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ABSTRACT: Transition-metal chromophores with earth-abun-
dant transition metals are an important design target for their
applications in lighting and nontoxic bioimaging, but their design is
challenged by the scarcity of complexes that simultaneously have
well-defined ground states and optimal target absorption energies
in the visible region. Machine learning (ML) accelerated discovery
could overcome such challenges by enabling the screening of a
larger space but is limited by the fidelity of the data used in ML
model training, which is typically from a single approximate density
functional. To address this limitation, we search for consensus in
predictions among 23 density functional approximations across
multiple rungs of “Jacob’s ladder”. To accelerate the discovery of
complexes with absorption energies in the visible region while
minimizing the effect of low-lying excited states, we use two-dimensional (2D)efficient global optimization to sample candidate low-
spin chromophores from multimillion complex spaces. Despite the scarcity (i.e., ∼0.01%) of potential chromophores in this large
chemical space, we identify candidates with high likelihood (i.e., >10%) of computational validation as the ML models improve
during active learning, representing a 1000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-
dependent density functional theory verify that 2/3 of candidates have the desired excited-state properties. The observation that
constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of
our construction of a realistic design space and active learning approach.
KEYWORDS: machine learning, transition-metal chromophore, active learning, chemical discovery, density functional theory

■ INTRODUCTION
Transition-metal chromophores are an important design target
because they play a key role in many chemical and biological
processes ranging from natural light harvesting1−3and light-
emitting technologies4 to photocatalysis.5,6 Due to the delicate
interplay7,8 required to tune complex properties, it is
challenging to use a standard Edisonian approach9 to
simultaneously alter metal−ligand interactions, ligand field
strength, electron-donating/withdrawing effects, and the
relative energetic positioning between the ground- and
excited-state potential energy surfaces. Therefore, computation
has been used to facilitate the design of transition-metal
chromophores. One example comes from the work of Dixon
and co-workers,10,11 where they identified a single Fe(II)
complex as a potential luminophore among seven compounds,
a prediction which was recently verified by an experimental
study.12 A notable exception to the small-scale, Edisonian
approach is a recent work13 that utilized high-throughput
experiments to identify heteroleptic Ir(III)-based chromo-
phores. Nevertheless, to facilitate scalable material design,
transition-metal chromophores made with earth-abundant 3d

metals with d6 electron configurations are preferred relative to
their state-of-the-art 4d and 5d metal (e.g., Ru(II) and Ir(III))
analogs.7,8

The combination of virtual high-throughput screening
(VHTS)14−22 and machine learning (ML)23−29 shows great
promise and has started to address combinatorial challenges in
accelerating the design of functional molecules and materials.
In this approach, a large set of materials or molecules are
studied with density functional theory (DFT) to develop
structure−property relationships.20,30−36 Then, either super-
vised learning (i.e., forward) models23−26,37 are trained to
screen a large preconstructed design space or generative (i.e.,
inverse) models38,39 are applied to obtain candidate molecules

Received: October 3, 2022
Revised: November 15, 2022
Accepted: November 16, 2022
Published: December 1, 2022

Articlepubs.acs.org/jacsau

© 2022 The Authors. Published by
American Chemical Society

391
https://doi.org/10.1021/jacsau.2c00547

JACS Au 2023, 3, 391−401

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chenru+Duan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aditya+Nandy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gianmarco+G.+Terrones"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+W.+Kastner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heather+J.+Kulik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacsau.2c00547&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00547?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00547?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00547?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00547?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00547?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jaaucr/3/2?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/2?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/2?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/2?ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacsau.2c00547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org/jacsau?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


with targeted properties. A single-shot train-then-predict
approach usually requires too much computational time for
data generation and can be sensitive to how the compounds
are selected for training. Therefore, active learning with
Bayesian optimization40−42 has been recognized as an
attractive paradigm for balancing data acquisition in ML
model training (i.e., exploration) and ML model-based
prediction (i.e., exploitation) for chemical discovery,43−46

demonstrating a 500-fold acceleration47 compared to random
search.
Despite the success of this active learning approach in many

applications, there remain significant challenges that prevent
experimental realization of the predictions yielded by
computational workflows. First, the outcome depends on the
density functional approximation (DFA) choice. A DFA that
works well on certain systems may fail prominently on other
systems due to the approximations made in the exchange−
correlation functional.17,48,49 When a single-DFA approach is
used in VHTS, the DFA choice can lead to large biases in the
data sets generated, which in turn biases the candidates the ML
models recommend.50 For transition-metal complexes
(TMCs), in particular, the electronic structure is sometimes
dominated by static correlation51 that would make DFT error-
prone, and predictions can be highly sensitive to DFA choice.
Additionally, it is difficult to guarantee that the predicted lead
molecules are synthesizable, despite the ability to add explicit
constraints to ML models.52−54 For TMCs, the synthesizability
problem becomes multiplicative55 (i.e., all ligands comprising a
TMC need to be synthesizable and compatible with complex
formation).
In this work, we apply an active learning approach to

