Research Paper

IN addition to the spectrum of biological action already
known to be exhibited by acetylsalicylic acid (ASA) as an
analgesic, anti-inflammatory and platelet aggregation in-
hibitor, there is growing evidence of a stimulatory effect
on the immune system. ASA has been found to increase
the production of cytokines and to increase the activity of
various leukocytes. The action of ASA on the activity of
mouse peritoneal macrophages was therefore investi-
gated in the present study. Therapeutically effective con-
centrations of ASA, which are known to decrease levels
of prostaglandins, had neither a stimulating nor an in-
hibiting influence on antibody-dependent cellular
cytotoxicity (ADCC) or on the binding capacity of
macrophages with regard to SW 948 tumour cells. Like-
wise ASA had little or no adverse effect on the capacity of
the macrophages for stimulation by interferon-gamma
(IFN-gamma) and interleukin-4 (IL-4). Taken together, the
immunostimulant effect of ASA shown in the literature as
an increased production of interleukin-2 (IL-2) and IFN,
could not be confirmed on the basis of the macrophage
cytotoxicity.
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Introduction

Many lines of experimental evidence suggest that
acetylsalicylic acid (ASA) is able to act as an
immunomodulating agent. ASA increases the pro-
duction of interleukin-2 (IL-2) and interferon (IFN).*~
On oral administration of ASA, synthesis of IL-2 by
peripheral mononuclear blood cells reaches its peak
after 10 h and the synthesis of IFN-gamma is greatest
after 24 h. On stimulation with ASA in vitro the peaks
of IL-2 and IFN-gamma synthesis occur somewhat
later, i.e. after 24 h and 72 h respectively. Moreover,
cytokine synthesis is dependent upon the presence
of monocytes, as no effect was observable in isolated
lymphocytes cultures.*” The time of occurrence of
the IL-2 and IFN-gamma maxima thus corresponds to
the model of cytokine regulation? and underlines the
importance of the monocytes and macrophages in
this activation of the immune system. This provides
further evidence of the scientific basis of the immu-
nological effect of ASA, which can be explained in
terms of inhibition of prostaglandin synthesis by
monocytes and macrophages.'?%%° In this reaction
ASA inhibits cyclooxygenase activity irreversibly by
covalent binding of its acetyl group to the enzyme."
Among the arachidonic acid metabolites the
prostaglandins of group E (PGE) exert a suppressive
effect on the immune system.” The proliferation of
T-lymphocytes, lymphokine production, and the
cytotoxicity of Nk cells, lymphocytes and
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macrophages are inhibited by PGE,'*'® while tumour
growth>*® and metastatic growth?? are promoted.
The depression of the immune system can therefore
be explained on the basis of elevated PGE produc-
tion or by increased sensitivity to PGE. Conversely,
PGE-synthesis inhibitors act as immunostimulants.
PGE-synthesis blockers reduce or slow down tumour
growth. %% ASA also enhances the cytotoxicity of
Nk cells in tumour-bearing animals.?” There is also an
epidemiological study according to which ASA exerts
a protective effect against cancer of the colon; regular
intake of ASA was found to reduce the risk of colon
cancer significantly both in men and in women.?®
Since the activation of macrophages plays an impor-
tant part in tumour defence,®? and the macrophages
are directly affected by the inhibition of PGE synthe-
sis, the aim of the present study was to determine the
extent to which ASA influences the activation of
macrophages by IL-4 and IFN-gamma.

Materials and Methods

Mice: Female, syngenic C57Bl/6 mice, 8-12 weeks of
age, were purchased from IFFA Credo (Saint-
Germain-Sur-L’'Arbesle, France) and were matched
for age in each experiment. The animals were
housed conventionally in plastic cages and were
given water and food ad libitum.
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Cell line: The SW 948 colonic adenocarcinoma cell
line was established by Leibovitz et al* and was
kindly provided by H. Lohrke (German Cancer Center
(DKFZ), Heidelberg, Germany). The cell line was
maintained in Leibovitz’s L-15 medium containing
10% foetal bovine serum, 2 mM glutamine, 100 U/ml
penicillin/streptomycin and 2.5 pg/ml fungizone (all
ICN-Flow, Germany). The tumour cells were cultured
in 75 cm? plastic tissue flasks and passed weekly.

Cytokines: Interleukin-4 (3 x 101 U/ml was supplied
by Genzyme (Germany). Recombinant IFN-gamma
(1 x 10°U/ml) was purchased from Boehringer
(Germany). Both cytokines were diluted in PBS sup-
plement with 0.1% bovine serum albumin, aliquotted
and stored at —80°C until used.

