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Abstract: Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and 
decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic 
indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of 
biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. 
Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% 
of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming 
growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, 
interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic 
acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other 
biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory 
molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor–associated kinase-1 (IRAK1), connective tissue growth 
factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D 
(surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins 
(IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC 
(8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc 
patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and 
artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker 
molecules, pathways, and receptors involved in the pathology of SSc. 
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Introduction
Biomarkers are analytic indicators of the presence of a biological or disease process and/or activity of that process within an 
individual that can be accurately and reproducibly measured.1–11 Thus, a biomarker could be a physical measure such as blood 
pressure, a cytokine such as IL-1, a cell or cellular manifestation such as a membrane receptor, a metabolite such lactate, or 
other reproducible indicator of a biologic or medical process. Biomarkers have become an increasingly important aspect of 
systemic sclerosis (SSc) research and clinical care.12 The field of biomarkers in SSc is complex and evolving as recent studies 
have implicated at least 240 pathways and numerous dysregulated proteins in the pathogenesis of SSc.5–14

SSc is a complex autoimmune disease characterized by prominent fibrosis of the skin, macro- and micro-vascular damage, 
vasoinstability, and decreased peripheral blood perfusion with ischemia, inflammation, and exuberant fibrosis of internal 
organs including the lungs, kidneys, bowel, heart, and esophagus.15–17 The presence of skin thickening of the fingers extending 
proximal to the metacarpophalangeal joint is adequate to be classified as SSc. However, if proximal skin thickening is not 
present, the weighted addition of the following findings: skin thickening of the fingers, finger tip lesions (ischemic ulcerations 
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or pitting scars), telangiectasia, abnormal nail fold capillaries, interstitial lung disease, pulmonary arterial hypertension, 
Raynaud’s phenomenon, and/or SSc-related autoantibodies (Table 1) may still permit the diagnosis of SSc.18 SSc is presently 
formally classified into two main forms: 1) limited cutaneous SSc characterized by mostly distal skin thickening and the 
presence of anti-centromere antibodies (Figure 1), and 2) diffuse cutaneous SSc with widespread distal and proximal 
cutaneous changes usually with the presence of anti-topoisomerase antibodies, anti-RNA-III polymerase antibodies or other 
anti-nucleolar pattern antinuclear antibodies.18–21 Nail fold capillaroscopy, which is now formally used to classify SSc, is 
a noninvasive and reliable method to detect diagnostic microvascular involvement in SSc.17,18,22 The presence of an ANA, 
recurrent Raynaud’s phenomenon, and nail fold capillaroscopic abnormalities predict progression to definite SSc.21 Anti- 
topoisomerase I antibodies also predict the development of diffuse cutaneous involvement with SSc and digital ulcers in the 
first 3 years of disease, as well as severe interstitial lung disease (ILD) (Figure 2).21,23

Table 1 Biomarkers in Systemic Sclerosis (SSc)

Clinical Biomarkers for SSc Autoantibody Biomarkers for SSc HLA antigens and Immunogenetic 
Biomarkers for SSc

● Skin thickening of the fingers
● Skin thickening extending proximal to 

the metacarpophalangeal joint
● Finger tip lesions (ischemic ulcera-

tions or pitting scars),
● Telangiectasia
● Abnormal nail fold  

capillaries
● Interstitial lung disease
● Pulmonary arterial hypertension
● Raynaud’s phenomenon
● Gastroesophageal reflux disease
● Esophageal dysmotility

● Speckled pattern antinuclear antibodies
● Anti-RNA polymerase III antibodies
● Anti-centromere antibodies
● Anti-topoisomerase antibodies
● Anti-Th/To antibodies
● Anti-endothelial or fibroblast antibodies
● Anti-angiotensin II type 1 receptor antibodies
● Anti-endothelin-1 type A receptor antibodies
● Anti-platelet-derived growth factor receptor  

(anti-PDGFR) antibodies
● Anti-extracellular matrix (ECM) protein antibodies
● Anti-G-protein-coupled receptor antibodies
● Anti-elF2B antibodies
● Anti-RuvBL1/2 complex antibodies
● Anti-U3RNP antibodies
● Anti-BICD2 antibodies
● Anti-Ku antibodies
● Anti-PM/Scl antibodies
● Anti-U11/U12 RNP antibodies

HLA-Antigens associated with SSc 
and/or SSc-associated antibodies

● HLA-DR1, DR2, DR3, DR5, and DR52.
● HLA-DRB1*04:01,*04:05
● HLA-DQB1 02:01,*0301,*0302, *0501, 

*0601
Non-HLA associated loci

● KIR locus variants
● Polymorphisms of the complement C4 

gene

Potential immune-virus mimic 
interactions

● Human herpesvirus-6 (HHV-6)
● Mimiviridae
● Phycodnaviridae

Figure 1 Sclerodactyly in SSC. The tightened skin extends beyond the metacarpophalangeal joints confirming the diagnosis of SSc. Also note contractures at the proximal 
interphalangeal joints and calcinosis cutis at the interphalangeal joint of the 5th digit (arrow).
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Mortality in SSc is significantly increased and usually related to life-threatening manifestations of SSc including 
interstitial lung disease, scleroderma renal crisis, pulmonary arterial hypertension, cardiac involvement, secondary 
malignancy, and infections from tissue necrosis, aspiration pneumonia, and immunosuppression.1,24

Autoantibodies as Biomarkers in SSc
Autoantibodies are the most commonly used biomarkers in SSc and are most specifically useful for the diagnosis, classifica-
tion, and prognosis of SSc (Table 1); further, biomarkers can be potential therapeutic targets.2–4,21,25 Anti-nuclear antibodies 
(ANA) are present in more than 90% of SSc patients with anti-centromere, anti-Th/To, and anti-topoisomerase I antibodies 
considered as classical biomarkers occurring 60% of SSc and defining patients with well-described clinical classifications.18,21 

Other autoantibodies are present in the majority of patients with SSc and besides ANA include autoantibodies directed against 
endothelial or fibroblast antibodies, angiotensin II type 1 receptor, endothelin-1 type A receptor, platelet-derived growth factor 
receptor (anti-PDGFR) and extracellular matrix (ECM) proteins.26–30 More complex autoantibody systems in SSc against 
G-protein-coupled receptors, growth factors and respective receptors have also been described.4 Ten percent of SSc patients 
are ANA-negative, but novel antibodies including anti-elF2B, anti-RuvBL1/2 complex, anti-U11/U12 RNP, Anti-U3RNP, 
anti-BICD2, Anti-Ku, and Anti-PM/Scl can be seen in both ANA positive and negative patients.7,31 The simultaneous 
presence of two different SSc-specific autoantibodies such as anti-centromere antibodies and anti-RNA polymerase III 
antibodies is so unusual that they are for practical purposes regarded as mutually exclusive, although there are always cases 
that may break the rule.32 For instance, a recent study by Clark et al demonstrated that only 5% of SSc patients had ≥2 any 
autoantibody positivity and only 2.3% had ≥2 SSc-specific antibody positivity, with the most common combination being anti- 
U1RNP and anti-topoisomerase I antibodies.33

Figure 2 Computed tomographic (CT) Image of Interstitial Lung Disease (ILD) in SSc. (A) Interstitial lung disease (ILD) with bilateral anterior upper lobe reticular opacities 
and dependent ground glass opacities and bronchiectasis. Central airways are clear. (B) Similar scattered ground glass opacities most predominant in the lower lobes with 
extensive bronchiectasis and cystic changes.
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ANA may not be just biomarkers of disease in SSc but may have a pathogenic role through immune-complex- 
mediated mechanisms and molecular mimicry. ANA (particularly anti-topoisomerase-I and anti-RNA polymerase III 
antibodies) appear to be transported into the cell with direct interaction with intercellular components and receptors, 
targeting intracellular topoisomerase and RNA polymerase by the corresponding antibodies.34,35 Anti-RNA polymerase 
III is a biomarker predicting rapid skin thickness progression, gastric antral vascular ectasia, SSc-associated cancers, 
scleroderma renal crisis, and possibly autoimmune syndromes associated with silicone breast implants.21,36 Further 
supporting this concept of pathogenic autoantibodies in SSc is the response of certain SSc patients to select anti-B cell 
therapies and the role of activated B cells in the successful allogeneic bone marrow transplant to treat SSc.37,38

