
of extracellular collagen matrix (ECM), elastic fibrils, and
myofibroblasts (MFB), which are identified by α-smooth
muscle actin (α-SMA). Matrix metalloproteinases (MMPs), a
group of zinc- and calcium-dependent enzymes, are capable
of degrading various components of extracellular matrix.
They are activated by several proinflammatory agents such
as oxidants, elastases, and other MMPs [8, 9]. MMP-2
(gelatinase A) is synthesized by a wide variety of mes-
enchymal cells, including fibroblasts, endothelial cells, and
alveolar epithelial cells. MMP-9 (gelatinase B) is produced
mainly by inflammatory cells such as neutrophils, mono-
cytes, macrophages, eosinophils, and lymphocytes [10].
MMP-2 and 9 are involved in tissue remodeling associated
with pathological situations such as acute lung injury and
acute respiratory distress syndrome [10, 11]. Osteopontin
(OPN) is a multifunctional matricellular cytokine abun-
dantly activated upon inflammatory actions of macrophages
during inflammation. OPN not only is required for MFB
differentiation but also elevates α-SMA expression for MFB
identification [12]. In vitro experiments demonstrate that
OPN is both chemotactic and mitogenic for fibroblasts.
In bleomycin-indcuced pulmonary fibrosis, OPN acts as a
fibrogenic cytokine to promote migration, adhesion and
proliferation [13].

We performed the retrospective histopathological anal-
ysis of swine nature with BOOP. By comparing histopatho-
logical constituents of BOOP samples (ECM, elastic fibrils,
fibrotic mediators such as MMP-2,9, and OPN), we observed
that persistent virus infection would result in swine BOOP,
which shares great similarities with human BOOP. These
investigations help widen our knowledge on BOOP fibro-
genic pathways, and, hopefully, we will be able to block and
even reverse the fibrogenic processes as a means of therapy.

2. Materials and Methods

2.1. Animal. All cases of natural porcine pneumonia were
examined in the study. In the farms, affected pigs showed
copious coughing, dyspnea, and crackle for approximately
four weeks. They were empirically treated with amoxicillin
and trimethoprim-sulphamethoxazole for 10 days upon the
onset of symptoms. Stratified case samples were drawn from
postweaned pigs to grower-finisher pigs. Four serial sections
(5–10 mm) were made in each pulmonary lobe. Two aliquots
of each lobe were frozen in −80◦C until used, and the others
were fixed in 10% neutralized formalin. Swine lung tissue
blocks were examined for further investigations. All five cases
(pigs) were collected from a small farrow-to-finish operation
where chronic respiratory syndrome occurs sporadically. Five
BOOP pigs and another five specific pathogen-free (SPF)
pigs, purchased from Animal Technology Institute Taiwan,
were euthanised and necropsied. Fresh samples were stored
in −80◦C until used.

2.2. Microbiological Examination. The routine microbio-
logical cultures for aerobic and anaerobic bacteria were
prepared. In addition, we used PCR method to detect the

common pathogens (specific primers listed in Table 1), such
as Porcine reproductive and respiratory syndrome virus
(PRRSV) [14], pseudorabies virus (PRV) [14], classical
swine fever virus (CSFV) [15], porcine parvovirus (PPV)
[14], cytomegalovirus (CMV) [16], porcine enterovirus
(PEV) [17], porcine circovirus type 1 (PCV1) [18],
Mycoplasma hyopneumoniae [19], porcine coronavirus [20],
swine influenza virus (SIV) [21], and PCV2 [18].

2.3. Pathological Examination. Routine procedures were per-
formed for histopathological examinations. Serial sections
(4–6 μm) of paraffin-embedded samples were deparaffinized
and rehydrated. Three of them were stained by haematoxylin
and eosin stain and then followed by special stains, picro-
sirius red stain [22], and orcein-picroIndigocarmine (OPIC)
stain [23] for total collagen and elastic fiber determination.
The remainder sections were treated with boiling citrate
buffer (pH 6.0) for 5 minutes for antigen retrieval and lastly
performing modified labeled avidin-biotin (LAB) technique.
Modified LAB technique uses specific primary antibodies
and Histostain-Plus Bulk kits (Zymed 2nd Generation
LAB-SA Detection system, Zymed Laboratories) [24]. The
primary antibodies used in this study were anti-PCV2
polyclonal antibody (1 : 200, 210-29-PCV2, VMRD), anti-α-
SMA antibody (1 : 200, MU128-UC, Biogenex), anti-MMP-
2, 9 polyclonal antibody (1 : 200, sc-8835, sc-6840, Santa
Cruz), and anti-OPN polyclonal antibody (1 : 200, ab8448,
Abcam). To prepare a negative control, another section was
incubated with mouse IgG (8 μg/ml, Vector Laboratories)
instead of the primary antibody.