Polyclonal antibodies: Anti-SW 948 serum was pre-
pared in C57BL/G mice as follows, according to the
method of Johnson et al.:® in a first step mice
received an i.p. injection of 10° tumour cells in 0.1 ml
Hank’s buffered salt solution (HBSS). Two weeks
later, in a second step, the mice received an i.p.
injection of 10° tumour cells in HBSS. Ten days after
the final injection 2-3 ml blood was collected by
cardiac puncture.:Serum was separated after centrifu-
gation and 50 pl aliquots were stored at —80°C until
use. The antisera alone were not capable of causing
tumour cell lysis.

Acetylsalicylic acid: The acetylsalicylic acid was pur-
chased from Bayer (Germany) in the form of the
lysine salt (Aspisol®). It was dissolved under sterile
conditions in distilled water for injections. It is very
important to prepare the solution of Aspisol immedi-
ately before use, because hydrolysis of acetylsalicylic
acid sets in very quickly in aqueous solutions.

Harvest of peritoneal macrophages: Mice were killed
by cervical dislocation and proteose peptone- and
thioglycollate-elicited macrophages were harvested
72h after injection of 0.6ml of each agent by
peritoneal lavage. Eight ml of cold HBSS containing
10 U/ml heparin was injected into the peritoneal
cavity of the mice and peritoneal exudate cells were
harvested. The cell suspensions were centrifuged at
500 x g for 5 min. The cells were resuspended in
minimal essential medium (MEM,; Gibco, Germany)
supplemented as above and a small sample was
taken for total and differential cell counts. The
thioglycollate treatment leads to an over 95%
macrophage content of the peritoneal exudate cells,
in contrast to peptone-elicited macrophages (65%).
The peritoneal exudate cells were added to 96-well
flat-bottom plates (Bibby, UK) at the desired
macrophage concentrations and were incubated at
37°C in a humidified atmosphere of 5% CO,. After 1 h
of incubation the nonadherent cells were washed
off, obtaining a monolayer with more than 98%
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macrophages.®* The macrophages were now ready
for use in the antibody-dependent cellular
cytotoxicity (ADCC) or binding assays. In experi-
ments with IFN all macrophages were cultured for
the duration of 48 h. Two hours of stimulation with
IFN or ASA indicates the period before starting the
ADCC or binding assays. In costimulation with IL-4
all macrophages were cultured and stimulated over
a 24 h period before starting the assays.

ADCC: The slow form of ADCC was estimated as
previously described.® In brief, 4 x 10* SW 948
tumour cells labelled with [Hlthymidine (TRK.
120, sp. act. 25 pCi/mmol, Amersham Buchler,
Braunschweig, Germany) were added to the
monolayers of macrophages (1 x 10° per well) in the
96-well flat-bottom plates either with or without the
polyclonal anti-SW cell antiserum (Ab). The plates
were harvested after an incubation period of 48 h at
37°C in a humidified atmosphere of 5% CO,. A cell-
free supernatant (100 pl) was removed and added to
scintillation cocktail (Canberra Packard, Frankfurt,
Germany). The ADCC was quantified using the
relationship:

(cpm released in tests with Ab—spont. rel.)
—{(cpm released in tests without Ab—spont. rel.)

% Lysis = x 100

cpm total releaseable (=maximum release)

All tests were carried out in triplicate and repeated
three times.

Binding assay: The estimation of the binding capac-
ity of macrophages to tumour cells was performed as
previously described in detail In brief, 4 X 10* SW
948 tumour cells labelled with [Hlthymidine
(TRK.120, sp. act. 25 pCi/mmol, Amersham Buchler,
Braunschweig, Germany) were added to the
monolayers of macrophages (1 x 10° per well) in the
96-well flat-bottom plates either in the presence or in
the absence of the polyclonal anti-SW cell antiserum
(Ab). After centrifugation at 50 x g for 1 min and an
incubation time of 15 min unbound tumour cells
were completely removed by aspiration and four
vigorous washings with HBSS. The remaining bound
target cells were lysed by adding 200 ul of 0.25%
sodium dodecyl sulphate (Sigma, Germany) to each
well. Binding was quantified using the relationship:

cpm bound to macrophages

No. of bound target = X 4 x 104

total cpm added

All tests were carried out fourfold and repeated three
times.
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Statistics: Experimental results were analysed for sig-
nificant differences between points at confidence
level p < 0.05 by analysis of variance.