Immunogenetic and HLA Antigens as Biomarkers in SSc
SSc has been reported previously to be weakly associated with a restricted number of class II antigens in the major 
histocompatibility complex (MHC), especially HLA-DR1, DR2, DR3, DR5, and DR52 (Table 1).39 However, these HLA- 
DR specificities that are weakly associated with SSc are in linkage disequilibrium with HLA-DQ alleles that are strongly 
associated with the specific autoantibodies peculiar to SSc. Thus, anticentromere antibodies occur most frequently in the 
presence of HLA-DQB1*0501 (DQ5), DQB1*0301 (DQ7) and similar DQB1 alleles characterized by a tyrosine or glycine 
residue in the outermost domain, specifically in position 26. Anti-topoisomerase I antibodies have been associated with the 
presence of HLA-DQB1*0301 (DQ7), DQB1*0302 (DQ8), DQB1*0601 and other DQB1 alleles evincing in position 30 
a tyrosine residue. Anti-RNA polymerase III antibodies have been associated with HLA- DQB1*02:01, DRB1*04:05, 
DRB4*01, and DQB1*04:01.40,41 Recently, Class 1 HLA antigens have also been associated with SSc, in particular, the 
haplotype HLA-B*44:03-HLA-C*16:01 that interacts with the KIR locus suggesting that genetic modulation of lymphocyte 
activation also contributes to SSc onset.42,43 Specific KIR2 phenotypes appear to also promote human herpesvirus-6 (HHV-6) 
infection and reactivation and HHV-6 reactivation has been associated with fibrosis and the development and severity of 
SSc.44 Similarly, the immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A are homologous to 
viral protein sequences from the Mimiviridae and Phycodnaviridae families, suggesting a virus-immune receptor interaction 
that may trigger specific autoantibody production and the subsequent development of SSc.45

Similarly, higher copy number polymorphisms of the complement C4 gene appear to provide less risk to developing 
SSc, and lower copy numbers of C4A and C4B provide augmented risk of developing SSc, with the serum levels of C4 
protein paralleling the gene copy numbers and decreased or increased risk for developing SSc.46 Thus, C4 genetics are 
another immunogenetic factor that independently decreases and increases the risk of SSc along with amino acid variants 
of HLA-DRB1 and HLA-DQB1.

Other Biomarkers in SSc
Since the immune system and healing mechanisms of the human body are generally activated in SSc, multiple molecules are 
increased or decreased in SSc (Table 2) depending on the presence, activity, and therapy of the disease.1–10 Toll-like receptors 
(TLRs) recognize pathogens and internal activation signals resulting in activation of multiple pathways that finally result in 
inflammation and alternations in innate immunity that occur with SSc.47 Internal activation signals include damage-associated 
molecular patterns (DAMPs) that are intracellular molecules released under significant tissue injury or cellular stress and bind 
as endogenous ligands on TLRs.48 DAMPs-TLR interaction on fibroblasts directly activates these collagen-producing cells to 
generate large amounts of collagen contributing to ECM expansion typical of SSc and the complications of SSc.47 Further, 
ligand activation of TLR on dendritic cells results in increased production of Th17-related cytokines including IL-1β, IL-17F, 
IL-21 IL-22, and IL-33 resulting in aberrant T cell polarization and profibrotic inflammation.49

Transforming growth factor-b (TGF-β) is central to the process of fibrosis as well as dysregulation of the immune system 
toward inflammation.50–52 Injured or stressed cells produce TGF-β that recruits and stimulates macrophages that secrete more 
TGF-β that then upregulates genes responsible for ECM production and progressive fibrosis.53,54 Serum cytokeratin 17 
(CK17), marginal zone B1 protein (MZB1) and leucine-rich α2-glycoprotein-1 (LRG1) are potential biomarkers for SSc, with 
CK17 negatively associated with SSc disease severity, with higher CK17 values being protective.10 Endostatin has been 
associated with vascular manifestations in SSc and is specifically elevated in progressive SSc and has been considered as 
a marker of SSc severity and potentially as a therapeutic target.55 Periostin is secreted by fibroblasts and epithelial cells and is 
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Table 2 Non-Antibody Protein Biomarkers in SSc

BioMarker In SSc SSc Severity/Activity Association Therapeutic 
Target

● Toll-like receptors (TLRs) Elevated 

activation

Positive Potential

● Damage-associated molecular patterns (DAMPs) Elevated Positive Potential

● Transforming growth factor-b (TGF-β) Elevated Positive, ILD Potential

● Cytokeratin 17 (CK17) Elevated Negative, Less active disease Potential

● Marginal zone B1 protein (MZB1) Elevated Positive, ILD Potential

● Leucine-rich α2-glycoprotein-1 (LRG1) Elevated Positive, ILD, Extensive skin fibrosis Potential

● Endostatin Elevated Positive, Vascular manifestations Potential

● Basic Fibroblast growth factor (FGF) Reduced Negative Potential

● Platelet-activating factor acetylhydrolase-β subunit  
(PAF-AHβ)

Reduced Negative Potential

● Periostin Elevated Positive, severity, skin fibrosis, cardiac fibrosis Potential

● CC chemokine 2 (CCL2 or MCP-1) Elevated Positive, severity, skin fibrosis Potential

● MicroRNA miR-138 Reduced Negative, severity, skin fibrosis Potential

● MicroRNA miR-27a Reduced Negative Potential

● Serum soluble suppression of tumorigenicity 2 (ST2) 

receptor
Elevated Positive, hand and articular involvement Potential

● Angiopoietin-1 (Ang-1) Reduced Negative, Vascular manifestations Potential

● Angiopoietin-2 (Ang-2) Elevated Positive, Vascular manifestations Potential

● Protein sialic acid–binding Ig-like lectin 1 (SIGLEC-1) Elevated Positive Potential

● Type 1 Interferons Elevated Positive, ILD, Musculoskeletal Yes

● Interleukin 6 (IL-6) Elevated Positive, ILD Yes

● Receptor-activated tyrosine kinases Elevated Positive, ILD Yes

● Janus kinases (JAK) Elevated Positive, ILD, skin Yes

● Signal transducer and activator of transcription (STAT) 
proteins

Elevated Positive Potential

● Intercellular adhesion molecule 1 (ICAM-1), Elevated Positive, Vascular manifestations, skin Potential

● Vascular cell adhesion molecule 1 (VCAM-1) Elevated Positive, Vascular manifestations, skin Potential

● Tissue thrombin Elevated Positive, Vascular manifestations, skin Yes

● Tissue inhibitor of matrix metalloproteinase 4 (TIMP-4). Elevated Positive, Vascular manifestations Potential

● Peroxisome proliferator-activated receptors (PPAR- γ) Reduced Negative, Vascular manifestations Potential

● Adiponectin Reduced Negative, ILD, Extensive skin fibrosis Potential

● Lysophosphatidic acid (LPA) and LPA receptors Elevated Positive Yes

(Continued)
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associated with cell adhesion, fibrosis, angiogenesis, survival, and matrix remodeling.56,57 Circulating levels of periostin are 
elevated in SSc and are associated with disease duration, skin fibrosis, and cardiomyopathy.58 CC chemokine 2 (CCL2) has 
been implicated in the development of fibrosis in SSc.59

MicroRNAs (miRNAs) are short nucleotide sequences involved in cellular regulation. The microRNAs miR-138 and 
miR-27a suppress major pathways involved in epithelial to mesenchymal cell transition and subsequent fibrosis, and the 
relative expression of miR-138 and miR-27a are significantly lower in patients with SSc compared to controls, while only 
miR-138 is further depressed in diffuse cutaneous SSc, thus potentially both could be used as a diagnostic biomarker with 
miR-138 specifically to predict severity.60–62 The suppression of tumorigenicity 2 (ST2) receptor binds IL-33 and the 
serum soluble ST2 (sST2) suppresses IL-33 signaling.63 Elevated serum levels of sST2 serum levels are associated with 
higher articular disease activity and greater hand dysfunction in SSc, indicating that sST2 might be a biomarker to predict 
SSc articular involvement.64

Angiopoietins (Ang-1 and Ang-2) interact with the specific tyrosine kinase receptor Tie2 to modulate endothelial cell 
activation, vascular modeling, and angiogenesis.65 Ang-1 is decreased and Ang-2 increased in SSc patients relative to 
controls, and this imbalance may contribute to both vascular ablation and the formation of abnormal new blood vessels.

An increased activation and expression of type 1 interferons are typical in SSc and appear similar to interferon 
abnormalities observed in systemic lupus erythematosus and may similarly provide a potential therapeutic target.66–68 

Increased IFN-I is associated with anti-U1-RNP antibodies, anti-topoisomerase antibodies, and more aggressive lung, 
skin, and skeletal muscle involvement.69.70 Dendritic cells in the tissues of patients with SSc are typically activated and 

Table 2 (Continued). 