2.4. Zymography. MMP enzyme expression was assayed by
SDS-PAGE zymography using gelatin (1.0 mg/ml) as MMP
substrates [25]. Equal total protein (20 μg) of samples was
subjected to electrophoresis, without boiling or reduction.
Enzymatic activities attributed to MMP-2 and MMP-9 can
be visualized in the gelatin-containing zymograms where
clear bands are revealed against a dark background. Relative
MMP-2 and 9 intensities of each sample were quantitated by
Image Analysis with a Gel-pro Analyzer.

2.5. Western Blot. MFBs quantification was analyzed by west-
ern blot [26]. Frozen lung tissues (6–10 pieces of lung tissue
in each case) were, respectively, crushed with a mortar and
pestle at liquid nitrogen temperature and then homogenized
by sonication in radio-immunoreactive protein extraction
assay (RIPA) lysis buffer containing protease and phos-
phatase inhibitor (100 mM phenylmethylsulfonyl fluoride,
100 mM sodium-orthovanadate, 10 μg/ml aprotinin, and
10 μg/ml leupeptin) [26]. The homogenate was centrifuged
at 10,000× g at 4◦C for 10 minutes, and the supernatant
was collected and stored at −80◦C. These preparations were
detected by immunoblot analysis. Twenty μg total protein
was subjected to SDS-PAGE (12% polyacrylamide) and
transferred to a PVDF membrane (Amersham) which was
incubated with a 1 : 2,000 dilution of mouse anti-α-SMA
antibody (Biogenex). PVDF membrane was then washed and
incubated with a 1 : 5 000 dilution of goat antimouse IgG
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Table 1: Sequence of primers used for these pathogens detection by PCR analysis.

Pathogen Primer sequence

Porcine reproductive and respiratory
syndrome virus (PRRSV)

Forward primer: 5′-CCC GGG TTG AAA AGC CTC GTG T-3′

Reverse primer: 5′- TGT AAC TTA TCC TCC CTG AAT CTG-3′

Pseudorabies virus (PRV)
gD, forward primer: 5′-CAC GGA AGA GAT GGG GCT-3′

Reverse primer: 5′-GTC GAC GCC CGC TTG AAG CT-3′

Classical swine fever virus (CSFV)
Forward primer: 5′-TTA AAR ATA GCC CCA AAA GAG CAT G-3′

Reverse primer: 5′-CTG GCG TCC ATC ATY CCG YGT AT-3′

Porcine parvovirus (PPV)
VP2, forward primer: 5′-GCA GTA CCA ATT CAT CTT CT-3′

Reverse primer: 5′-TGG TCT CCT TCT GTG GTA GG-3′

Cytomegalovirus (CMV)
gB, forward primer: 5′-CCC TGA TCT TAA ATG ACG AGG ACG TGA C-3′

Reverse primer: 5′-ACC GTC TGA GAG AGA CTG AAC TTC TCT GAC AC-3′

Porcine enterovirus (PEV)
Talfan-3D, forward primer: 5′-CAA AGA CTG GTC CTT CAT TG-3′

Reverse primer: 5′-ATA CGC CGA GCG CGG AAG AT-3′

Porcine circovirus type 1 (PCV1)
Forward primer: 5′-ATA CGG TAG TAT TGG AAA GGT AGG G-3′

