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Abstract: To attain a comfortable building interior, building windows play a crucial role. Because
of the transparent nature of the window, it allows heat loss and gain and daylight. Thus, they are
one of the most crucial parts of the building envelope that have a significant contribution to the
overall building energy consumption. The presence of dust particles on a window can change the
entering light spectrum and creates viewing issues. Thus, self-cleaning glazing is now one of the
most interesting research topics. However, aside from the self-cleaning properties, there are other
properties that are nominated as glazing factors and are imperative for considering self-cleaning
glazing materials. In this work, for the first time, Hf-doped ZnO was investigated as self-cleaning
glazing and its glazing factors were evaluated. These outcomes show that the various percentages
of ZnO doping with Hf improved the glazing factors, making it a suitable glazing candidate for the
cold-dominated climate.

Keywords: glazing; Hf-ZnO; building; g-value; U-value; glare; thermal comfort; visual comfort;
CCT; CRI

1. Introduction

Currently, buildings consume 40% of energy globally, which is due to the heating,
ventilation and air conditioning load. This consumption has an adverse impact on the
environment [1]. According to United Nations, migration from rural to urban areas is
alarming and increasing every day. This urban influx also increases modern buildings’ en-
ergy consumption to maintain indoor comfort facilities [2–4]. Buildings generally consume
high levels of energy due to their poorly thermally insulated envelopes [5]. Compared to
other portions of envelopes, windows are critical, as they are the only parts of the building
envelope that maintain the connection between the building’s interior and the exterior and
allow daylight to penetrate [6].

The glazing sector is predominantly controlled by antireflection, self-cleaning and
energy-saving, which are the key three principal functions [7]. For a hot climate, reflecting
the solar heat or more precisely reflecting the NIR and IR part of the solar spectrum is the
most strategic decision, which in turn reduces the air conditioning load [8,9]. However, an-
tireflection is not suitable for cold climates as it is essential for the reflecting solar spectrum
to be transmitted through the window to enhance the room temperature [10,11]. Hence,
there is a trend now of replacing the traditional single- and double-glazed windows with
advanced technology such as smart switchable EC [12], SPD [13–16], PDLC [17], thermally
activated PCM [18], hydrogel [19,20], aerogel [21] or vacuum [22,23] filled windows.

The self-cleaning type of window is another class or area that can be applied to any type
of building window (e.g., traditional and smart). Atmospheric pollutants possess significant
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viewing challenges for window glazing. Dust includes emissions from agriculture and
industry, bird droppings, pollen, mineral dust in a dry area, fibers, sand and clay [24].
Daylight transmission into buildings is affected by the deposition of atmospheric pollutants
on glazing [25]. Even in a clean UK climate, building windows suffer from dust [26]. Thus,
a cleaned window is indispensable for a sustainable building. Depending on the particle
diameter, they either fall from the glass surface or stick on the surface. Even though the
glass surface looks smooth, it has microscopically small pocks which enhance the attraction
of dirt [27–29]. A self-cleaning glazing or window is a thin self-cleaning coating of film
on the external surface of the glass, which protects it from dirt [30]. Generally, two types
of self-cleaning technologies are available: hydrophobic and hydrophilic. Self-cleaning
glazing is capable of cleaning its own surface. For self-cleaning coating, transparency is
essential, as it should not create any obstacles to indoor viewing. In addition, long-term
durability is crucial for cost-effectiveness.

In the past, several self-cleaning materials have been investigated particularly for
photovoltaic applications [31,32] and window [33,34] applications. Zinc oxide (ZnO) is
one of the most bio-friendly important semiconductors that have been investigated for
self-cleaning applications. A superhydrophobic ZnO nanorods@cellulose membrane for ef-
ficient building radiative cooling was investigated [35]. ZnO-coated transparent wood was
employed for building applications previously and showed 17% energy saving compared
to a traditional window [36]. In another work, a ZnO nanoparticle enhanced paraffin-filled
window was investigated for double glazing which showed improved efficiency [37]. To
further enhance the ZnO properties, Dy2WO6-doped ZnO [38], Sm3+-doped ZnO [39] and
Hf-doped ZnO [40] have been investigated for self-cleaning. ZnO for self-cleaning is one of
the most popular approaches [41].

Because of the similar ionic radii, Hf-doped ZnO has potential. Transition metal ion
doping enhances the surface oxygen vacancies, which improves the self-cleaning behavior.
The inclusion of lower-concentration hafnium increases oxygen vacancy defects and pro-
duces hydrophilic surfaces. Previously, hafnium oxide (HfO2) was prepared by electron
beam evaporation, and three layers of HfO2/Ag/HfO2 showed heat mirror properties
for energy-efficient window application [42]. We previously developed morphologically
varied ZnO for self-cleaning application [43] and synthesized high-quality Hf-ZnO thin
films with various Hf contents [40]. However, the suitability of ZnO in terms of glazing for
building window applications has not yet been investigated.