Results

The ASA concentrations studied (75 ug/ml and
100 pg/m) did not have any inhibiting or stimulating
effect on the cytotoxic activity of the peptone-elicited
macrophages (Figs 1 and 2). This is clear both from
the antibody-independent and from the antibody-
dependent cytotoxic capacity of the macrophages
with respect to the tumour cells. Accordingly, the
ADCC value was also unchanged. By contrast, IL-4
concentrations of 10 and 20 U/ml were found to
activate the peptone-elicited macrophages to the
level of the thioglycollate macrophages. Similarly,
costimulation of the macrophages with IL-4 and ASA
induced a significant increase in macrophage activity.
A weak inhibition of macrophage activity was ob-
servable after costimulation in comparison with
stimulation exclusively with IL-4, though this was not
significant (Figs 1 and 2).
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FIG. 1. Results of ASA costimulation with IL-4 in tumour cell lysis.
Peritoneal macrophages (MP) from mice injected with proteose peptone
(PEP) were prepared at 1 x 10° MP/well. After nonadherent cells were
removed, 200 ul MEM* with either 75 or 100 ug ASA/ml with or without 10 U
IL-4/ml were added. After 24 h the total volume was replaced by 200 pl
fresh medium with 4 x 10* [*H]thymidine-labelied SW 948 cells, and with or
without antibodies (Ab). After 48 h, 100 pl supernatant was aspired from
each sample and cpm were determined. The cell lysis with Ab (A\), the cell
lysis without Ab (*), and the ADCC (bars) were calculated as described in
the text. Thioglycollate (TG) elicited MPs served as control, only. (@)
Significantly different to PEP-control.
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FIG. 2. Results of ASA costimulation with IL-4 in tumour cell lysis.
Peritoneal macrophages (MP) from mice injected with protease peptone
(PEP) were prepared at 1 x 10° MP/well. After nonadherent cells were
removed, 200 pl MEM* with either 75 or 100 ug ASA/ml with or without 20 U
IL-4/m! were added. After 24 h the total volume was replaced by 200 ul
fresh medium with 4 x 10 [*H]thymidine-labelled SW 948 cells, and with or
without antibodies (Ab). After 48 h, 100 ul supernatant was aspired from
each sample and cpm were determined. The cell lysis with Ab (A\), the cell
lysis without Ab (*), and the ADCC (bars) were calculated as described in
the text. Thioglycollate (TG) elicited MPs served as control, only. (@)
Significantly different to PEP-control.

Whereas the binding capacity of the macrophages
with respect to the tumour cells without antibodies
was found to be uninfluenced in all reactions, the
antibody-assisted  binding  capacity of the
thioglycollate-elicited macrophages showed a signifi-
cant increase. Macrophage stimulation with IL-4 and
ASA or a combination of the two led to a slight, but
not significant, increase in bonds (Figs 3 and 4).

Stimulation of the peptone-elicited macrophages
with 100 U IFN-gamma/ml significantly increased the
ADCC value and tumour toxicity in the presence of
antibodies in comparison with controls (Fig. 5).
In contrast, no significant increase in macrophage
activity was observed on costimulation with 75 pg
ASA/ml. As a result of the reduction in antibody-
dependent tumour toxicity, this value was found to
be between that of the peptone controls and that
after activation with IFN-gamma, without differing
significantly from either of these (Fig. 5).

The binding capacity of the macrophages was
affected neither positively nor negatively by IFN-
gamma and/or ASA (Fig. 6).
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FIG. 3. Results of ASA costimulation with IL-4 on bound tumour cells.
Peritoneal macrophages (MP) from mice injected with protease peptone
(PEP) were prepared at 1 x 10° MP/well. After nonadherent cells were
removed, 200 ul MEM* with 75 or 100 ug ASA with or without 10 U IL-4/ml
were added. After 24 h the total volume was replaced with 200 ui fresh
medium with 4 x 10* [*Hjthymidine-labelled SW 948 celis, and with or
without antibodies (Ab). After 15 min, the total volume was aspired from
each sample and cpm were determined. The number of bound tumour cells
with Ab (clean bars) or without Ab (striped bars) were calculated as de-
scribed in the text. Thioglycollate (TG) elicited macrophages served as
control only.

Discussion

A comparison of our results reveals a consistent
tendency of ASA to have no essential effect on the
activity of murine peritoneal macrophages i vitro.
Macrophage activation, such as that induced by IL-4
and IFN-gamma, was not observed, and there was
also no synergism between ASA and the cytokines.
No increase or inhibition of macrophage activity was
observed, although slight inhibition occurred in the
experiments with costimulation with IFN-gamma.
The immunostimulant effect of ASA reported in the
literature could not be confirmed on the basis of the
ADCC model. The inhibition of prostaglandin syn-
thesis by the therapeutically effective concentrations
of ASA used might play a role as a possible explana-
tion for this in vivo, since prostaglandins, and
especially PGE, are among the inhibitory
immunomediators within the immune regulation
system and are responsible for a number of
immunosuppressive mechanisms at the level of
cellular immunity.®¥* 1t is therefore likely
that prostaglandin synthesis inhibitors can act as
immunostimulants. Thus, cyclooxygenase inhibition
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FIG. 4. Results of ASA costimulation with 1L-4 on bound tumour cells.
Peritoneal macrophages (MP) from mice injected with protease peptone
(PEP) were prepared at 1 x 10° MP/well. After nonadherent cells were
removed, 200 ul MEM* with 75 or 100 pg ASA with or without 20 U IL-4/ml
were added. After 24 h the total volume was replaced with 200 ul fresh
medium with 4 x 10* [*H]thymidine-labelled SW 948 cells, and with or
without antibodies (Ab). After 15 min, the total volume was aspired from
each sample and cpm were determined. The number of bound tumour cells
with Ab (striped bars) or without Ab (striped bars) were calculated as
described in the text. Thioglycollate (TG) elicited macrophages served as
control only.