BioMarker In SSc SSc Severity/Activity Association Therapeutic 
Target

● Tissue inhibitors of matrix metalloproteinases  

(TIMP-4).
Elevated Positive Potential

● Semaphorins (Sema3A-F) Elevated Positive, Vascular manifestations Potential

● Interleukins (1, 4, 10 13, 16, 17B, 17E, 17F, 18, 21.22, 32, 35) Elevated Positive Potential

● Chemokines CCL (2,3,5,13,20,21,23) Elevated Positive Potential

● Chemokines CXC (8,9,10,11,16) Elevated Positive Potential

● Chemokine CX3CL1 (fractalkine) Elevated Positive Potential

● Growth differentiation factor-15 (GDF-15) Elevated Positive Potential

● Maresin 1 Reduced Negative, Digital ulcers Potential

● Galectin 3 Reduced Negative, Extensive skin fibrosis, diffuse cutaneous 

SSc

Potential

● Soluble thrombomodulin (sTM) Elevated Positive, Specifically pulmonary arterial 

hypertension

Potential

● Cluster of differentiation 163 (CD163) Elevated Positive, Pulmonary arterial hypertension, Digital 

ulcers

Potential

● Salusin-alpha Elevated Positive, Associated with therapy Potential

● Nuclear receptor subfamily 4A Reduced Negative Potential

● Amino acid, lipid, and tricarboxylic acid metabolites Variable Variable Potential

● Fecal calprotectin Elevated Positive, Gastrointestinal disease Yes

Abbreviation: ILD, Interstitial lung disease.
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produce IFN-α and CXCL4 with the unexpected presence of TLR8, an RNA-sensing TLR.50,69 CXCL4 modulates IFN-I 
responses by metabolic reprogramming of dendritic cells and an increased fibrotic phenotype.70 Similarly, an increased 
expression of IFN-I–associated genetic loci correlates with a higher ILD progression rate.54,68 The IFN-regulated protein 
sialic acid–binding Ig-like lectin 1 (SIGLEC-1) is upregulated in SSc compared to controls but does not associate with 
specific complications.71

Drugs that interfere with INF-1 signaling and thus the downstream activation of tyrosine kinases, inflammation, and 
fibrotic processes have considerable potential for the therapy of SSc.72 Anifrolumab is a monoclonal antibody directed against 
IFN-I receptor subunit 1 and has been shown to be effective in systemic lupus erythematosus.68 In early clinical trials, 
anifrolumab has also been shown to clinically decrease fibrosis in SSc and is associated with upregulation of type III collagen 
degradation markers and downregulation of T cell–associated proteins both suggesting a reduced fibrotic state.73

Tyrosine kinases that are activated downstream by INF-1 signaling include receptor-activated tyrosine kinases (for 
example, receptor kinases activated by growth factors - platelet-derived growth factor, fibroblast growth factor, or 
vascular endothelial growth factor) and nonreceptor tyrosine kinases (c-Abl, Src, Janus, and STATs).74 Receptor- 
activated tyrosine kinases and their ligands are implicated in the migration, proliferation, ECM secretion, differentiation, 
and contraction of fibroblast precursors, tissue fibroblasts and myofibroblasts in SSc, and thus are intimately involved in 
the fibrotic process.75–77 Nintedanib, an inhibitor of receptor activated tyrosine kinases, has been shown to be effective in 
reducing pulmonary fibrosis in SSc and down-regulating fibrotic processes, confirming the role of receptor activated 
tyrosine kinases in the pathologic processes of SSc.74–77

Similarly, downstream from INF-1 signaling in SSc is increased levels of IL-6 in SSc that ultimately activate nonreceptor 
tyrosine kinases especially Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) proteins resulting 
in fibroblast differentiation, proliferation, and ECM and collagen production, providing promising therapeutic targets.51,78,79 

In line with these observations, tocilizumab, an IL-6 receptor blocker shown to be effective in ILD of SSc, reduces biomarkers 
of inflammation, ECM turnover, and macrophage activation, including collagen degradation and formation neoepitopes.80,81 

Further, there is early evidence that the JAK inhibitors tofacitinib and baricitinib reduce fibrosis in SSc in both lungs and skin, 
consistent with the known role of JAK/STAT activation in fibrosis in SSc.82–86

SSc manifests extensive endothelial injury, upregulation of intercellular adhesion molecule 1 (ICAM-1), vascular cell 
adhesion molecule 1 (VCAM-1), E-selectin, a von Willebrand factor (vWF), tissue factor (TF), and tissue thrombin resulting 
in local hypercoagulability.85,86 Enhanced expression of thrombin stimulates endothelial cells and fibroblasts, resulting in 
enhanced collagen production, reduced matrix metalloproteinases, and expansion of the ECM contributing to the fibrosis of 
SSc. SSc is characterized by increased endogenous thrombin potential, thrombin expression, and endothelial damage 
biomarkers as well as lower thrombomodulin, fibrinolysis, and platelet levels associated with vasculopathy and digital 
ulcers.84,85 These findings suggest that thrombin inhibitors might be useful for SSc, and early human studies using the 
thrombin inhibitor dabigatran preliminarily demonstrated reasonable safety and reduced skin thickness, suggesting that 
thrombin inhibitors are a viable therapeutic possibility.86

Peroxisome proliferator-activated receptors (PPARs) are ligand-responsive transcription factors of the nuclear hormone 
receptor family.87 PPAR- γ is in particular an anti-inflammatory receptor that down-regulates activation of macrophages, 
lymphocytes, and dendritic cells. PPAR-γ reduces fibrogenesis by interfering with the TGFβ pathway by inhibiting the TGFβ 
driven differentiation of fibroblasts into active myofibroblasts, thus limiting collagen and ECM formation and decreasing 
tissue contraction.88,89 Thus, impaired PPAR-γ expression or function may contribute to the excessive fibroblast activation and 
fibrosis of SSc. Expression of PPAR-γ is markedly diminished in skin tissues, lung biopsies, and fibroblasts from patients with 
SSc, and PPAR-γ appears to be downregulated by excessive expression of TGF-ß.90 Adiponectin, a marker for PPAR-γ 
activation is also decreased in SSc, and these reduced levels are associated with the degree of skin fibrosis, suggesting that both 
adiponectin and membrane PPAR-γ are potential biomarkers for SSc.91 However, circulating PPAR-γ is increased in SSc, 
suggesting a ligand scavenger effect that prevents membrane PPAR-γ activation thus promoting fibrogenesis.92 PPAR-γ 
agonists reduce lung fibrosis and skin thickness in animal models of SSc, suggesting that the PPAR-γ pathway and PPAR-γ 
agonists are important potential therapeutic approaches.93

Lysophosphatidic acid (LPA) is a lipid mediator that is generated by the enzyme lysophospholipase (autoxain) 
wherever there is cell injury or inflammation, and LPA binds to G protein-coupled LPA receptors (LPAR1–6).94 
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LPAR1 after activation mediates the physiological effects of LPA including migration, survival, and infiltration of 
macrophages, activation of inflammasomes, release of proinflammatory mediators, including IL-1 and IL-18, promoting 
differentiation of mesenchymal cell to myofibroblasts, and collagen excretion.52 Circulating LPA is increased in SSc 
patients compared to controls and thus is a natural biomarker and target for treatment of SSc.94,95 Treatment of SSc 
patients with an LPAR1 inhibitor resulted in decreases in skin scores and a reduction in LPA-related activation genes, 
indicating a potentially useful intervention, although more clinical trials are required.96

SSc is generally characterized by the abnormal accumulation of ECM.1,97 ECM catabolism is regulated by matrix 
metalloproteinases (MMP-1 to MMP-28) whose activity is in turn inhibited by tissue inhibitors of MMPs (TIMP-1 to 
TIMP-4).98,99 In this line, the inhibitor, TIMP-4, is increased in SSc patients with respect to healthy subjects.100 

Similarly, semaphorins (Sema3A-F) have anti-angiogenic effects and are increased in SSc patients.101,102

The cytokines, interleukins and chemokines are often elevated in SSc. IL-1, IL-4, IL-6, IL-10 IL-13, IL-16, IL-18, IL- 
22, IL-32, and IL-35 have all been reported to be elevated in SSc.103–105 IL-17A is not specifically increased, while IL- 
17B, IL-17E, and IL-17F are higher SSc.106 The chemokines CCL2,3,5,13,20,21,23, CXC8,9,10,11,16, CX3CL1 
(fractalkine), and growth differentiation factor-15 (GDF-15) are all increased in SSc.11,104,107–111 Adiponectin and 
maresin 1 are reduced, while galectin 3 is higher in SSc patients.112–114 Thrombomodulin (TM) and cluster of 
differentiation 163 (CD163) are elevated in SSc.115,116 Salusin-alpha, a regulator of secretion of pro-inflammatory 
cytokines and vascular smooth muscle proliferation, is increased in SSc.117 The nuclear receptor subfamily 4A (including 
NR4A1, NR4A2, and NR4A3) are important down regulators of inflammation and fibrosis in SSc, and enhancing the 
expression of these receptors may be an approach to treating SSc.118

Recently, metabolic profiling has also be applied to SSc, demonstrating alterations in homocysteine, proline, alpha- 
N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine, citrulline and ornithine, kynurenine, tryptophan, 
acylcarnitines associated from long-chain fatty acids, and tricarboxylic acids such as citrate and succinate with 
differences between the different SSc subtypes.119

In the following sections the role of biomarkers relevant to specific organ system disease in SSc will be discussed.