discover 3d6 Fe(II)/Co(III) transition-metal chromophores in
a design space with 32.5M TMCs. Specifically, we use efficient
global optimization,56 which takes the expected or probability

of improvement as the criteria to determine the next points to
sample in active learning (Figure 1). We address the
outstanding challenge of synthesizability of candidate chromo-
phores by carefully crafting the design space with constraints
using synthetically accessible fragments and ligand symmetries
in the Cambridge Structural Database (CSD). We avoid bias
from DFA choice by applying a DFA consensus approach50

that considers property evaluation as an ensemble of
predictions from 23 DFAs that span multiple rungs of “Jacob’s
ladder”.57 Our active learning approach successfully identifies
promising transition-metal chromophores and is estimated to
exhibit a 1000-fold acceleration compared to random sampling.
We reveal that Co(III) complexes with large, strong-field
ligands with more saturated bonds are preferred as candidate
transition-metal chromophores. By introducing electron-
donating or electron-withdrawing functionalization on com-
pounds and invoking electronic fine tuning (i.e., Hammett
tuning effects58), we further enrich the number of potential
transition-metal chromophores and verify our most promising
candidates with time-dependent DFT (TDDFT) calculations.

■ RESULTS AND DISCUSSION

Design Space

We construct and explore a hypothetical design space of TMCs
where all of the constituent fragments (i.e., metal ions and
ligands) are synthetically accessible (Figure 1). We further
constrain the TMCs in the space to contain three bidentate
ligands (e.g., Fe(II)(bpy)3) and restrict ourselves to d6 Fe(II)
or Co(III) metal centers based on the precedent of these
metal/oxidation state combinations forming octahedral geo-
metries that make support efficient chromophores. We limit
the number of unique ligands in a complex to two to promote
the likelihood of synthesizability. We started with 5173 CSD

Figure 1. (Left) Hierarchical assembly of the 32.5M complex design space of transition-metal chromophores. All ligands in the CSD are first
filtered to retain bidentate ligands with common elements, ≤25 heavy atoms, and known charge. The resulting 812 bidentate ligands are paired
with either Fe(II) or Co(III), under the constraint that each complex has ≤2 unique ligand types, to form a design space of 1.3M base complexes.
Lastly, these complexes are expanded to the full design space of 32.5M complexes with functionalization on the coordinating rings with a series of
electron-donating or electron-withdrawing functional groups. (Right) Active learning for discovering DFA consensus-designed transition-metal
chromophores. DFT simulations are performed with 23 DFAs that span multiple rungs of “Jacob’s ladder”, which are used to train independent ML
models. These ML models are applied to predict the ground spin state and Δ-SCF gap of complexes for 23 DFAs, the MR character, and their
corresponding uncertainties. These quantities are used to select complexes with low-spin (LS) ground states and to evaluate the 2D P[I] of the
design space to sample candidate complexes to compute in the next generation. The inset is an illustration of the ML prediction (solid dot),
uncertainty (shaded area), and effective 2D P[I] area (solid outline) for multiple DFAs (blue and green) with respect to a target zone (rectangle
with dashed lines).
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ligands that we curated in previous work,59 which included
assigning the charges for these ligands. From this set, we
selected bidentate ligands that contain common elements (i.e.,
H, B, C, N, O, F, Si, P, S, Cl, Br, and I) and ≤25 heavy (i.e.,
non-hydrogen) atoms, leaving a set of 812 ligands (Supporting
Information). Combined with either Fe(II) or Co(III), the
constraint of forming a complex with up to two unique
bidentate ligands in an octahedral complex with three
bidentate ligands produces 2 × 812 = 1624 homoleptic and
2 × 812 × 811 = 1,317,064 heteroleptic TMCs. We refer to
these 1.3M TMCs as the “base complexes”. Hammett tuning is
a commonly adopted strategy in experiments to fine-tune the
electronic properties of a complex by adding electron-donating
or electron-withdrawing functional groups on conjugated rings.
Here, we consider 3 distinct functionalization positions and 10
functional groups, expanding the final design space to 32.5M
functionalized TMCs, which we refer to as the “functionalized
complex space” (Figure 1; see details in the Exploring the
Functionalized Design Space section). By adding these
constraints to the design space, we expect that the candidate
complexes discovered during the active learning process have a
higher likelihood to be synthesizable.
Active Learning Procedure and Design Criteria

For most applications of transition-metal chromophores, the
photoexcited state should have a lifetime that is sufficiently
long, such that the resulting chemical potential can be
redirected before it is lost to unproductive competing
pathways, with a few exceptions such as photorelease
reactions.60 Correspondingly, it is advantageous to have the
photoexcited electron populate a long-lived metal-ligand
charge-transfer (MLCT) state and avoid low-lying metal-
centered states that deactivate electron transfer from the
expected photoexcited state. Therefore, we target complexes
with low-spin (LS) ground states to increase the likelihood of
MLCT states and to destabilize metal-centered states.8 We also

want target complexes to have weak multireference (MR)
character. Avoiding high MR character has the benefit of
avoiding complexes for which even a consensus DFT approach
is likely to be inaccurate. It is possible to efficiently estimate
MR character from fractional occupation number DFT as the
contribution from nondynamical correlation61,62 (i.e., rND;