Reverse primer: 5′-ACA CTC GAT AAG TAT GTG GCC TTC T-3′

Mycoplasma hyopneumoniae
Forward primer: 5′-GAG CCT TCA AGC TTC ACC AAG A-3′

Reverse primer: 5′-TGT GTT AGT GAC TTT TGC CAC C-3′

Porcine coronavirus
Forward primer: 5′-GCC ATT GAT TTA TGG AGA CA-3′

Reverse primer: 5′-GTA TAA AAC CTC CTG GCT GT-3′

Swine influenza virus (SIV)
Forward primer: 5′-AGT ATA CAG CCT AAT CAG AC-3′

Reverse primer: 5′-AGT AGA AAC AAG GGT ATT TTT C-3′

Porcine circovirus type 2 (PCV2)
ORF-2, forward primer: 5′-GGT TTG TAG CCT CAG CCA AAG C-3′

Reverse primer: 5′-GCA CCT TCG GAT ATA CTG TCA AGG-3′

conjugated to horseradish peroxidase (SC-2005, Santa Cruz).
Bands were visualized by the Amersham ECL-Plus detection
regents (Amersham) and were quantitated by Image Analysis
with a Gel-pro Analyzer.

2.6. Statistical Analysis. All data were expressed as mean±SD.
Descriptive statistic was first used for analysis of normality.
Student t-test or Mann-Whitney Rank Sum Test was used to
check if the data normality value is within accepted range.
The mean values of two groups were considered significantly
different if ∗P < .05, ∗∗P < .01, or ∗∗∗P < .001.

3. Results

3.1. Microbiological Examination and Pathogen Confirma-
tion. In microbiological examination, the common culture
for bacteria such as Pastuella multocida, Streptococcus sp.,
Salmonella sp., and Actionbacillus pleuroneumoniae, acid-
fast organism, and fungus was negative. The results of PCR
detections, PRRSV, PRV, CSFV, PPV, CMV, PEV, PCV1, M.
hyopneumoniae, Porcine coronavirus, and SIV were all neg-
ative; only PCV2 was detectable in BOOP lungs (Figure 1).
Furthermore, sequencing the amplicons resulted in hundred
percent identical to PCV2 Taiwan strain (NCBI Accession
AF166528 nt1169-1190). In addition, PCV2 antigen sig-
nals were revealed strongly positive in the foamy alveolar
macrophage (Figure 2, arrow head) and intraluminal plugs
of BOOP lesions by immunochemistry (Figure 2).

500 bp

100 bp

Neg M

BOOP Normal

1 2 3 4 5 6

Figure 1: Detection of porcine circovirus type 2 (PCV2) with PCR
method. The primers designed on the basis of the ORF2 of the
PCV2 virus genome to produce a 416 bp long amplicon. The BOOP
lung tissues from five pigs were positive. In the agarose gel, three
representative cases were shown. Neg: negative control. M: leader.
Lanes 1–3: BOOP lung samples. Lanes 4–6: normal lung samples
from SPF pigs (n = 5, six replicates in each individual BOOP or
normal pig).

3.2. Histopathological Constituents of BOOP Lesion. These
lungs showed paleness and were noncollapsed and tan-
mottled macroscopically. The alveolar septa appeared
widened with proliferation of type II pneumocytes and
mononuclear inflammatory infiltrates. The features of
chronic pulmonary fibrosis showed grey hepatization includ-
ing patchy distribution, intraluminal plugs of loose con-
nective tissues that occlude bronchioles, alveolar ducts, and
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(a) (b)

Figure 2: Confirmation of PCV 2 antigen in BOOP lesion. PCV 2 antigen signals appeared strong positive in the foamy alveolar macrophages
((a)-(b), arrow head) and intraluminal plugs of two representing BOOP lesions. The other lung sections in five individual BOOP pigs
revealed the similar results (n = 5, six replicates in each individual pig; Bar = 50μm).

surrounding alveoli (Figure 3(a)). Collagen and elastin, the
main composition of extracellular matrix, are presented
in picro-sirius red and OPIC stains. The intiema of pro-
liferated alveolar septa is full of large collagen fascicules,
stained cherry in picro-sirius red stain (Figure 3(b)). Large
accumulation of collagen also appeared dark blue in OPIC
stain in evaginated BOOP lesion (Figure 3(c)). However,
elastic fibrils (Figure 3(c), arrow head) were found disrupted
and fragmented in peribronchial alveolar septa as compared
to normal condition (Figure 3(c), upright panel). Most cells
of the proliferative intiema and evaginated BOOP lesion
were identified as OPN positive (Figure 3(e)) and α-SMA
positive cells (Figure 3(d)), which were further referred to
as active MFBs. The OPN expression and the remodeling of
collagens and elastines were remarkably colocalized with the
distribution of active MFBs.