Interstitial Lung Disease (ILD) in SSc (SSc-ILD)
SSc is frequently complicated with interstitial lung disease (ILD) as a major contributing cause of both mortality and 
disability.15,16 Approximately 65–85% of patients with SSc develop ILD (SSc-ILD) of variable severity and 25–30% 
develop aggressive disease that is associated with the significant mortality of 40% over a 10-year period.1,19,120,121 Lung 
involvement results in an estimated 35% of all SSc-related deaths.122 Risk factors of SSc-ILD include male sex, diffuse 
cutaneous SSc, African American heredity, and the presence of anti–Scl-70 (anti-topoisomerase I) antibodies.123,124

Lung endothelial damage is central to the pathogenesis of ILD. The typical histologic pattern in SSc-ILD is 
nonspecific interstitial pneumonia unlike idiopathic pulmonary fibrosis that is usually a usual interstitial pneumonia 
pattern.1 SSc-ILD is characterized by inflammation early in the disease, extensive endothelial dysfunction, and increased 
deposition of ECM, especially collagen produced by activated myofibroblasts in resident tissues.1,12,20 The increased 
ECM increases the stiffness of lung tissues resulting in restrictive lung disease with reduction of lung compliance, 
decreased lung volumes and decreased diffusion capacity resulting in impaired exercise tolerance, dyspnea, fatigue, 
hypoxia, increased pulmonary artery pressures, work disability, and reduced life expectancy. The pathological process is 
believed to be initiated by repetitive epithelial and endothelial cell injury with activation of the immune system, 
recruitment of fibroblasts, and phenotypic transformation of the fibroblast to a myofibroblast that then secretes excessive 
ECM resulting in fibrosis.125 The initial endothelial and epithelial injuries are likely to be autoimmune and inflammatory 
in nature but could be induced also by pathogens and environmental factors.126 Apoptosis occurs in certain epithelial 
cells denuding the alveoli, and simultaneously other epithelial cell transition into myofibroblasts with reduced apoptosis, 
loss of polarity, increased migration, and increased production of ECM, including collagen.53 The reduced apoptosis of 
myofibroblasts may cause abnormal persistence of these active cells, contributing the progressive fibrosis.53

SSc-ILD is detected after diagnosis by high-resolution CT (HR-CT) and progression by both HR-CT and pulmonary 
function tests (PFT) (Figure 2).127–129 Quantitative CT has also been used to detect early SSc-ILD and differentiate it 
from interstitial pneumonia and to more precisely follow the progression of SSc-ILD.130 Recently, intercostal ultrasound 
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has also been used to screen for SSc-ILD to detect characteristic B-lines and subpleural disease.131 Significant or 
progressive SSc-ILD usually prompts therapy. The PFT-based OMERACT (outcome measures in rheumatic diseases) 
detects progression of SSc-ILD defined as ≥10% decline in forced vital capacity (FVC) or ≥5% to <10% decline in FVC 
with ≥15% relative decline in DLCO.129,132 It should be realized, however, that with effective therapy for SSc-ILD, the 
lung fibrosis is stabilized or the rate of decline of lung function is reduced, rather than complete restoration of lung 
function.20 Thus, the emphasis for earlier diagnosis and prompt therapy of SSc-ILD before significant irreversible lung 
damage has accumulated.

The general treatment guidelines for SSc-ILD have recently been reviewed and revised.133–136 Drugs used to treat SSc- 
ILD include non-specific immunosuppressives (cyclophosphamide, mycophenolate), specific immunosuppressive drugs 
including anti-IL-6 agents (tocilizumab), anti-B-cell drugs (rituximab), and antifibrotic agents (nintedanib - a tyrosine kinase 
inhibitor).20,137,138 The non-specific immunosuppressives, mycophenolate, an inhibitor of the synthesis of guanosine nucleo-
tides, and cyclophosphamide, an alkylating agent, decrease proliferation of fibroblast, T-helper cells, and B-cells, and thus, 
have significant anti-fibrotic effects.139,140 Indeed, mycophenolate is currently considered the standard and basic underlying 
therapy for SSc-ILD.20 Tocilizumab is increasingly used for SSc-ILD. Tocilizumab inhibition of the IL-6 receptor decreases 
myofibroblast activation and reduces M2 macrophage polarization, both important to the antifibrotic effects of 
tocilizumab.141,142 B cell depletion suppresses pro-fibrotic macrophage differentiation and thus inhibits fibrosis, providing 
an additional rationale for unapproved but often used anti-B cell agents such as rituximab in SSC-ILD.143 The anti-fibrotic 
drug nintedanib, a tyrosine kinase inhibitor, inhibits the receptors of PDGF, FGF, and vascular endothelial growth factor 
(VEGF), reducing fibrosis.75 However, the anti-fibrotic pirfenidone appears to have less beneficial effects in SSc and is 
presently not approved for treatment of this entity.144 JAK inhibitors have been used and seem to be effective for refractory 
cases of SSc-ILD, but remain off-label.51 For rapidly progressive disease non-responsive to these agents or for very early SSc- 
ILD, an alternative is autologous haematopoietic stem cell transplant (AHSCT) and for end-stage lung disease lung 
transplantation.14,145,146

SSc-ILD has been especially associated with anti-topoisomerase I antibody (anti-Scl-70 antibody), anti-U11/U12 antibodies, 
nucleolar pattern antinuclear antibodies (including anti-RNA-polymerase III, anti-NOR-90, anti-PM/Scl-75, anti-U3-RNP 
/Fibrillarin anti- antibodies) (Table 3).1,147,148 Anti-PM/Scl defines SSc patients with high frequency of ILD, calcinosis, 
dermatomyositis skin changes, and severe myositis.21 Further autoantibodies against anti-phosphatidylinositol-5-phosphate 
4-kinase type 2 beta (PIP4K2B) and AKT serine/threonine kinase 3 (AKT3) have been tied to increased lung fibrosis in SSc.149

Table 3 Biomarkers in SSc-Interstitial Lung Disease (SSc-ILD)

BioMarker SSc-ILD SSc-ILD Severity/ 
Activity Association

Therapeutic 
Target

● Nucleolar pattern antinuclear antibodies Elevated Positive Yes

● Anti-topoisomerase-I antibodies Elevated Positive Yes

● Anti-RNA-polymerase III antibodies Elevated Positive Yes

● Anti-anti-NOR-90 antibodies Elevated Positive Yes

● Anti-anti-Th/To antibodies Elevated Positive Yes

● Anti-U3-RNP/Fibrillarin antibodies Elevated Positive Yes

● Anti-PM/Scl-100 antibodies Elevated Positive Yes

● Anti-U11/U12 antibodies Elevated Positive Yes

● Anti-phosphatidylinositol-5-phosphate 4-kinase type 2 beta (PIP4K2B)- antibodies Elevated Positive Yes

● Anti-AKT serine/threonine kinase 3 (AKT3) antibodies Elevated Positive Yes

(Continued)
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Table 3 (Continued). 

BioMarker SSc-ILD SSc-ILD Severity/ 
Activity Association

Therapeutic 
Target

● Transforming growth factor-b (TGF-β) Elevated Positive Potential

● Marginal zone B1 protein (MZB1) Elevated Positive Potential

● Leucine-rich α2-glycoprotein-1 (LRG1) Elevated Positive Potential

● DNAX accessory molecule 1 (CD226) Elevated Positive Potential

● Interleukin 6 (IL-6) Elevated Positive Yes

● Janus kinases (JAK) Elevated Positive Yes

● Signal transducer and activator of transcription 4 (STAT4) proteins Elevated Negative Potential

● Interferon regulatory factor 5 (IRF5) Elevated Positive Potential

● Interleukin-1 receptor–associated kinase-1 (IRAK1) Elevated Positive Potential

● Connective tissue growth factor (CTGF) Elevated Positive Potential

● Pyrin domain containing 1 (NLRP1,3) Elevated Positive Potential

● T-cell surface glycoprotein zeta chain (CD3ζ or CD247) Elevated Positive Potential