63

see the Methods section). When this value is low, we also
anticipate a lack of deleterious low-lying electronic states. In
addition, the absorption energy should fall within the
wavelengths of the visible spectrum, ranging from 1.5 eV
(825 nm) to 3.5 eV (350 nm). The absorption energy is
estimated from Δ-SCF calculations,64 which are more robust
to DFA choice than the highest occupied molecular orbital
(HOMO)−lowest unoccupied molecular orbital (LUMO) gap
from orbital energies (see the Methods section).
We use efficient global optimization to sample TMCs with

LS ground states in a target zone of [1.5, 3.5 eV] for Δ-SCF
gap and [0, 0.307] for rND as candidate transition-metal
chromophores (Figure 1; see details in the Methods section).
To estimate the overall probability of each TMC residing
within the target region, we compute the probability of
improvement in the two-dimensional space (i.e., 2D P[I])
spanned by the Δ-SCF gap and rND. The 2D P[I] score is
amenable to the design goal of discovering complexes with a
range of equally valid Δ-SCF gaps with modest rND values. For
efficient global optimization, we largely followed the
established protocols from our previous work46,47 (Figure 1):
(1) complexes in each new generation were selected by k-
medoids sampling over the full design space, (2) we then used
DFT to evaluate the Δ-SCF gap, rND, and the ground spin state
of these complexes, (3) after combining the new data with data
from previous generations, we retrained our ML models, and
(4) lastly, we used the updated ML models to evaluate the
ground spin state and 2D P[I] of the whole complex space.
This information about the design space is then fed into the

Figure 2. (Left) DFT-computed rND vs Δ-SCF gap for base complexes in gen-0 to gen-3. For each complex, the average Δ-SCF gap over all DFAs
is shown as a circle sized by the corresponding standard deviation (std. dev.) over all DFAs. The range of values sampled in each generation is
indicated by a convex hull. The target zone is shown as a rectangle with dashed lines. Normalized stacked marginal histograms for Δ-SCF gap and
rND are also shown. (Right) The number of complexes in the target zone (black) and the percentage of the design space that has a 2D P[I] > 1/3
(brown) at each generation (top). The 2D P[I] at gen-0 is not available as the ML models have only been trained after gen-0. MAE for rND
(middle) and Δ-SCF gap (bottom) at all combinations of model generations (indicated by color) and data generation (indicated by the number on
the x axis). At each generation, the ML models are trained on the combined training set of all previous generations and are tested on the set-aside
test set of each generation separately. For example, the gen-2 model (blue bars) was trained on the combined training set of gen-0, gen-1, and gen-2
data. Generations are colored as follows throughout: green for gen-0, blue for gen-1, red for gen-2, and orange for gen-3. Gen-0 represents a k-
medoid sampling of the 1.3M base TMC space.
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sampling process (i.e., step 1), closing the active learning loop.
Importantly, because both the ground-state assignment and Δ-
SCF gap are sensitive to DFA choice, we need to consider the
variance of the results from different DFAs (Supporting
Information Figures S1−S3). Therefore, we adopted our
previous DFA consensus procedure,50 where we considered an
ensemble of 23 DFAs that cover the broad spectrum of
“Jacob’s ladder” of functionals to increase the robustness of our
lead candidate chromophores to DFA choice (see the Methods
section).
Active Learning on the 1.3M Base Complexes

We observe a strong negative linear correlation between Δ-
SCF gap and rND for the 2000 TMCs sampled in the initial
generation (gen-0), which introduces difficulties for identifying
candidates with simultaneously low Δ-SCF gap and rND
(Figure 2). This negative linear correlation exists because a
small Δ-SCF gap generally suggests the existence of low-lying
excited states, which would lead to high rND because MR
character arises from near-degenerate occupied and virtual
orbitals. In addition, we find that LS complexes often have
stronger MR character and thus higher rND relative to their HS
counterparts because they can access more configuration state
functions65 (Supporting Information Figure S4). The nature of
this multiple-objective search for transition-metal chromo-
phores suggests that TMCs that can fulfill all our design
requirements will be scarce. Indeed, for the 2000 TMCs in
gen-0, no complex with an LS ground state matches our target
criteria with desirably low Δ-SCF gap and rND (Figure 2). To
put this in context, the lack of suitable compounds in gen-0
suggests an extremely low probability, p, of a TMC residing in
the target region: when p is as low as 0.030%, there would only
be 1/3 chance of finding at least one target complex in 2000
random trials. Our ML models trained on gen-0 data also give
a similarly conservative estimate that only 0.018% of TMCs
have a 2D P[I] > 1/3, i.e., have a one-third chance of
simultaneously fulfilling the two design criteria (Figure 2).
Despite the initial absence of promising transition-metal