3.3. MMPs Activity in BOOP Tissues. In chronic pulmonary
fibrosis of viral pneumonia, MMP-2 (Figure 3(f)) and MMP-
9 (Figure 3(g)) were expressed actively near the margin
of intraluminal plugs of bronchioles as macrophage and
MFBs. The MMP activity was assessed by the intensity of
gelatinolytic bands in zymography shown in (Figure 4(a)),
and the quantified active MMPs were presented in bars
(Figure 4(b)). Both pro- and active types of MMP-2 and
MMP-9 were detectable in normal and BOOP lungs. All
of them were significantly increased in BOOP group as
compared to normal groups (P < .05, Figure 4(b)).

3.4. MFBs Quantification in BOOP Tissues. The expression
level of α-SMA protein was used for MFBs quantification.
The Western blotting picture revealed significant elevation
of α-SMA expression in representative BOOP cases (pigs)
(Figure 5(a)). The quantitative data were assayed from five
cases (six lung sections in each case). The α-SMA expression
was increased significantly in BOOP group as compared to
the normal group (P < .05) (Figure 5(b)).

4. Discussion

BOOP is defined as granulation tissue plugs within lumens
of small airways, sometimes results in complete obstruction
and may have permanent effects on airway ventilation. The
additional pathologic features include the following: (1)
proliferation of connective tissue that forms intraluminal
polyps (proliferative bronchiolitis obliterans), (2) fibrinous
exudates, (3) alveolar accumulations of foamy macrophages,
(4) inflamed alveolar walls, and (5) evenly spaced, rounded
balls of myxomatous connective tissue [3]. Of note, all
findings of our swine cases correlate with these definitions.

BOOP may be caused by radiotherapy, drug treatments,
or response to viral infection. There are a variety of infectious
etiologies associated with human BOOP, including Serra-
tia marcescens [27], Legionella pneumophila [28], Nocardia
asteroids [29], Cryptococcus neoformans [30], Parainfluenza
type 3 [31], Human immunodeficiency virus (HIV) [32, 33],
Chlamydia pneumoniae [34], M. pneumoniae [35], Pneu-
mocystis carinii [36], Human Herpesvirus-7 [37], Coxiella
burnetii [38], severe acute respiratory syndrome coronavirus
[39], Mycobacterium avium intracellulare complex [40], and
parasite infection such as malaria Plasmodium vivax [41].

To date, several etiologies have also implicated in the
pathogenesis of animal BOOP. Experimentally infected dogs
with adenovirus [42–44], Mycoplasma [45], or cattle clin-
ical infected bovine respiratory syncytial virus pneumonia
occasionally develop BOOP [46]. Accidental intra-airway
exposure of dog with a noninfectious agent oleic acid
also induced BOOP [47]. Majeski at al. had developed a
respiratory reovirus-infected mice model of BOOP which is
T (CD4+ or CD8+) cells and interferon-γ dependent [48].
To our knowledge, BOOP has not been previously reported
occurring naturally in pigs.

In this study, affected pigs showed copious coughing,
dyspnea, and crackle for approximately four weeks. They
were empirically treated with amoxicillin and trimethoprim-
sulphamethoxazole for 10 days upon the onset of symptoms.
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Figure 3: Histopathological constituents of BOOP lesion in specific staining. The representative picture showed the intraluminal plugs
of loose connective tissue that occlude bronchioles in H&E stain (a). A large mount accumulation of collagen matrix was sawn cherry
in picrosirius red stain (b) and strongly blue in OPIC stain (c) at the evaginated BOOP lesion. The elastic fibril revealed disruption and
fragmentation in peribronchial alveolar septa ((c), arrow head) as compared to normal lung ((c) upright panel, arrow head). The proliferative
cells of the intraluminal plugs and alveolar septa were identified as α-SMA positive MFBs (d) and OPN positive cells (e). MMP-2 (f) and
MMP-9 (g) seemed to be expressed actively at the margin of intraluminal plugs of bronchioles as macrophage and myofibroblasts. The
results shown represent one of six replicates in each independent experiment demonstrating similar results (P < .01 versus normal group).
(Bar = 50μm).