● Krebs von den Lungen-6 (KL-6) Elevated Positive Potential

● Interleukin-8 (IL-8) Elevated Positive Potential

● Leucine-rich alpha-2 glycoprotein 1 (LRG1) Elevated Positive Potential

● Chemokine [C-X-C motif] ligand 3 (CXCL3) Elevated Positive Potential

● Chemokine [C-X-C motif] ligand 4 (CXCL4) Elevated Positive Potential

● Chemokine [C-C motif] ligand 2 (CCL 2) Elevated Positive Potential

● Chemokine [C-C motif] ligand 18 (CCL18) Elevated Positive Potential

● Chemokine [C-C motif] ligand 19 (CCL18) Elevated Positive Potential

● Matrix metalloproteinase-7 (MMP7) Elevated Positive Potential

● Matrix metalloproteinase-12 (MMP12) Elevated Positive Potential

● C-reactive protein Elevated Positive Potential

● Chitinase-3–like protein 1(YKL-40) Elevated Positive Potential

● Sirtuins (SIRT1 and SIRT3) Elevated Positive Potential

● Surfactant protein D (SP-D) Elevated Positive Potential

● Cancer antigen 15–3 (Ca15-3) Elevated Positive Potential

● Intercellular adhesion molecule 1 (ICAM-1) Elevated Positive Potential

● Cold-inducible RNA-binding protein (CIRP) Elevated Positive Potential

● Adiponectin Reduced Negative Potential

● HLA-DRB1 alleles Present Positive Uncertain
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Transforming growth factor-b (TGF-β) is produced by stressed or injured lung cells that stimulate and recruit tissue 
macrophages that amplify TGF-β production that then up upregulates genes responsible for ECM production and 
progressive fibrosis.53,54,113,150 Other biomarkers typically implicated in SSc-ILD include STAT4, CD226 (DNAX 
accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor–associated kinase-1 (IRAK1), 
connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain 
(CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6 (Krebs von den Lungen-6), IL-8, LRG1, and 
CCL19, as well as genetic factors including DRB1 alleles.1,7,55,127,151–156 The biomarkers most associated with active 
lung disease and progression specifically in SSc-ILD are KL-6, SP-D (surfactant protein), C-reactive protein, and CCL19 
although other non-specific biomarkers can also be elevated.1,152 Th2-lymphocytes produce IL-13 and IL-4 that stimulate 
fibroblasts and activate the pro-fibrotic M2 macrophages that induce TGF-β, platelet-derived growth factor (PDGF), and 
fibroblast growth factors (FGF) inducing myofibroblast activation.104 The biomarker chemokines including CCL18, 
CX3CL1 and CXCL4 with and without RNA complexes have recently been associated with SSc-ILD.59,108,152,155,157

IL-6 is important in the progression of SSc-ILD and is secreted by myofibroblasts, M1 macrophages, and 
B-cells.15,143 IL-6 enhances the expression of IL-4 and IL-13-receptors increasing polarization of M2 macrophage and 
enhancing fibrosis.158,159 This central role is further supported by tocilizumab inhibition of the IL-6 receptor decreasing 
myofibroblast activation and reduced M2 macrophage polarization, resulting in a portion of the demonstrated antifibrotic 
effects of tocilizumab in the setting of SSc-ILD.141 B-cell activation is also common in SSc, and B cells increase 
a number of angiogenic factors.160 B cell depletion suppresses pro-fibrotic macrophage differentiation and thus inhibits 
fibrosis, providing rationale for anti-B cell agents, such as rituximab in SSC-ILD.143

Of the above biomarkers, autoantibodies and C-reactive protein are the only biomarkers typically used in contem-
porary routine clinical practice. In that line, if anti-topoisomerase-I antibodies are present and the anticentromere 
antibodies are not present, there is an increased incidence of progressive SSc ILD.1,124,161 However, various other 
biomarkers are being explored for clinical use including KL-6, CCL18 (chemokine [C-C motif] ligand 18), MMP7 
(matrix metalloproteinase-7), MMP12 (matrix metalloproteinase-12), IL-6, CXCL4 (chemokine [C-X-C motif] ligand 4), 
CXCL3 (chemokine [C-X-C motif] ligand 4), and chitinase-3–like protein 1(YKL-40) as recently reviewed.1,132 MMP- 
12 are raised in SSc-ILD compared with SSc without ILD and correlated with the degree of pulmonary fibrosis.162 

Sirtuins are NAD-dependent protein deacetylases that regular angiogenesis; SIRT1 and SIRT3 correlate with the degree 
of lung fibrosis in SSC.162 The chemokine CCL2 is increased in SSc and predicts long-term progression of SSc-ILD.163 

The cold-inducible RNA-binding protein (CIRP) was also associated with SSc-ILD and may be a marker of disease 
activity and response to therapy.164 Jee et al have recently described a composite biomarker index consisting of SP-D, 
Ca15-3 and ICAM-1 that identifies SSc-ILD.165 The use of biomarker panels, composite biomarker measures, machine 
learning, and artificial intelligence is a growing trend in the field.165–167

In conclusion, multiple arms of the immune system are activated in SSc-ILD, providing many candidate biomarkers 
and potential therapeutic targets with the trend being the use of biomarker panels with combined complex multifactor 
analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy.

Vascular Injury in SSc Including Pulmonary Arterial Hypertension (PAH)
The most obvious clinical manifestation of vascular disease in SSc is Raynaud’s phenomenon (RP) and digital 
ischemia.168, RP is followed by telangiectases, ischemic digital ulcers, pitting scars, periungual microvascular abnorm-
alities, pulmonary arterial hypertension (PAH) (Figure 3), and cardiac disease affecting function and exercise 
tolerance.15,169–171 All are considered outcomes of vascular injury in SSc as recently reviewed by Pattanaik et al.172

PAH occurs in 7% to 19% of SSc patients depending on the population and duration of the disease.19 Risk factors for 
PAH include severe Raynaud’s phenomenon, severe digital ischemia, cutaneous telangiectasia, chronic disease, late onset 
of disease, older age, postmenopausal status, reduced diffusion capacity (DLCO < 50%), DLCO/alveolar volume less 
than 70%, forced vital capacity/DLCO less than 1.6 and an elevation in right ventricular systolic pressure greater than 2 
mmHg/year.173 Screening should include specific autoantibodies (anti-topoisomerase I (SCL-70), anti-centromere and 
anti-RNA polymerase III and antiphospholipid antibodies), pulmonary function tests, echocardiography, serum 
N-terminal pro-brain natriuretic peptide (NT-proBNP), nail fold capillaroscopy, and initial high-resolution CT to exclude 
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ILD, and if there is a question of PAH, a right heart catheterization to determine PA pressure.174–178 Treatment of PAH in 
SSc has recently reviewed with guidelines and includes a stepwise approach using single agents or combined therapy 
with phosphodiesterase type 5 (PDE-5) inhibitors (including sildenafil and tadalafil), soluble guanylate cyclase (sGC) 
stimulators (including riociguat), endothelin receptor antagonists (including bosentan, ambrisentan, and macitentan), 
prostacyclin analogs (epoprostenol, treprostinil and iloprost), or selective prostacyclin IP receptor agonists (selexipag) 
supported by anticoagulants, diuretics, digoxin, and calcium channel blockers where appropriate.133,174,178,179

Raynaud’s phenomenon (RP) can occur without a systemic disease (primary RP), but RP is an almost universal SSc- 
associated phenomenon with a characteristic 3-phase color change associated with symptoms of pain, burning, ischemia, 
and in some cases, ischemic ulcers and/or necrosis of the digits.163,180,181 Bernero et al have demonstrated that a large 
proportion of initially primary RP progress to secondary RP – that is they eventually develop a definite autoimmune 
disease such as SSc or other autoimmune disease.181 The pathophysiology of RP is similar to the other mechanisms of 
vascular injury in SSc discussed in detail in this section. New methods to quantify RP beyond nailfold capillaroscopy 
include laser Doppler imaging, laser speckle contrast analysis, thermal imaging, and color and spectral Doppler 
imaging.182,183 Pharmacologic therapy for RD has recently been reviewed and is generally initiated first with calcium 
channel blockers, and if ineffective followed by PDE-5 inhibitors or fluoxetine with endothelin-1 receptor blockers and 
intravenous prostanoids reserved for the most resistant cases.133–136,182,184

Vascular injury and subsequent fibrosis may occur from the activation and apoptosis of endothelial cells, specific 
autoantibodies, infectious agents, endogenous hypercoagulability, reactive oxygen species, as well as other causes 
providing many potential biomarkers (Table 4).84,185 Once activated endothelial cells secrete endothelin-1 (ET-1), von 
Willebrand factor (vWF), nitric oxide, and endothelial nitric oxide synthase, resulting in instability of the vascular tone 
with less vasodilation and more vasoconstriction causing tissue ischemia and hypoxia.186–188 Endothelin-1 stimulates 
fibroblasts to convert to activated myofibroblasts with increased ECM secretion, intimal hyperplasia, luminal narrowing, 
reduced capillary blood flow vessel obliteration, and ischemia.189 Local secretion of von Willebrand factor causes platelet 
aggregation, hypercoagulability, and fibrin deposition leading to terminal vascular damage.186–188 Myofibroblasts are also 
created by the endothelial-to-mesenchymal transition.128 Activated endothelium also expresses increased adhesion 
molecules and specific chemokines, recruiting immune cells and perivascular infiltrates leading to further inflammation 
and fibrosis.186–190 Notably, angiogenesis is also reduced due to imbalanced cytokines including endothelial growth 
factor (VEGF), matrix metalloproteinase (MMP)-9, endoglin, ET-1) and angiostatic (pentraxin 3 (PTX3), MMP-12, 
endostatin, angiostatin, semaphorin3E (Sema3E), and Slit2) factors and the dysfunction and impaired recruitment of 
endothelial progenitor cells (EPCs).169,191–193