chromophores, we used active learning to discover lead TMCs
in the target zone. The distributions of the sampled points in
gen-1 to gen-3 shift toward the target zone due to the
identification of compounds that overcome the trade-off of the
negative linear correlation between Δ-SCF gap and rND present
in gen-0 (Figure 2). Although only 200 complexes are sampled
during each subsequent generation, we discover numerous
TMCs in the target zone once their DFT properties are
explicitly computed. This enrichment is greatest in gen-2,
where we identify 14 new TMCs that fulfill the design criteria,
leading to a rather high (7%) lead conversion rate (i.e., number
of leads over the number of samples). A conservative estimate
using the binomial distribution shows that one would need to
sample 200,000 TMCs randomly in the base complex space to
produce 14 lead complexes, indicating our active learning
approach achieves a 1000-fold acceleration relative to random
sampling. In addition, the ML models improve systematically
as active learning proceeds from gen-0 to gen-3, as exemplified
by the reduction in relative MAEs of predicting the DFT
results for the set-aside test data with each new model
generation (Figure 2, Supporting Information Figure S5; see
the Methods section).
After three generations of active learning, both the number

of TMCs landing in the target zone (i.e., after validation with
DFT) and the percentage of high 2D P[I] complexes decrease,

indicating that most candidate base TMCs have likely been
identified, at the same time as ML model performance levels
off on the 1.3M base complexes. Therefore, we used the gen-3
models to screen through the base complex design space to
reveal chemical trends for the 2432 TMCs that have a
reasonable probability of residing in the target zone (i.e., 2D
P[I] > 1/6). Here, we use a smaller cutoff for 2D P[I] (i.e., 1/6
compared to 1/3) to retain a reasonable number of complexes
for statistical analysis (Supporting Information Figure S6).
From this set, we find that complexes with Co(III) and strong-
field ligands (e.g., coordinating atom combinations of CC, CN,
NP, and PP) are significantly enriched (Figure 3). This likely

occurs due to our requirement of an LS ground state during
the screening procedure (Figure 1). Because we prefer a small
Δ-SCF gap, the complexes that are favored by 2D P[I] tend to
have large ligands, consistent with our previous observation
that Δ-SCF gap has a negative linear correlation with complex
size65 (Figure 3). Lastly, we find that complexes with
reasonable (i.e., >1/6) 2D P[I] tend to consist of ligands
that are more saturated, as measured by their increased inverse
average bond order59 (Figure 3). This trend can be understood
by the fact that unsaturated ligands tend to contain higher MR
character, and complex properties correlate (i.e., are additive)
with those of their constituent ligands59 (Supporting
Information Figure S7). In general, we learn from our ML
models that a complex with Co(III) and large, strong-field, and
relatively saturated ligands would have an increased chance of
being a transition-metal chromophore with the desired
properties.

Figure 3. Comparison of property distributions of the 2432
complexes with 2D P[I] > 1/6 evaluated by gen-3 ML models
(green) and the 1.3M base complexes (blue). Bar plots for the average
number of heavy atoms in the ligands involved in the complexes (top
left) and their coordinating atom types (top right), a pie chart for the
core metal (orange for Fe(II) and pink for Co(III), bottom left), and
a box plot for inverse average (inv. avg.) bond order for the ligands
(bottom right). For each box, the median is shown as a horizontal
solid line, the mean and std. dev. are shown as a dashed diamond, and
the two extrema are shown by the bar.
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Exploring the Functionalized Design Space

Hammett tuning, i.e., functionalization on conjugated rings, is
a common procedure applied in experiments to fine-tune the
electronic properties of a TMC without dramatically sacrificing
its synthesizability.66,67 We considered three possible functio-
nalizable positions, categorized by the bond depth (d, i.e., the
number of bonds that separate two atoms on the molecular
graph) of the H atom on a ring with respect to the metal
(Figure 4). For a six-membered ring, d = 3, 4, or 5 corresponds
to the ortho, meta, and para positions, respectively. For a five-

membered ring, only d = 3 or 4 are feasible. We consider a
wide range of 10 electron-donating or electron-withdrawing
functional groups (Figure 4). To retain good likelihood of
synthesizability, we constrain the in silicofunctionalization
procedure to consist of one unique functionalizable position
and one unique functional group for a TMC and disallow any
combinations with multiple functionalizable positions or
functional group identities. Despite this constraint, the base
design space is expanded by a factor of 25 after accounting for
rings that are not functionalizable, leading to 32.5M TMCs