However, there was no symptomatic relief. Several coinfected
pathogens associated with PMWS had been identified. They
were PRRSV, PRV, P. multocida, Bordetella bronchiseptica
[49], PPV [50], SIV, M. hyopneumoniae [51, 52] and coin-
fection of PCV2, PRRSV, and PPV in PMWS [50, 53–55].
Those lung specimen of our BOOP cases revealed negative
for common bacterial isolation and PCR detection of most
swine pathogens were only positive for PCV2 (Figure 1),
which was subsequently confirmed by sequencing the 416
nucleotide PCR amplicons and immunochemical staining
of PCV2 antigen in the intraluminal plugs of BOOP lesion
(Figure 2). The pronounced neutrophil predominance in
some tissue sections of our samples may suggest infectious
origin especially in bacteria. However, there was no evidence
of other infections aside from PCV-2 at the time of diagnosis
of swine BOOP. But we cannot exclude the possibility that
PCV-2 may not be the sole factor of swine BOOP, especially
after drug treatment.

PMWS, caused by PCV2, has worldwide distribution
[56–58] including Taiwan [59]. Clinically, the affected pigs
are common when aging from 5 to 12 weeks old. The
mobility and motility vary case by case. Motility may reach
10% in acute outbreak. It is characterized by progressive
weight loss, dyspnea, cough, diarrhea, and occasionally

icterus [60, 61]. At necropsy, tan-mottled pulmonary consol-
idation and enlarged lymphoid organs are mostly observed
[62]. They usually presented typical lymphohistiocytic to
disseminated granulomatous interstitial pneumonia [50, 62],
even that necrosis and sloughing of airway epithelium
may progress to chronic stage and bronchiolitis fibrosa
obliterans may be present [63, 64]. Furthermore, porcine
respiratory disease complex (PRDC), pigs with PCV2 and
other coexisting pathogens, may show moderate to marked
multifocal peribronchial and peribronchiolar fibrosis and
often extend into the airway lamina propria [52]. In this
study, typical BOOP lesions were found in about 16-week-
old growing and finishing pigs with chronic respiratory
syndrome. These lungs were non-collapsed and hepatized
in macroscopy. Interstitial fibrotic pneumonia, intralumi-
nal organizing granulation tissue plugs, and connective
tissue deposition intended into the alveolar ducts and
covered the epithelium cells or type 2 pneumocytes in
microscopy (Figure 3(a)). PCV2 nucleic acid and antigens
were detectable in the multisystemic organs of affected pigs,
mainly present in the monocyte/macrophage lineage and
antigen presenting cells [62]. Besides positive response of
PCV2 nucleic acid in our chronic PMWS cases, we also
displayed conspicuous PCV2 antigen in the intraluminal
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plugs of BOOP lesion by immunochemical staining as
Figure 2.

Although many studies of common worldwide disease
such as PMWS have been done and various infectious
or noninfectious agents have been implicated as possible
participants in different animals, the pathogenesis of PMWS
is still not completely well understood. Nowadays, no
literature review documented that swine BOOP and PCV2
infection that associated. It is highly probable that pigs
with chronic bronchiopneumonia are usually obsolete from
the economic aspect, thus these histopathological changes
in lung were neglected. Through positive PCV2 antigen
in the intraluminal plugs of BOOP lesions as shown in
Figure 2, it strongly meant that PCV2 was associated with
swine BOOP or intraluminal organization. After PCV2
was inoculated in previous studies, the levels of TNF-α,
monocyte chemoattractant protein-1 (MCP-1), Interleukin
(IL)-1β, 8, 10, and Interferon-γ (IFN-γ) were significantly
raised [51, 65−67]. However, future study is needed to
elucidate the cytokine effects by which the PCV2 induces
BOOP.