Figure 3 Computed tomographic (CT) Image of the Mediastinum. CT angiographic image of thorax in a SSc patient demonstrating a markedly dilated pulmonary artery 
(arrow) without thrombus consistent with pulmonary artery hypertension (PAH).
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Table 4 Biomarkers in SSc-Pulmonary Arterial Hypertension (PAH)

BioMarker SSc-PAH SSc-PAH 
Severity/Activity 
Association

Improves 
with 
Therapy

● N-terminal pro-brain natriuretic peptide (NT-proBNP), Elevated Positive Yes

● L-selectin (CD62L) Elevated Positive Yes

● P-selectin Elevated Positive Yes

● Intercellular adhesion molecule 1 (ICAM-1) Elevated Positive Yes

● Vascular cell adhesion molecules (VCAMs) Elevated Positive Yes

● Platelet and endothelial Adhesion Molecule-1 (PECAM-1) Elevated Positive Yes

● Vascular endothelial growth factor (VEGF-A, -B, -C, and –D) Elevated Positive Yes

● Tissue thrombin Elevated Positive Yes

● Transforming growth factor-b (TGF-β) Elevated Positive Yes

● Endothelin-1 (ET-1) Elevated Positive Yes

● Endostatin Elevated Positive Yes

● Angiostatin Elevated Positive Uncertain

● Matrix metalloproteinase-9 (MMP-9) Decreased Negative Yes

● Matrix metalloproteinase-12 (MMP-12) Elevated Positive Uncertain

● Tissue Inhibitor of matrix metalloprotease-4 (TIMP-4) Elevated Positive Uncertain

● Neuropilins (NRP1-2) Elevated Positive Uncertain

● Slit glycoproteins (Slit1-3) Elevated Positive Uncertain

● IL-18 binding protein levels Elevated Positive Uncertain

● Interleukin-32 (IL-32_) Elevated Positive Uncertain

● Macrophage migration inhibitory factor (MIF) Elevated Positive Uncertain

● Chemokine [C-X-C motif] ligand 15 (CXCL15) Elevated Positive Uncertain

● Chemokine [C-X-C motif] ligand 16 (CXCL16) Elevated Positive Uncertain

● Chemokine [C-C motif] ligand 20 (CCL 20) Elevated Positive Uncertain

● Chemokine [C-C motif] ligand 21 (CCL21) Elevated Positive Uncertain

● Chemokine [C-C motif] ligand 23 (CCL23) Elevated Positive Uncertain

● Growth differentiation factor 14 (GDF14) Elevated Positive Uncertain

● Resistin Elevated Positive Uncertain

● Adipsin Elevated Positive Uncertain

● Interferon-gamma Elevated Positive Uncertain

● Interferon type 1 Elevated Positive Uncertain

● Thrombomodulin (TM) Elevated Positive Yes
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Enhanced endogenous thrombin generation potential and higher thrombin peak are present in SSc, accompanied by 
increased inflammatory markers, increased factor VIII activity, blood eosinophilia, thrombocytopenia, reduced VCAM-1, 
and lower thrombomodulin, indicating an important role for the thrombin system in vascular injury of SSc.84 Dabigatran, 
a direct thrombin inhibitor, is well tolerated in SSc patients with ILD and appears to show some improvements, but long- 
term clinical trials still need to be performed.86

Peroxisome proliferator-activated receptor-gamma (PPAR) is an important regulator of fibroblast growth, ECM 
formation, and connective tissue remodeling.87–92 PPAR interferes with the TGFβ pathway by inhibiting the ability of 
TGFβ to induce fibroblasts from differentiating into myofibroblasts and inhibiting collagen production via the transcrip-
tional coactivator system.89 PPAP activity and expression of adiponectin, a sensitive and specific index of PPAR activity, 
are both reduced in SSc and associated with more progressive skin fibrosis.91 Circulating levels of PPAR are increased in 
SSc, particularly in diffuse cutaneous SSc with increased skin fibrosis, suggesting a defect in PPAR expression in SSc 
that interferes with activation of membrane bound PPAR enhancing fibrosis.92 PPAR agonists are effective in reducing 
fibrosis in animal models of SSc; thus, activation of PPAR and levels of adiponectin have potential as biomarkers for 
fibrotic activity in SSc.93,194

Selectins are molecules that permit cell trafficking and cell homing. L-selectin (CD62L) is expressed on leukocytes, 
P-selectin is expressed on platelets, and E-selectin is present on endothelial cells and megakaryocytes, but there have been 
inconsistent results regarding selectins in SSc104 immunoglobulin-like cell adhesion molecules including intercellular 
adhesion molecules (ICAMs), vascular cell adhesion molecules (VCAMs), and junctional adhesion molecules (JAMs). 
Circulating levels of ICAM-1 and VCAM-1 are higher in SSc patients with digital ulcers than without but may not be 
predictive of the occurrence of new DUs in SSc.195 Similarly, VCAM-1 can be elevated in SSc both with and without 
PAH.190 JAMs are adhesion molecules on endothelial cells, fibroblasts, epithelial cells, and blood cells, and circulating 
levels have been associated with microvascular disease and digital ulcers.102,190 Soluble VCAM-1, ICAM-1, and P-selectin 
are elevated in SSc-PAH compared to controls and with effective therapy with bosentan return to normal values.196

The vascular endothelial growth factor (VEGF) family includes the VEGF-A, -B, -C, and –D, and placental growth factor 
and are elevated in both the blood and skin in SSc.8,66,166,195,197, VEGF levels also correlate with PAH but are lower in patients 
with digital ulcers.129,198,199 TGF-β remains important to all the manifestations of SSc including PAH.200 Endoglin (CD105) is 
an accessory receptor for TGF-β and higher circulating endoglin correlated with digital ulcers, suggesting that this was 
a biomarker for vascular injury in SSc.201

Endothelin-1 (ET-1) is secreted by endothelial cells and activated smooth muscle cells, fibroblasts, epithelial cells, 
and inflammatory cells.202 Increased ET-1 is present in SSc-PAH when compared to SSc patients without PAH and 
healthy controls.203 Treatment with bosentan decreased ET-1 in SSc patients with PAH to levels present in SSc without 
PAH, indicating that this biomarker could detect the severity of vascular injury and the response to bosentan therapy.203

Pentraxin 3 is a receptor produced by activated endothelial cells, macrophages, smooth muscle cells, dendritic cells, and 
fibroblasts.204 However, levels of pentraxin 3 have only variable associations with vasculopathy in SSc204 Endostatin, is an 
angiostatic peptide that blocks VEGF activity and has been associated with PAH, scleroderma renal crisis, and cardiac 
involvement11 Angiostatin antagonizes a number of growth factors, including VEGF and is elevated in patients with more 
advance vascular disease in SSc11,205 Matrix metalloproteinases break down ECM and levels of MMP-9 are decreased in SSc- 
PAH and upregulated with bosentan therapy, while MMP-12 was increased patients with digital ulcers and nailfold capillary 
abnormalities.206,207

SSc-PAH is associated with elevated tissue inhibitors of metalloproteinases including TIMP-4 levels, indicating 
a cardiopulmonary vasculature-specific role of TIMP-4 activation in SSc.100 Neuropilins (NRP1-2) are non-tyrosine kinase 
glycoprotein receptors expressed on endothelial cells and are potential biomarkers predicting PAH, nailfold capillary 
abnormalities, and digital ulcers.102,166 The slit glycoproteins (Slit1-3) are implicated in angiogenesis and are increased in 
SSc and in patients with microvascular disease.208 Sirtuins (SIRT1-7) NAD-dependent protein deacetylases that regulate 
angiogenesis; SIRT1 and SIRT3 are decreased in SSc and microvascular disease, and SIRT3 specifically is related to the 
presence of digital ulcers.162 Carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-positive monocytes are 
associated with inflammation and ILD in SSc patients.209

https://doi.org/10.2147/JIR.S379815                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 4646

Muruganandam et al                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Circulating IL-18 binding protein levels are higher SSc positively correlated with PAH.103 Similarly, IL-33 and 
soluble suppression of tumorigenicity 2 (ST2) are increased in SSc especially with digital ulcers and PAH.210 IL-32 and 
macrophage migration inhibitory factor (MIF) are elevated in SSc patients with PAH.211 Chemokines CCL20, CCL21, 
and CCL23 are also elevated in SSc-PAH.107–109 Elevated levels of CXCL4 and reduced levels of CXCL5 have recently 
also been associated with SSc-digital ulcers.212,213 Similarly, the chemokines CXCL16 and GDF15 are elevated in SSc- 
PAH.110,197 CX3CL1 (fractalkine) is elevated in SSc with digital ulcers.111 Resistin is increased in SSc with digital ulcers 
and in SSc-PAH.214 Galectin 3 was also found to be higher in SSc patients with digital ulcers.68 Adipsin, visfatin, 
interferon-gamma, and type 1 interferons are elevated in SSc-PAH.66,215–217 Aptamer proteomics of serum exosomes 
define patterns that could distinguish primary Raynaud’s disease from early SSc and with RNA networks are potential 
biomarkers for vascular disease in SSc.180,218,219

Thrombomodulin (TM), CD163, and NT-proBNP are elevated in SSc-PAH.115,116,220 Elevated levels of maresin 1 are 
associated with the development of digital ulcers in SSc.50 Elevated asymmetric dimethylarginine (ADMA) is an 
endogenous nitric oxide (NO) inhibitor that affects endothelial function and is elevated in microvascular disease in 
SSc.221,222 Hypochromic erythrocytes have been closely associated with the prognosis of SSC-PAH.223 Hemoglobin and 
ferritin are significantly lower in patients with pulmonary hypertension (PH) in SSc compared to those with pulmonary 
hypertension, while uric acid and NT-proBNP are significantly higher.224 Circulating CCL21 in SSc is a biomarker 
associated with PAH and the development of PAH.108

Many molecules have been associated with the vascular complications of SSc, thus there are many potential 
biomarkers for PAH and vascular disease in SSc.