How a new material will behave as a building window can be understood by analyzing
its thermal and visual comfort parameters [44,45]. The solar heat gain coefficient or solar
factor is one of the major influential factors that determine the indoor room temperature
and thus define the thermal comfort level [46]. Most often occupants prefer a 20 ◦C
temperature in indoor conditions [47,48]. For a cold climate, a higher solar factor is
essential as it increases the room temperature and maintains a comfortable level, whereas
for a hot climate, the solar factor should be limited or rejected to limit the increase in
room temperature [49,50]. Visual comfort includes both the illuminance level and the color
properties. Bright ambient daylight is paramount for cognitive work [51]. However, this
amount should not exceed a certain level, or else discomfort glare will dominate. External
daylight transmitted through the window glazing attains wavelength changes, which can
create discomfit for occupants [52–54]. Color property analysis tackles these challenges.

In this work, for the first time, Hf-doped ZnO was investigated for glazing application.
Thus, to understand its suitability as a future self-cleaning fenestration, glazing factor and
thermal and visual comfort analyses are essential. Employing the measured transmission
spectrum of different Hf-doped ZnO, essential glazing factors such as solar and luminous
transmission, solar material protection factor (SMPF) and solar skin protection factors
(SSPFs) have been calculated. For thermal comfort analysis, the solar factor has been
evaluated. Further, correlated color temperature (CCT), color rendering index (CRI) and
glare have also been calculated to understand the visual comfort and suitability of this
material for building fenestration application.
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2. Experiments
2.1. Materials Fabrication for Glazing

The material for the self-cleaning glazing purpose was developed using hafnium
IV chloride (HfCl4), propanol (C2H5OH), triethanolamine (C6H15NO3) and zinc acetate
(Zn(CH3COOH)2·2H2O), which were purchased from Sigma Aldrich (St. Louis, MI, USA)
and used without any further purification. Pure and Hf-doped ZnO were synthesized using
the sol–gel synthesis method with Hf concentrations varying from 0 to 15%. Briefly, 2.2 g
of Zn(CH3COOH)2·2H2O was made to dissolve completely in 10 mL of C2H5OH. Then,
C6H15NO3 was carefully poured into the above-prepared solution, where the molar ratio
of triethanolamine:zinc acetate was kept at 3:5. The resultant mixture was maintained at
room temperature for 5 min. Part of this sol was directly taken for preparation of pure ZnO,
and the rest was separated into batches, wherein a particular amount of HfCl4 was added,
and stirred at 90 ◦C for 1 h, thereby forming the sol for Hf-doped ZnO. These as-prepared
sols were taken for the thin-film coating on glass substrates, via spin coating (Ossila spin
coater, Sheffield, UK), carried out at 500 rpm for 30 s. The as-deposited thin films were
taken for annealing in a muffle furnace at 350 ◦C for 2 h. Finally, the pure and Hf-doped
ZnO thin films on glass substrates were obtained after cooling down to room temperature
and were further taken for characterization and application purposes. Figure 1 shows the
schematic representation of different involved steps for the synthesis of the material.
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Figure 1. Schematic illustration of involved steps for synthesis of hafnium-doped ZnO.

2.2. Optical Characterization

For optical characterization of the developed glazing, a PerkinElmer Lambda 1050
spectrometer (Waltham, MA, USA) which could measure the visible and NIR transmission
and reflection was employed. This system had a 150 nm diameter-based integrating sphere,
and measurement was carried out at 10 nm intervals.

3. Methods
3.1. Glazing Factor Evaluation

Solar and luminous transmittance was evaluated by employing Equations (1) and (2),
respectively. T(λ) is the spectral transmission of glazing. The relative spectral distribution
of the illuminant is D65, S(λ) is the relative spectral distribution of solar radiation, V(λ) is
the spectral luminous efficiency of a standard photopic observer, and wavelength interval
is represented by ∆λ.

Protection factors are crucial building window parameters that show the ability of
a window to protect the building material and human skin (located behind the window)
when they are exposed to solar radiation [55]. The solar material protection factor (SMPF)
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is associated with the protection of building material, and the solar skin protection factor
(SSPF) is associated with the human skin [56]. SMPF and SSPF both vary between 0 and
1 [57]. Values close to 0 indicate a low protection level, whereas close to 1 indicate a high
protection level. SMPF and SSPF are represented by Equations (3) and (4).