MMPs have been proposed to play a pivotal role in the
pathogenesis of pulmonary fibrosis, but the exact mecha-
nisms are not well characterized. There are several interre-
lated processes in ECM remodeling, such as collagens and
elastins. MMP-2 and 9 are mark prolong degraded fibrillar
gelatin and substrate affinity for type IV collagen, which
is the key structural component of basement membrane.
Furthermore, MMPs also participate in the regulation of
other fibrotic mediators. MMP-2, 7, 9 and TIMP-1, 2, 3, 4
are upregulating in pulmonary fibroblastic foci [65]. MMP7
(matrilysin) is another regulator of pulmonary fibrosis in
human and mice [66]. To examine whether gelatinases
involve in this BOOP, both MMP-2 and 9 seemed to
be expressed actively at the margin of intraluminal plugs
of bronchioles as macrophage and MFBs (Figures 3(f)
and 3(g)). Indeed, the activities of pro- and active form
gelatinases were significantly increased in the swine BOOP
compared to normal group by zymography (Figure 4).

Abundant MFBs presented as activated type (α-SMA
positive) which invaded and migrated into bronchial lumen
to form the intraluminal plugs (Figure 3(d)), and the expres-
sion level of α-SMA was also elevated significantly compared
to the control by Western blot (Figure 5). The fibroblast and
MFB play a central role in ECM synthesis and deposition.
Remodeling of ECM and elastic fibrils (Figures 3(b) and
3(c)) presented at the evaginated BOOP lesions remarkably
colocalized with the distribution of α-SMA positive MFBs.
These findings included not only elevation of ECM deposi-
tion but also disruption and fragmentation of elastic fibrils
in the peribronchial alveolar septa.

OPN was strongly expressed at the peribronchial and
intraluminal plugs of swine BOOP (Figure 3(e)), which
has not been described previously. OPN is a multifunc-
tional matricellular cytokine abundantly expressed during
inflammation. It is both chemotactic and mitogenic for
fibroblasts [13] and required for fibroblast differentiated to
MFB [12]. It could upregulate MMP-2,9 expression [67, 68].
OPN deficient transgenic mice demonstrated a reduction
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Figure 4: Metalloproteinase activity in BOOP tissues. The gelatin
zymography revealed MMPs activity from three representative
BOOP and normal pigs (a). For each individual BOOP or normal
pig, six sample lung sections were evaluated for MMP activity
and averaged. Then, the averages from the BOOP and normal
animals were pooled from the five different pigs to generate the data
presented (b). The activities of proMMP-9, MMP-9, proMMP-2,
and MMP-2 were all significantly increased in BOOP group ((b),
P < .05). ∗P < .05 versus normal group (n = 5, six replicates in
each individual pig).

production of type I collagen and the level of activated
MMP-2 and TGF-β1 [69]. Although the expression of OPN
has been demonstrated in different human unusual intersti-
tial pneumonia and murine bleomycin-induced pulmonary
fibrosis, OPN is still be elucidated in BOOP. MMP-2,9 bind
to CD44, CD44 act as a transmenbrane platform, latent
TGF-β1 is recruited and bound on which is activated by
CD44-associated MMP-2,9 [70]. Based on previous obser-
vation, active TGF-β1 induces pulmonary fibrosis and OPN
promotes significant migration and proliferation in both
epithelium and fibroblast/MFB in the fibrotic process [71].
Responding to lung damage, induced MMP-2 and MMP-
9 promote the migration of fibroblast/MFB; meanwhile,
MMP-2 activating MMP-9 and MMP-9 increases fibroblast
proliferation and collagen synthesis [71].

In this study, identified BOOP of domestic pigs within
natural PCV2 pneumonia shared critical features. They are
temporal heterogeneity with fibrosis, differentiation and
migration markers of MFBs, and ECM remodeling in human
BOOP. Since there is no information about mediators and
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Figure 5: Quantitation of MFBs by alpha-SMA expression level.
The Western blotting picture revealed that alpha-SMA expression
level was increased in three representative BOOP cases (pigs) (a).
The quantitative data were assayed from five cases (six lung sections
in each case). Significant elevation of α-SMA expression in BOOP
group was revealed (P < .05) (b). ∗P < .05 versus normal group
(n = 5, six replicates in each individual BOOP or normal pig).

signal transduction pathway of swine BOOP, future studies
must be conducted which may help prevent the sick pigs
from the irreversible end stage of fibrotic pneumonia with
worse prognosis. Most importantly, it is easier to get samples
in swine BOOP than that in human so as to compare the
pathological changes and pathogenesis with human BOOP.
This can lead to pursuing the antifibrotic targeting and
rational strategy of therapy.
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