The Skin in SSc
Skin thickening is universal in SSc and generally necessary for a definite diagnosis with certain exceptions18 There are 
many candidate biomarkers for skin disease in SSc (Table 5). Generally, anti-topoisomerase-I and anti-RNA polymerase 
III antibodies are associated with more extensive and severe skin involvement, while anti-centromere antibodies are 
associated with limited skin involvement.1,2,4,225 Further, autoantibodies against PIP4K2B and AKT3 have been tied to 
more extensive skin fibrosis in SSc.149 In skin biopsies, TGF-β1, TGF-βR1, and TGF-βR2 expression levels are higher in 
SSc patients than controls.226 IL-6 and JAK associated pathways are also implicated in the skin thickening both directly 

Table 5 Biomarkers in SSc Skin Disease

BioMarker SSc Skin 
Disease

SSc-skin Severity 
Association

Therapeutic 
Target

● Nucleolar pattern antinuclear antibodies Elevated Positive Yes

● Anti-topoisomerase-I antibodies Elevated Positive Yes

● Anti-RNA-polymerase III antibodies Elevated Positive Yes

● Anti-centromere antibodies Elevated Negative Yes

● Anti-phosphatidylinositol-5-phosphate 4-kinase type 2 beta (PIP4K2B)- antibodies Elevated Positive Yes

● Anti-AKT serine/threonine kinase 3 (AKT3) antibodies Elevated Positive Yes

● Transforming growth factor-β (TGF-β1, βR1, βR2) Elevated Positive Potential

● TGF-β- associated biomarkers (OSMR, SERPINE1, CTGF) Elevated Positive Potential

● Marginal zone B1 protein (MZB1) Elevated Positive Potential

● Sirtuins (SIRT1 and SIRT3) Elevated Positive Potential

● Macrophage-associated biomarkers (CD14, IL13RA1) Elevated Positive Potential

(Continued)
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and by response to specific inhibitors that block these pathways.227,228 Skin gene-expression of macrophage-associated 
biomarkers (CD14, IL13RA1) and TGF-β- associated biomarkers (OSMR SERPINE1, CTGF) are associated with 
progression of skin disease in SSc.229 Marginal zone B1 protein (MZB1) appears to be a good biomarker for skin 
fibrosis.10 Circulating levels of periostin are elevated in SSc with extensive skin fibrosis.58 Sirtuins are NAD-dependent 
protein deacetylases that regular angiogenesis; SIRT1 and SIRT3 correlated with the degree of skin fibrosis in SSC.162 

Adiponectin is reduced in SSc involved skin.114 Recently, the fibrillar collagen molecule COL4A1, the matricellular 
protein COMP, the gene coding for spondin SPON1, TNC, and another ECM protein were upregulated in SSc skin and 
completely distinguished SSc from normal skin.230

Skin thickness in SSc often improves spontaneously over time, confounding many interventional trials as recently 
reported with belimumab and nintedanib.231–233 However, contemporary treatment guidelines note that mycophenolate, 
cyclophosphamide, and methotrexate have been demonstrated to improve the modified Rodnan skin score and reduce 
skin thickness in SSc.133,178,179,234,235 Methotrexate can be problematic in SSc since it can occasionally cause lung 
inflammation that can be confused with SSc-ILD.236 Recently, the JAK inhibitor tofacitinib, although not approved for 
SSc, was shown to be more effective than methotrexate in decreasing the modified Rodnan skin score, skin thickness by 
ultrasound, and musculoskeletal symptoms and reduced interferon regulated biomarker genes in SSc.142,237 Ziritaxestat is 
a small-molecule selective autotaxin inhibitor and reduced the modified Rodnan skin score in SSc and thus is a promising 
new agent currently under clinical trials.238 There is some evidence that rituximab and tocilizumab also improve skin 
scores in SSc.81,227,228,239,240

Skin ulceration in SSc is classified as calcinosis-related, traumatic, or ischemic.241 Treatment of skin ulceration in SSc 
includes avoiding vasoconstrictors (eg, caffeine, amphetamines, cocaine, nicotine), cold temperature, and trauma, the 
cessation of tobacco products, and appropriate wound care. Ulcerations from calcinosis cutis in SSc develop from 
hydroxyapatite crystal deposition within the subcutaneous tissues and may be treated with surgical excision or debride-
ment, topical antibiotics, low-dose tetracyclines (minocycline or doxycycline) or topical or intravenous sodium 
thiosulfate.242,243 Vasodilators to treat and prevent skin ulceration are similar as used for Raynaud’s phenomenon and 
include calcium channel blockers (especially amlodipine and nifedipine), topical nitroglycerin ointment, and phospho-
diesterase inhibitors (cilostazol, sildenafil).244,245

Table 5 (Continued). 

BioMarker SSc Skin 
Disease

SSc-skin Severity 
Association

Therapeutic 
Target

● Periostin Elevated Positive Potential

● Leucine-rich α2-glycoprotein-1 (LRG1) Elevated Positive Potential

● Interleukin 6 (IL-6) Elevated Positive Yes

● Janus kinases (JAK) Elevated Positive Yes

● Periostin Elevated Positive Potential

● CC chemokine 2 (CCL2 or MCP-1) Elevated Positive Potential

● Galectin 3 Reduced Negative Potential

● Fibrillar collagen molecule COL4A1 Elevated Positive Potential

● Matricellular protein COMP Elevated Positive Potential

● Sirtuins (SIRT1 and SIRT3) Elevated Positive Potential

● Adiponectin Reduced Negative Potential
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The Gastrointestinal System in SSc
The gastrointestinal system involvement in SSc is profound and includes bowel and esophageal dysmotility and fibrosis, 
bowel ischemia, primary sclerosing cholangitis, primary biliary cirrhosis, bacterial overgrowth, increased bowel malig-
nancies, and bowel inflammation amongst other complications.246 Outcomes are usually anatomically specific; however, 
a gastrointestinal patient reported outcome, the Scleroderma Clinical Trial Consortium GIT 2.0 has been used recently.247 

Treatment of gastrointestinal complications is typically focused on individual problems of gastroesophageal reflux 
(proton pump inhibitors, H2-blockers, sucralfate), stricture (dilation), dysmotility and bacterial overgrowth (erythromy-
cin, azithromycin, metoclopramide, domperidone, cisapride).248 In the line of biomarkers, anti-U11/12 antibodies have 
been associated with severe gastrointestinal dysmotility.31 Further, there are elevated fecal levels of the inflammatory 
biomarker calprotectin in SSc, suggesting that fecal calprotectin could be an effective biomarker for bowel disease as it is 
in other inflammatory bowel diseases.249,250

Biomarkers of Renal Disease in SSc
Renal manifestations of SSc are dominated by scleroderma renal crisis (SRC), while true immune-mediated glomer-
ulonephritis and interstitial nephritis that occur in SSc are usually associated with overlap disease of SSc with vasculitis 
and/or systemic lupus erythematosus or drug reactions rather than pure SSc.251–253 SRC is characterized by malignant 
hypertension, microangiopathic hemolysis, microthrombosis, thrombocytopenia, vasospasm, and progressive renal fail-
ure that can be provoked by corticosteroids, cocaine, cyclosporine, and tacrolimus.251,254,255 Pathologically, SRC is 
characterized by rather bland or subtle findings, but may demonstrate the typical “onion bulb” histopathology, hyper-
plasia of the juxtaglomerular apparatus, membranoproliferation, renovascular endothelial injury, intimal proliferation, 
thrombotic angiopathy, fibrin microthrombi, hemolysis, mesangiolysis, narrowing of renal arterioles, vasospasm, vascular 
occlusion, ischemia, necrosis, vascular remodeling, and eventual fibrosis with associated with hyperreninemia and 
accelerated hypertension.251,256