Solar transmission

τs =

2500 nm
∑

λ = 300 nm
S(λ)T(λ, α)∆λ

2500 nm
∑

λ = 300 nm
S(λ)∆λ

(1)

Luminous transmission

τv =

780 nm
∑

λ = 380 nm
D65(λ)T(λ, α)V(λ)∆λ

780 nm
∑

λ = 380 nm
D65(λ)V(λ)∆λ

(2)

Solar material protection factor (SMRF)

SMRF = 1 −

600 nm
∑

λ = 300 nm
T(λ)CλSλ∆λ

600 nm
∑

λ = 300 nm
CλSλ∆λ

(3)

where Cλ = e−0.012λ.
Solar skin protection factor (SSPF)

SSPF = 1 −

400 nm
∑

λ = 300 nm
T(λ)EλSλ∆λ

400 nm
∑

λ = 300 nm
EλSλ∆λ

(4)

Eλ is the CIE erythemal effectiveness spectrum.

3.2. Thermal Comfort

The amount of solar energy transmitted through the transparent and semitransparent
part of the window is represented by the solar heat gain coefficient or solar factor (g). This in-
cludes entering infrared radiation into a building’s interior and solar transmittance [55,57].

g = τs + qi = τs + α hi
hi + he

= τs + (1 − τs − ρs)
hi

hi + he

(5)

where he and hi are the external and internal heat transfer coefficients.

3.3. Visual Comfort

Quality and quantity of light in indoor conditions are essential to understanding and
analyzing visual comfort. Correlated color temperature (CCT) and color rendering index
(CRI) both indicate the quality of indoor daylight [58]. Compared to external daylight, CRI
shows the rendering ability of the incoming daylight. CCT is measured in kelvin (K) and
signifies a light source’s “coolness” and “warmth”. CRI over 80 is accepted for building
window application, and CRI over 90 is outstanding [59–61]. For CCT, the range between
3000 K and 7500 K is desired for transmitted daylight.

CCT was calculated from McKamy’s equation [62].

CCT = 449n3 + 3525n2 + 6823.3n + 5520.33 (6)
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where n = (x − 0.3320)
(0.1858 − y) and x and y are chromaticity coordinates.

The color rendering index (CRI) is given by

CRI =
1
8

8

∑
i=1

Ri (7)

The total distortion ∆Ei is determined from

∆Ei =
√
(U∗

t,i − U∗
r,i)

2 + (V∗
t,i − V∗

r,i)
2 + (W∗

t,i − W∗
r,i)

2 (8)

The special color rendering index Ri for each color sample is given by

Ri = 100 − 4.6∆Ei (9)

To understand the quality of the indoor light, daylight glare evaluation is essential;
daylight glare was evaluated in this work by employing glare subjective rating (SR) (as
shown in Equation (10)) [63]. Minimum engagement of photosensors makes this method
widely available and useful because it saves time and cost [64]. Theoretically, glare control
potential using this glazing was identified from measured outdoor illuminance on a vertical
plane as shown in Figure 2. This SR index allows the estimation of discomfort glare
experienced by subjects when working at a visual daylight task (VDT) placed against a
window of high or non-uniform luminance.

SR = 0.1909E0.31
v (10)
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Figure 2. Schematic cross-section of a room with perovskite glazing mounted on vertical south facade.

SR for a typical sunny day in the cold-dominated climate of Penryn, UK (50.16◦ N,
5.10◦ W), was examined. Vertically south-facing Hf-doped ZnO glazing having dimensions
of 30 × 30 × 0.5 (l × w × h) cm in the scale model was considered, as shown in Figure 2.
This large area resembles self-cleaning glazing as a large facade, while the internal surface
was painted in white color with a reflectance of 0.8 [65]. Internal vertical illuminance (EV)
facing the window (worst case) was measured at the center of the room. Table 1 displays
the criterion scale of SR. This method also allows the non-intrusive measuring equipment
necessary for scale model daylighting assessments [66,67].

Table 1. Criterion scale of discomfort glare subjective rating (SR) [63].