Figure 4. Procedure for constructing the functionalized TMC design space. (Middle) The 1.3M base complexes used in gen-0 to gen-3 are first
filtered down to 30.1k base complexes that are predicted to have an LS ground state, an average Δ-SCF gap < 4.5 eV, and rND < 0.35, based on gen-
3 ML models. These complexes are then functionalized on the coordinating rings with a chosen position (i.e., d = 3, 4, or 5) and functional group,
enlarging the design space to 0.8M functionalized TMCs to be used in gen-4 to gen-6. (Left) Example of functionalizing the base complex
Co(III)(C19H22N4)2(C16H12N2S4). The base complex and corresponding ligands are shown at the top, where the coordinating atoms are shaded in
gray on the skeleton structures. The functional groups used to perform Hammett tuning are shown in the middle. Two functionalized complexes
(left with NH2 at the d = 3 position and right with CN at the d = 4 position) are shown at the bottom. (Right) Average rND vs Δ-SCF gap for
functionalized Co(III)(C19H22N4)2(C16H12N2S4) at each possible position (blue for d = 3, green for d = 4, and red for d = 5) and functional group.
The target zone is shown as a rectangle with dashed lines. The predicted properties of Co(III)(C19H22N4)2(C16H12N2S4) are shown as a black
circle intersected with solid lines. The insets show the functionalization positions for a six-membered and five-membered ring, respectively.

Figure 5. (Left) DFT-computed rND vs Δ-SCF gap for functionalized complexes from gen-4 to gen-6 (yellow for gen-4, purple for gen-5, and cyan
for gen-6). The base complexes in gen-0 to gen-3 are combined as gen-[0−3] (gray). For each complex, the average Δ-SCF gap over all DFAs is
shown as a circle scaled by the corresponding std. dev. of Δ-SCF gaps. The range of values sampled in each generation is indicated by a convex hull.
The target zone is shown as a rectangle with dashed lines. Normalized stacked marginal histograms for the Δ-SCF gap and rND are also shown.
(Right) The number of complexes in the target zone (black) and the percentage of the design space that has a 2D P[I] > 1/3 (brown) at each
generation (top), with the average shown for the combined gen-[0−3]. MAE for rND (middle) and Δ-SCF gap (bottom) at all combinations of
model generations (indicated by color) and data generation (indicated on the x axis). At each generation, the ML models are trained on the
combined training set of all previous generations and are tested on the set-aside test set of each generation separately. For the combined gen-[0−3],
the MAEs are evaluated on the combined set-aside test sets from gen-0 to gen-3 using the gen-3 ML models. Gen-4 represents a k-medoid sampling
of 200 TMCs on the 0.8M-complex functionalized TMC space.
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(Figure 1). However, the effect of Hammett tuning is not
expected to be large enough to move all of the base complexes
into the target zone, so those far enough from the target zone
can be immediately discarded. For a representative Co(III)
complex that resides in the target zone, we find that Hammett
tuning can roughly tune the Δ-SCF gap by 1.0 eV and rND by
0.04 (Figure 4). Therefore, we use the gen-3 ML models to
screen through the 1.3M base complexes and only keep TMCs
with a predicted Δ-SCF gap < 4.5 eV and rND < 0.35 as
candidates for Hammett tuning. These promising 30.1k base
complexes lead to a design space of 0.8M functionalized TMCs
for further exploration. Because our primary goal is to
accelerate the discovery of promising transition-metal
chromophores rather than identifying all of them in the design
space, we expect this stepwise filtering of the design space to be
beneficial.
Since we created a new design space with functionalized

complexes that our ML models have not seen before, we
expected that the 2D P[I] computed based on the trained
model predictions and uncertainties would not be able to
directly guide the exploration of candidate chromophores.
Therefore, we repeated the k-medoids sampling that we
performed in gen-0 but this time limited to the new 0.8M-
complex functionalized design space, selecting a set of 200
complexes. Indeed, we find that the gen-3 models have
significantly higher errors in the predictions of the k-medoids
sampled gen-4 data (Figure 5). However, the ML models
improve quickly after retraining on the functionalized
complexes in gen-4. Therefore, we expect the 2D P[I] to
regain its predictive power and undertook two generations of
active learning using the 2D P[I] criterion. During these two
generations, the ML models achieve MAEs that are
comparable to those on the base complexes (Figure 5).
Because we have already isolated a promising fraction of the
functionalized TMC space, both the number of TMCs landing
in the target zone and the percentage of high (i.e., >1/3) 2D
P[I] complexes increased relative to the previous three

generations (Figure 5). At both gen-5 and gen-6, 19 (i.e.,
10%) of the sampled functionalized TMCs are verified as
candidate transition-metal chromophores by DFA consensus.
This number greatly surpasses the average (i.e., 6) and the
maximum (i.e., 14) in the previous generations. More
importantly, the sampled functionalized complexes in gen-5
and gen-6 further expand the convex hull in the 2D property
space, with their distributions shifted toward the target zone.
We find that functionalization (i.e., Hammett tuning) indeed
pushes more complexes into the target zone by fine-tuning
their electronic properties. For example, the d = 3 CH3
functionalization of the base complex Co(III)(N2C16H12S4)-
(N4C18H16)2 (Δ-SCF gap = 2.83 eV, rND = 0.300) leads to
complex F (Δ-SCF gap = 2.39 eV, rND = 0.305), which lowers
the Δ-SCF gap with a better rND value compared to other base
complexes sampled in the active learning process (Figure 6 and
Supporting Information Table S2). This observation show-
cases the effectiveness of our strategy for using Hammett
tuning to further enrich a pool of candidate chromophores and
improve their electronic properties. Because we find the
Hammett tuning strategy to be very effective in improving
upon the base complexes, it would be of interest to investigate
the effect of Hammett tuning on different metal and oxidation
state combinations to make earth-abundant metals more
promising for light-harvesting applications in future work.
To verify that complexes discovered through the active