Diagnostic criteria for SRC are as follows: 1) systolic blood pressure (SBP) >140mm Hg, 2) diastolic blood pressure 
(DBP) >90 mm Hg, 3) increase in baseline SBP ≥ 30 mm Hg, 4) rise in DBP ≥20 mm Hg, 5) increase in serum creatinine by 
≥50% over baseline or serum creatinine >120% of upper limit of normal for the local laboratory, 6) proteinuria ≥2+ by dipstick 
and confirmed by spot urine protein:creatinine ratio ≥ upper limit of normal, 7) hematuria ≥2+ on dip stick or ≥10 red blood 
cells/high power field, 8) platelet count <100,000/mm3, 9) hemolysis (evidenced by schistocytes, RBC fragments on 
peripheral blood smear and elevated reticulocyte count), and in certain studies, 10) hypertensive encephalopathy.255,257–259 

Prevention of SRC is based on avoiding the use of high-dose corticosteroids and vasoconstrictants in SSc. Therapy of SRC has 
recently been reviewed and is focused on the early diagnosis of SRC, prompt use of angiotensin-converting enzyme inhibitors, 
dialysis, plasma exchange, and other supportive measures including eculizumab or endothelin-1 blockage in completely 
resistant cases in anticipation that the renal function will recover.133,251,260,261

Risk factors for SRC (Table 6) include diffuse cutaneous involvement, rapidly progressive skin thickening, disease 
duration <4 years, anti-RNA polymerase III antibodies, antiphospholipid antibodies, autoantibodies to methionine sulfoxide 

Table 6 Biomarkers for Predisposition to Renal Disease in SSc (RD-SSc)

Clinical Biomarkers for 
Predisposition to RD-SSc

Autoantibody and Immunogenetic 
Biomarkers for Predisposition to RD-SSc

Biomarkers for Onset of in RD-SSc

● Diffuse cutaneous involvement
● Rapidly progressive skin thickening
● Disease duration <4 years
● Drug use: Corticosteroids, cocaine, 

cyclosporine, and tacrolimus

● Speckled pattern antinuclear antibodies
● Anti-RNA polymerase III antibodies
● Absence of anti-centromere antibodies
● Anti-fibrillarin antibodies
● Antiphospholipid antibodies
● Autoantibodies to methionine sulfoxide reductase A
● HLA-DRB types 1*0407 and 1*1304

● Hypertension
● Renal insufficiency
● New cardiac events (pericardial effusion, con-

gestive heart failure, arrhythmias)
● Intravascular hemolysis and anemia
● Thrombocytopenia
● Elevated renin
● Abnormal urine
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reductase A, absence of anti-centromere antibodies, new cardiac events (pericardial effusion, congestive heart failure, 
arrhythmias), anemia due to intravascular hemolysis, the HLA-DRB types 1*0407 and 1*1304, and prior drug use, 
particularly corticosteroids and vasoconstrictants.258,259,261

Biomarkers of SRC (Table 7) include hypertension, elevated uric acid, decreased renal function, thrombocytopenia, 
hemolytic anemia, and elevated serum-soluble CD147 and CD163, renin, mannose-binding lectin (MBL), endothelin-1, 
soluble vascular adhesion molecules, E-selectin, lipocalin-2, angiogenin, apelin, chemerin, complement components, and 
NT-proBNP levels.251,254,261–264 Serum soluble CD147 (sCD147), an ECM metalloproteinase inhibitor and CD163 
(sCD163), cysteine-rich scavenger receptor, have been shown to be elevated in patients with SRC.202,264 Similarly, 
increased endothelin-1 levels and endothelin receptor carriage have been associated with SRC.265–267 Similarly, soluble 
vascular adhesion molecules (VCAM-1) and soluble E-selectin have been associated with SRC.258,268 NT-proBNP is 
a useful biomarker for SRC and predicts the need for dialysis and renal outcome.266,269 CXCL10 is an IFN-inducible 
chemokine and potent chemoattractant for Th1 cells and is found to be elevated in patients with SRC.8 IL17B is 
increased specifically in SSc with renal abnormalities compared to those without.106

Anti-fibrillarin antibodies, anti-RNA polymerase III antibodies, and speckle pattern ANA have been most closely 
associated with the development of SRD; however, in certain populations anti-topoisomerase antibodies have also been 
associated with high incidences of SRC.251,258,267,270–272 Antiphospholipid antibodies, in particular, IgG antiphospholipid 
antibodies, are a significant risk factor for renal disease in SSc versus antibody negative patients.273 Autoantibodies to 
methionine sulfoxide reductase A, an important enzyme in the antioxidant pathways, have been associated with the 
development of renal and cardiac disease in SSc.274

Renin, although increased in SRC and central to the pathology and treatment of SRC, is not predictive of SRC, as it is 
often elevated in SSc patients without SRC.251,275 Elevated serum uric acid, a purine metabolite, can be associated with 

Table 7 Biomarkers for Active Renal Disease and SRC in SSc

Clinical Biomarkers Blood and Serum Biomarkers Renal and Urine Biomarkers

● Extreme hypertension
● Severe headache
● New cardiac events (pericardial effusion, 

congestive heart failure, arrhythmias)
● Hypertensive encephalopathy
● Acute seizures

● Elevated uric acid
● Elevated creatinine
● Thrombocytopenia
● Hemolytic anemia (schistocytes, RBC frag-

ments, elevated reticulocytes)
● Elevated serum renin
● Elevated N-terminal pro-brain natriuretic 

peptide (NT-proBNP)
● Elevated serum-soluble CD147 and CD163
● Elevated serum mannose-binding lectin 

(MBL)
● Elevated serum endothelin-1
● Elevated serum E-selectin
● Elevated serum vascular cell adhesion 

molecule 1 (VCAM-1)
● Elevated serum lipocalin-2
● Elevated serum endostatin
● Elevated serum angiogenin
● Elevated serum apelin
● Elevated serum chemerin
● Elevated serum CXCL10
● Elevated serum C4d
● Elevated IL-17B
● Reduced serum C3bBbP
● Reduced soluble terminal complement 

complex (sTCC)

● Decreased renal function (elevated creatinine, 

decreased glomerulofiltration rate)
● Proteinuria
● Hematuria
● Elevated urine monocyte chemoattractant pro-

tein 1 (MCP1)
● Elevated soluble vascular cell adhesion molecule 

1 (VCAM-1)
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inflammation, endothelial dysfunction, and renal dysfunction.276 Gigante et al have demonstrated in SSc that uric acid is 
significantly associated with serum creatinine, renal artery resistivity and decreases in glomerulofiltration rate (GFR), as 
well as multivascular damage in SSc.276 Similarly, disordered levels of pro-angiogenic molecules and angiogenesis 
inhibitors have been associated with the progression of renal microvascular damage, defective vascular repair and fibrosis 
in SSC. Specifically, levels of endostatin, an inhibitor of angiogenesis, have been found to be elevated in renal disease in 
SSc, and are associated with decreased GFR, increased renal artery resistivity, and progression of peripheral micro-
vascular disease.204,277 High levels of both angiogenin and lipocalin-2 are associated with decreased GFR and may be 
involved in pathogenesis of SRC.265,278,279 Apelin and chemerin are adipokines that bind to receptors on endothelial cells 
and are elevated in SRC.280–283 The complement system also appears to be involved in SRC, with higher levels of C4d 
and lower levels of C3bBbP and soluble terminal complement complex (sTCC) in SSc patients with SRC versus without 
SRC.198 Mannose-binding lectin (MBL) is also involved in the complement system, and MBL levels are substantially 
increased in SRC compared to SSc without SRC.263 In the urine, monocyte chemoattractant protein 1 (MCP1) and 
soluble adhesion molecule vascular cell adhesion molecule 1 (VCAM-1) are elevated in SSc patients with renal disease 
compared to those without renal disease.284

As summarized in Table 6 and Table 7, there are multiple biomarkers that associated with the risk for SRC in SSc or 
delineate the activity of SRC, and many of these biomarkers are intimately involved in both the pathogenesis and 
characteristics of the disorder.

Conclusion
The field of biomarkers in SSc continues to expand in scope and complexity. The sheer number of molecules, pathways, and 
receptors involved in the pathology of SSc reflects the many complexities and nuances of the disease. Tyrosine kinases, 
interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysopho-
sphatidic acid and receptors, and amino acid metabolites have all provided new biomarkers and the potential for new 
therapeutic agents. Because multiple arms of the immune system and healing mechanisms are activated in SSc-ILD, and 
there are many candidate biomarkers and potential therapeutic targets, with the trend being the use of biomarker panels with 
combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and 
response to therapy. Biomarkers are likely to be of increasing importance for research as well as for the diagnosis and 
therapeutic approaches to SSc and associated disease manifestations.
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