Comfort Level Indicator Glare Subjective Rating (SR)

Just intolerable 2.5
Just disturbing 1.5

Just noticeable/acceptable 0.5
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4. Results
4.1. Optical Transmission

Figure 3a shows the spectral transmission of various Hf-doped ZnO for the wavelength
range between 250 and 2500 nm. Transmission dropped for 15% Hf doping, while the
highest transmission was observed for 6% Hf doping. The product of the spectral luminous
efficiency for photopic vision V(λ) and relative spectral distribution of illuminant D65(λ)
has been included for comparison; it varied from 400 nm to 700 nm, having its peak at
555 nm. Figure 3b shows the comparison of single value solar and visible transmission for
pure and different Hf-doped ZnO. Pure ZnO showed 87% solar transmission, while 3%,
6%, 9%, 12% and 15% showed 87%, 99%, 88%, 86% and 73%, respectively. Extraordinary
changes occurred while the Hf doping percentage was 6%. Visible transmissions for pure
and different Hf-doped ZnO are 75% (pure), 88% (3%), 93% (6%), 69% (9%), 91% (12%) and
39% (15%).
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Figure 4 illustrates the solar material protection factor and skin protection factor for
pure and different Hf-doped ZnO. The material protection factor was higher for 15% Hf-
doped ZnO, which was the reason for its lower transmission. Less solar transmission
indicates lower degradation. The skin protection factor was lowest for the 12% Hf-doped
ZnO, which was due to its highest transmission.
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4.2. Comfort Analysis

Figure 5 illustrates the solar factor for self-cleaning glazing based on different Hf-
doped ZnO. The solar factor is a crucial element for building glazing as its presence is
highly recommended for a cold climate, whereas its rejection is essential for a hot climate.
In this work, 6% Hf-doped ZnO showed the best solar factor for the cold-dominated climate.
However, if this glazing is adopted in a heat-dominated climate, 15% Hf-doped ZnO should
be selected. High values of solar factors indicate that the reflection of solar radiation from
these glazings is minimal. This is also aesthetic as high reflection can cause issues for the
other building users.
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Color properties, including CCT and CRI, were calculated for Hf-ZnO glazing using
Equations (6) (CCT) and (7) (CRI) and are shown in Figure 6. The 12% Hf-doped ZnO
had the best CRI (>98) and CCT (>6200). Interestingly all the doped ZnO samples had
higher CRI than the pure ZnO. These values satisfy the acceptance level for the comfort
level criteria as prescribed in CIE CIR [68,69] and IES TM 30–15 [70]. In addition, it can be
proposed that CRI and CCTs are not dependent on a single transmittance value, but their
dependency relies on the overall spectrum range. A very similar outcome was previously
demonstrated for other types of glazing [71,72].
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Figure 7 shows the SR for different Hf-doped ZnO and pure ZnO-based glazing for
a vertical south-facing large glazed facade located in cold-dominated climate of Penryn,
in the southwest of the UK. A typical clear sunny day was considered for this analysis.
The location of the subject is shown in Figure 2. It is clear from the figure that except
for the 15% Hf-doped ZnO, others were not able to maintain the glare. This is definitely
due to the high transmission rate for all the different Hf-doped and pure ZnO-based
glazings. For a cold climatic country where the heating load is high, this penetration of
higher solar light could be beneficial from a thermal comfort point of view, although visual
comfort may be compromised. However, this argument is true for any type of window for
which it is not possible to attain visual and thermal comfort concomitantly. The promising
factor for this type of coating is a high transmission, which is key for any self-cleaning
material. Transmission reduction on a double glass due to self-cleaning coating is not at all
acceptable. Except for building windows, this analysis also strongly recommended the use
of this material for self-cleaning coating for the PV system as no transmission reduction is
attained and mostly very high transmission was achieved, particularly for the 3%, 6% and
12% Hf-doped ZnO.
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5. Conclusions

In this work, glazing factors and thermal and visual comfort analyses of a self-cleaning
coated glazing were examined. This particular self-cleaning coating was developed by
the sol–gel method with the introduction of 3%, 6%, 9%, 12% and 15% Hf doping of ZnO.
Results of these doped ZnO samples were also compared with pure ZnO. The visible
transmission was always higher for the 6% doped ZnO. The protection factor had no trend
with an increase in Hf doping. The lowest protection factor was observed at 12% Hf doping.
CRI’s threshold value of 80 was achieved for all the Hf-doped ZnO type glazings. A higher
amount of solar factor also makes this glazing suitable for cold-dominated climates. This
high solar factor also indicates that the glazing possesses lower reflection. The 15% doped
ZnO showed an allowable SR limit compared to other doped ZnO samples. This was
due to the lowest transmission level at the visible wavelength for 15% doped ZnO. This
self-cleaning glazing can be a solution for future energy-efficient window applications.
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Particularly for cold climate conditions, this self-cleaning can be a good candidate for
building window application because of its high solar and visible transmission and high
solar factor. In addition, because of lower reflection, it can also be applied on top of
photovoltaic systems to diminish the soiling issues. In the future, further investigation is
required to understand the reliability of this coating under real weather conditions after
long-term outdoor exposure (following different Köppen climatic conditions).
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