learning process have the desired excited-state properties of
transition-metal chromophores, we computed the excited-state
properties with TDDFT of lead chromophores with the lowest
rND for representative Δ-SCF gap values in the target zone
from all seven generations (see the Methods section). Using
this approach, we verified that six out of nine of our lead
complexes have the desired transition energy in the visible
region (i.e., <3.5 eV) in their absorption spectra (Figure 6). In
addition, the orbitals for the first bright state (i.e., the hole
corresponding to the lowest excitation) are all delocalized on
the ligands instead of localized on the metal, which suggests

Figure 6. Sixty-nine TMCs sampled through the active learning process that have an LS ground state and land in the target zone computed by
DFT, colored by generation and with unique symbols for each metal center (diamond for Fe(II) and circle for Co(III)). The trade-off of best rND
values for a given Δ-SCF gap is indicated by the black solid lines. Six out of nine TMCs exhibiting this optimal trade-off are verified to have desired
excited-state properties (i.e., an excited state lower than 3.5 eV and MLCT character) by TDDFT calculations. These six complexes are indicated
by the letters A−F, where the absorption spectra and the orbital for the first bright state are shown. The lowest three absorption energies are
colored red for better visibility due to the large variance among the oscillator strengths for different excitations (detailed information and
geometries of complexes A−F are provided in the Supporting Information).
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that the photoexcitation process involves an MLCT state
(Figure 6). This observation is surprising because we did not
set design objectives that involve explicit excited-state
calculations of our complexes during active learning. Still, we
achieve high likelihood (i.e., 67%) of obtaining lead complexes
with promising excited-state properties by carefully crafting the
ground-state design objectives and using DFA consensus. The
remaining three complexes have excited states with energy <
3.5 eV but are “dark” states (i.e., with small oscillator
strengths), which could not be foreseen by the ground-state
calculations that we performed during the active learning
procedure (Supporting Information Table S3). If we had not
required a consensus low Δ-SCF gap (i.e., <3.5 eV) and LS
ground state, the likelihood of obtaining leads with promising
excited-state properties would have been much lower, at
around 15% (Supporting Information Table S4). We would
like to note that due to the complex electronic structures of
transition-metal complexes, the current TDDFT protocol may
still not be accurate enough to verify the lead complexes.
Since all of the bidentate ligands considered are synthetically

accessible, we propose these complexes as promising
candidates for experimental verification. The quality of the
leads selected by the consensus approach is expected to be
better than from a standard single-functional screen because
the functionals from different rungs agree, and previous work
has shown that DFT consensus more frequently produces
leads similar to those that are experimentally validated.50

Moreover, although complexes A−F are not in the CSD, they
all contain ligands present in other synthesized compounds
that have demonstrated photoinduced properties (Supporting
Information Table S5). For example, despite the fact that
complex F has not been characterized experimentally, one of
its constituent ligands (i.e., 4′,5′-diaza-9′-[4,5-bis(methylthio)-
1,3-dithiol-2-ylidene]fluorene) has been studied68 for its
interesting nonlinear optical properties in Co, Cu, and Cd
complexes (Figure 6). These observations showcase the power
of our strategy for identifying experimentally relevant
candidate transition-metal chromophores that were potentially
missed by previous experimental exploration due to the
combinatorial challenges in chemical discovery.

■ CONCLUSIONS
We applied efficient global optimization with a two-dimen-
sional probability of improvement criterion to discover
potential 3d6 Fe(II)/Co(III) transition-metal chromophores
in a design space of 32.5M compounds that simultaneously
fulfill three design objectives: a low-spin ground state, a Δ-SCF
gap corresponding to an electronic transition in the visible
region of the electromagnetic spectrum, and weak multi-
reference character. We avoid common biases that arise from
density functional approximation (DFA) choice in virtual high-
throughput screening and machine learning (ML)-accelerated
chemical discovery by applying a DFA consensus approach
that considers the property evaluations from 23 DFAs that
span multiple rungs of “Jacob’s ladder”. We also addressed the
challenge of synthesizability for computationally designed
functional molecules by constraining the design space
construction to ligands that are synthetically accessible and
symmetry classes that are easy to access in experiments.
Compounds discovered through this active learning workflow
therefore have a higher likelihood to be synthesizable and
predicted properties are expected to be of higher fidelity (i.e.,
more robust to changes in DFA choice).

