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Abstract: In a large-scale epidemic, such as the novel coronavirus pneumonia (COVID-19), there is
huge demand for a variety of medical supplies, such as medical masks, ventilators, and sickbeds.
Resources from civilian medical services are often not sufficient for fully satisfying all of these
demands. Resources from military medical services, which are normally reserved for military
use, can be an effective supplement to these demands. In this paper, we formulate a problem of
integrated civilian-military scheduling of medical supplies for epidemic prevention and control, the
aim of which is to simultaneously maximize the overall satisfaction rate of the medical supplies and
minimize the total scheduling cost, while keeping a minimum ratio of medical supplies reservation
for military use. We propose a multi-objective water wave optimization (WWO) algorithm in order
to efficiently solve this problem. Computational results on a set of problem instances constructed
based on real COVID-19 data demonstrate the effectiveness of the proposed method.

Keywords: medical supplies scheduling; epidemic prevention and control; multi-objective optimiza-
tion; water wave optimization; civilian-military integration

1. Introduction

A large-scale epidemic outbreak often causes a huge shortage of medical supplies, such
as medical masks, protecting clothing, ventilators, sickbeds, and computed tomography
(CT), to name just a few [1,2]. For example, during the peak period of the novel coronavirus
pneumonia (COVID-19) in Wuhan, China, the satisfaction rates of medical N95 masks,
protecting clothing, and goggles are 52.57%, 30.88%, and 14.67%, respectively, as shown
in Figure 1. Such a shortage indicates that local civilian medical services are unable to
provide sufficient medical supplies to meet the demands that explosively increase during
the epidemic. Therefore, scheduling medical supplies from other sources is necessary
and critical in the prevention and control the spread of the epidemic. Although logistics
in humanitarian disasters, including epidemics, have been extensively studied in the
literature [3,4], there exists a research gap in understanding of the impacts of epidemics on
supply chains and vice versa [5].

Military medical services are a special class of medical services that are reserved for
military use, including servicemen healthcare, field hospitals, international peacekeeping,
etc. Under emergency situations, they can provide an effective supplement to the shortage
of civilian medical services [6]. However, scheduling medical supplies from military
medical services to civilian medical services in a large-scale epidemics has the following
difficulties:

• There us often a large number of civilian medical services that are distributed in wide
areas, and the shortage of medical supplies is often acute [7,8]; however, the number
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of military medical services and amount of supplies that they can provide are often
limited.

• Using military medical services to support civilian medical services involes not only
scheduling medical supplies from the former to the latter, but also scheduling patients
from the latter to the former.

• Not all of the supplies of the military medical services can be utilized to support civil-
ian medical services; typically, they must reserve a certain proportion of capabilities
for potential military use. Particularly, some military medical services cannot admit
outside patients due to military confidentiality requirements.

• The aim is not only to maximize the overall satisfaction rate of medical supplies for
epidemic prevention and control, but also to minimize the scheduling cost (a high cost
not only indicates a large investment, but is also related to great scheduling efforts
and long scheduling time that will significantly decrease the effectiveness of epidemic
prevention and control).
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Figure 1. Satisfaction rates to the demands of some medical supplies during the peak period of
COVID-19 in Wuhan, China.

Therefore, the problem of integrated civilian-military scheduling of medical supplies
for epidemic prevention and control is significantly more complex than those common
scheduling problems in commercial supply chains and medical logistics [9,10]. However,
in the literature, there are few studies concerning the integration of civilian and military
medical supplies in epidemic situations.

Based on the experiences from COVID-19 prevention and control, in this paper we
propose an integrated civilian-military medical supply scheduling problem, which is
formulated as a complex constrained integer programming problem that is known to
be NP-hard [11]. The aim of this problem is to simultaneously maximize the overall
satisfaction rate of the medical supplies and minimize the total scheduling cost, while
satisfying constraints, including the maximum amount of supplies that can be provided by
military medical services, the maximum number of patients that can be received by open
military medical services, lower limit of supply satisfaction rate, upper limit of scheduling
cost, etc. For large instances of this problem, exact algorithms (such as branch-and-bound)
are often impractical. We propose a multi-objective optimization evolutionary algorithm
that is based on the water wave optimization (WWO) metaheuristic in order to efficiently
solve this difficult problem [12]. We demonstrate the performance advantages of the
proposed method as compared to some popular multi-objective optimization algorithms
on a set of problem instances that are constructed based on real COVID-19 data in China.
The main contributions of this paper can be summarized, as follows:
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• We present a problem of scheduling integrated civilian-military medical supplies for
the prevention and control of large-scale epidemics, such as COVID-19.