leads to increased macrophage activity, manifested
by an increased production of IL-1.% In turn, IL-1
leads to a stimulation of T- and B-lymphocytes.” The
elevated synthesis rates of IL-2 and IFN-gamma after
administration of ASA can therefore be explained by
an interaction of macrophages and lymphocytes with
their mutual activation.>?

The need for the presence of macrophages is
indicative of primary stimulation of the macrophages
by ASA. No such immunostimulant action of ASA on
isolated peritoneal macrophages was detected in this
study. The therapeutic concentrations of ASA achiev-
able in human blood (75-100 ug/ml) have no direct
influence on macrophages under iz vitro conditions.
This applies both to the binding capacity and to the
antibody-dependent and -independent tumour toxic-
ity of mouse peritoneal macrophages. The ADCC
of macrophages is likewise not changed in either
direction by ASA, even though prostaglandins
suppress ADCC and the tumour-toxic activity
of macrophages.”*’> In the selected experimental
design this effect evidently does not come into op-
eration. Our findings are therefore in agreement with
the results obtained by Hockertz et al.,2 who were
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FIG. 5. Effect of ASA costimulation with IFN-gamma on tumour cell lysis.
Peritoneal macrophages (MP) from mice injected with protease peptone
(PEP) were prepared at 1 x 10° MP/Awell. Two h before starting the ADCC
medium was aspired and replaced with fresh MEM* containing either 75 ug
ASA/ml or 100 U IFN-gamma/ml or both, respectively. After the appropriate
period of time, medium was aspired and 200 yi medium with 4 x 10*
[*H}thymidine-labelled SW 948 cells with or without antibodies (Ab) were
added to each well. After 48 h, 100 p} were aspired from each sample and
cpm were determined. The cell lysis with Ab (A\), the cell lysis without Ab
(*), and the ADCC (bars) were calculated as described in the text. IFN-
gamma significantly increases the ADCC in correspondence to cell lysis
with Ab. ASA reduces the effect of IFN-gamma. (®) Significantly different
to PEP-control.

likewise unable to observe any effect of ASA on
isolated murine peritoneal macrophages. In addition
to the unchanged production of IL-6, the production
of oxygen radicals also remained unchanged, al-
though these play an important part as tumour-toxic
effector substances of the macrophages precisely in
the ADCC reaction.®*#

The stimulation of the macrophages by the
cytokines IFN-gamma and IL-4 corresponds to the
findings of other studies.?%4 A slight change in
macrophage activity was observed only on
costimulation with IFN-gamma and ASA. In this case
the antibody-dependent cytotoxicity and the ADCC
values were inhibited by costimulation with ASA. It
may be that costimulation causes an increase in the
CcAMP level, which exerts an inhibitory effect on the
macrophages and their ADCC activity.®>° By contrast
ASA exhibits neutral behaviour in tumour patients
receiving IFN.® There is no synergistic effect
between stimulant cytokines and ASA.

Looking at the results overall, the antibody-
dependent and -independent tumour toxicity and
the binding capacity of peritoneal macrophages are
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FIG. 6. Effect of ASA costimulation with IFN-gamma on tumour cell binding.
Peritoneal macrophages (MP) from mice injected with protease peptone
(PEP) were prepared at 1 x 10° MP/well. Two h before starting the binding
assay medium was aspired and replaced with fresh MEM* containing either
75ug ASA/ml or 100U IFN-gamma/ml or both, respectively. After the
appropriate period of time, medium was aspired and 200 pl medium with 4
x 10* [*H]thymidine-labelled SW 948 cells with or without Ab were added to
each well. After 15 min, the total volume was aspired from each sample and
cpm were determined. The number of bound tumour cells with Ab (clean
bars) or without Ab {striped bars) were calculated as described in the text.

not directly influenced in vitro by the presence of
ASA. The positive immunological influence of ASA is
therefore very probably closely connected with an
interaction between defence cells and their
cytokines. It is still unclear to what extent ASA can
be wused as a direct immunostimulant or
immunomodulator, but its clinical use, e.g. as an
adjuvant in inoculations, could be of major impor-
tance.
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