Despite the scarcity of potential transition-metal chromo-
phores in our design space, judged by the fact that no
compounds in the initial 2000 samples landed in our target
objective zone, our active learning process gradually shifts the
distributions of sampled compounds toward the target zone
and successfully identifies many leads. A conservative estimate
suggests that our active learning approach achieves a 1000-fold
acceleration relative to random sampling. Interrogation of our
ML models revealed that Co(III) complexes with large, strong-
field, and relatively saturated ligands are preferred as candidate
transition-metal chromophores. To fine-tune their electronic
properties, we used Hammett tuning by functionalization of
the base complexes, which further increased the number of
complexes that satisfied the design criteria. Lastly, we
performed time-dependent density functional theory calcu-
lations on the nine most promising leads. We found that six of
the nine compounds demonstrated the desired excited-state
properties with metal−ligand charge-transfer states and contain
ligands that have been previously studied experimentally due to
their interesting optical properties. We expect our strategy for
design space construction and our DFA consensus-enhanced
active learning workflow to be broadly useful in discovering
candidate molecules and materials that are more synthesizable
and computationally robust in transition-metal chemical space.

■ METHODS

DFT Calculation Details
All initial geometries were generated using molSimplify,69,70 where
initial ligand geometries were derived from the crystal structures of
transition-metal complexes containing the ligands (Supporting
Information). DFT geometry optimizations were carried out using
TeraChem,71 as automated by molSimplify69,70 with a 24 h wall time
per run with up to five resubmissions. These calculations used the
B3LYP72−74 global hybrid functional with the LACVP* basis set,
which corresponds to the LANL2DZ75 effective core potential for
transition metals (i.e., Fe, Co) and heavier elements (i.e., I or Br) and
the 6-31G* basis for all remaining elements. These geometries were
optimized using the L-BFGS algorithm in translation rotation internal
coordinates (TRICs)76 to the default tolerances of 4.5 × 10−4

hartree/bohr for the maximum gradient and 10−6 hartree for the
energy change between steps. All HS (i.e., quintet) states were
calculated with an unrestricted formalism and LS (i.e., singlet) states
with a restricted formalism. In all calculations, a level shifting of 0.25
Ha was employed between the occupied and virtual orbitals.
Geometry checks were applied to eliminate optimized structures
that deviated from the expected octahedral shape following previously
established metrics without modification.77 Open-shell structures
were also removed from the data set following established protocols if
the expectation value of the S2 operator deviated from its expected
value77 of S(S + 1) by >1 μB

2 (Supporting Information Table S6).
Although we did not include dispersion corrections during the
geometry optimization, we would like to note that dispersion
corrections are helpful for large complexes and will be considered
in our future work.

For optimized TMCs, we followed our established protocol50 for
the calculation of the Δ-SCF gap with multiple DFAs using a
developer version of Psi4 1.4.78 We adopted a consistent spin state
convention:50 we removed a majority-spin (i.e., spin-up) electron
from the N-electron reference for the N− 1-electron calculation and
added a minority-spin (i.e., spin-down) electron for the N + 1-
electron case. The Δ-SCF gap is then computed as 2 × E[N] − (E[N
− 1] + E[N + 1]). In this workflow, the converged wave function
obtained from the B3LYP geometry optimization was used as an
initial guess for the single-point energy calculations with other DFAs,
thus maximizing the correspondence of the converged electronic state
among all DFAs and also reducing the computational cost. We use 23
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DFAs as in our previous work50 that were chosen to be evenly
distributed among the rungs of “Jacob’s ladder”79 (Supporting
Information Table S7). While the calculation of gaps from TDDFT
might be preferable, challenges associated with implementation for all
23 functionals studied in this work as well as the higher computational
cost motivated our focus on Δ-SCF gaps.

We evaluated the rND diagnostic61,62,80 by performing finite-
temperature DFT81 calculations using TeraChem.71 Specifically, we
followed a literature recommendation61,62,80 to use a temperature of
9000 K for B3LYP. Here, we evaluated fractional occupation numbers
(FONs) from a broadened distribution (i.e., with Fermi−Dirac
statistics).

We performed linear-response TDDFT calculations with the
Tamm−Dancoff approximation using ωB97X-D/def2-TZVP, a
method and basis set combination chosen based on the
recommendation of a recent benchmark study,82 in Psi4 1.4.78 We
used a polarizable continuum implicit solvent model with water (ε =
80) as the solvent. Because we focus most on the lowest few
excitations, only the first 30 states were computed. We broadened
simulated spectra using Lorentzian functions, and we considered only
excited states with significant oscillator strength (i.e., fosc > 0.01 au).
Active Learning Details
We use efficient global optimization with a 2D probability of
improvement (P[I]) criterion to sample TMCs with LS ground states
in a target zone of [1.5, 3.5 eV] for Δ-SCF gap and [0, 0.307] for rND
as candidate transition-metal chromophores (Figure 1). The 2D P[I]
is used to estimate the overall model probability (i.e., total area from
the prediction and its model uncertainty) of residing within the target
region. At odds with multiobjective optimization where the goal is to
minimize or maximize quantities, the 2D P[I] score employed here is
amenable to the design goal of discovering complexes with a range of
equally valid Δ-SCF gaps with modest rND values. The cutoff of 0.307
for rND was chosen based on our previous work65 as a distinguishing
cutoff for TMCs with weak vs strong MR character.

For efficient global optimization, we largely followed the
established protocols from our previous work:46,47 complexes in
each new generation were selected by k-medoid sampling over the full
design space. We then used DFT to evaluate the Δ-SCF gap, rND, and
ground spin state of these complexes. After combining the new data
with data from previous generations, we retrained our ML models.
Lastly, we used the updated ML models to evaluate the ground spin
state and 2D P[I] of the complexes. We selected 2000 TMCs with the
highest 2D P[I] and performed k-medoid sampling to obtain the 200
complexes from the medoids as candidates for DFT simulation in the
next generation. Importantly, because both the ground-state assign-
ment and Δ-SCF gap are sensitive to DFA choice, we adopted a DFA
consensus procedure,50 where we considered an ensemble of 23 DFAs
that cover the broad spectrum of “Jacob’s ladder” of functionals to
increase the robustness of our lead candidate chromophores
(Supporting Information Figures S1−S3). Specifically, we only
retained complexes when a majority of DFAs (i.e., 70% or >16 of
23) predict the complex to have an LS ground state (Supporting
Information Table S1). During the evaluation of 2D P[I], we consider
23 ML models separately trained on each DFA, from which the Δ-
SCF gap and its corresponding model uncertainty (i.e., from a
calibrated distance in latent space83) are estimated. The rND is
computed only from an ML model trained on a single DFA (i.e.,
B3LYP) because trends in rND values have been shown to be
insensitive to the functional once calibrated.80 On the other hand, the
Δ-SCF gap is averaged over the 23 models due to its relatively high
DFA sensitivity (Supporting Information Figure S3). The resulting 23
2D P[I] values derived from the rND and Δ-SCF gap values are
averaged to rank and sample TMCs in the next generation.
ML Models
As in our prior work, we use extended revised autocorrelations84,85

(eRACs) as descriptors for all our machine learning models. The
eRAC features are sums of products and differences of six atom-wise
heuristic properties (i.e., topology, identity, electronegativity, covalent
radius, nuclear charge, and group number in the periodic table) on the

2D molecular graph. As motivated previously on large TMCs,46 we
truncated eRACs at the maximum bond depth of four to ignore direct
interactions of any pairs of atoms that are >4 bonds away. We also
eliminated RACs that were invariant (i.e., standard deviation of zero)
over the mononuclear octahedral transition-metal complexes. We
used metal oxidation state and total ligand charge of a complex as two
additional features. Because we would like to discover transition-metal
chromophores with an LS ground state with certain ranges of Δ-SCF
gap and rND, we built ML models to predict these three properties.
Specifically, we built (i) a classification model to predict whether a
complex fulfills the consensus LS condition (i.e., >16 DFAs categorize
the ground state to be LS), (ii) a regression model to predict rND of an
LS complex, and (iii) 23 separate models to predict the Δ-SCF gap of
an LS complex for each DFA (Supporting Information Table S1). In
our workflow, we first used the ground-state classification model to
filter out complexes that do not satisfy the consensus LS condition.
We used the energy from both the HS and LS optimizations of a
complex as training data for the model to determine its ground spin
state. On the contrary, only the LS calculation was used for building
the ML models that predict Δ-SCF and rND. For the 23 Δ-SCF gap
models, we adopted our established workflow50 to fine-tune the 22
non-B3LYP models initialized by the weights of the B3LYP model to
avoid randomness in the weight initialization and to increase the
consistency between ANN models trained with DFT data derived
from different DFAs.

During each generation of the active learning, we partitioned the
data using a random 80/20% train/test split and used 20% of the
training data (i.e., 16% overall) as the validation set. As in our prior
work,46 all ANN models were trained using Keras86 with a
Tensorflow87 backend and Hyperopt88 for hyperparameter selection
for gen-0 data (Supporting Information Table S8). For all other
generations, the models were only fine-tuned with a reduced learning
rate (i.e., 10−5) on the combined training set of all previous
generations. All ANN models were trained with the Adam optimizer
up to 2000 epochs, and dropout, batch normalization, and early
stopping were applied to avoid overfitting.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.2c00547.

Data .csv files for all DFT-computed complexes, base
complexes with high 2D P[I], and complexes that reside
in the target zone; geometries for 812 ligands and DFT-
optimized complexes; ML models for Δ-SCF gap and
rND regression and ground spin state classification (ZIP)
Histogram for average ground-state spin; Δ-SCF gap
computed at different DFAs and spin states; rND of
optimized structures at LS and HS states; ground-state
labeling with DFA consensus and AUC of ML
classification models; comparison of ligands’ rND;
summary of the first three excited states for lead
complexes that have “dark” states; Δ-SCF gap and rND
for the functionalized counterpart of complex F; ligands
involved in CSD complexes with photoinduced proper-
ties; summary of the filtering statistics during active
learning; summary of 23 DFAs; and range of hyper-
parameters sampled for ANN models (PDF)
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