• We propose an efficient multi-objective optimization metaheuristic to solve the problem.
• We demonstrate the performance of the proposed method as compared to state-of-

the-arts.

The remainder of this paper is structured, as follows. Section 2 introduces the related
work in the literature. Section 3 presents the formulation of the integrated scheduling
problem. Section 4 proposes the multi-objective optimization metaheuristic, Section 5
presents the computational results, and Section 6 concludes with a discussion.

2. Related Work

In recent years, there are increasing studies on scheduling problems in medical sup-
ply chains, which are complex networks that consist of many different parties at various
stages [13]. Mete and Zabinsky [14] proposed a stochastic optimization method for the stor-
age and distribution problem of medical supplies for disaster management under a variety
of possible disaster types and magnitudes. Their optimization method aims to balance the
preparedness and risk under the uncertainties, and its solutions used can suggest the load-
ing and routing of vehicles to transport medical supplies for disaster response. Xu et al. [15]
studied an integrated medical supply inventory control system that links demand, service
provided at the clinic, health care service provider’s information, inventory storage data,
using ABC analysis method, economic order quantity model, two-bin method, and safety
stock concept as decision support models. The pilot case study demonstrated that the
integrated system holds several advantages for inventory managers Lei et al. [16] studied a
problem of personnel scheduling and supplies provisioning in emergency relief operations;
they proposed a mathematical programming that is based rolling horizon heuristic that is
able to find near-optimal solutions to the problem. Wang et al. [17] modeled an integrated
post-disaster medical assistance team scheduling and relief supply distribution problem as
a mixed integer-programming problem; they proposed a two-stage hybrid metaheuristic
method to solve the problem. Zhang et al. [18] studied a two-stage medical supply chain
scheduling problem, and they found that a pseudo-polynomial-time algorithm can solve
the problem.

Studies on medical supply chain problems in response to large-scale epidemic situ-
ations are relatively few. Queiroz et al. [5] conducted a systematic literature review on
supply chains under epidemic outbreaks; their findings suggested that influenza was the
most visible epidemic outbreak reported, and that optimization of resource allocation and
distribution emerged as the most popular topic. Liu and Zhang [19] presented a dynamic
medical logistics model coupling a medical demand forecasting mechanism and a logistics
planning system for satisfying the forecasted demand and minimizing the total cost; the
problem was formulated as a mixed 0-1 integer programming problem characterizing the
decision making at various levels of hospitals, distribution centers, pharmaceutical plants,
and the transportation in between them. Büyüktahtakın et al. [20] presented an epidemics-
logistics model based on mixed-integer programming that determines the optimal amount,
timing, and location of resources to minimize the total number of infections and fatalities
under a limited budget over a multi-period planning horizon. They validated the perfor-
mance of the model using the case of the 2014–2015 Ebola outbreak in Guinea, Liberia, and
Sierra Leone. When considering that different diseases have dissimilar diffusion dynamics
and can cause different public health emergencies, Liu et al. [21] modified that model
by changing capacity constraint, and then applied it to control the 2009 H1N1 outbreak
in China. Syahrir et al. [22] used the SEIR model to predict the amount of drug supplies
in hospitals during the outbreak of dengue fever, in order to manage and determine the
satisfactory amount of drug supplies in the hospital to handle patients who are indicated
and infected with dengue quickly and precisely. However, none of the above studies
concern the integrated scheduling of civilian and military medical supplies.
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3. Problem Formulation

Based on the requirements of utilizing both civilian and military medical resources for
combating COVID-19 as well as to fill the gap of current researches that are related to this
topic, we present a problem of scheduling integrated civilian-military medical supplies for
epidemic prevention and control. Formally, we consider that there are m civilian medical
services that undertake epidemic prevention and control tasks. In the planning horizon
(e.g., the next week), the numbers (or expected numbers) of normal residents, suspected
cases, mild cases, and severe cases to be served by the i-th service are no

i , ns
i , nm

i , and nv
i ,

respectively. The tasks involve K types of medical supplies, including K1 types of non-fixed
supplies (e.g., medical masks, protective clothing, and movable CT) and K2 types of fixed
supplies (e.g., sickbeds and non-movable CT). We set the non-fixed supplies as the first K1
in all K supplies. Each type of supply is assigned with a weight wk (1≤ k≤K), which is
determined according to the importance of the supply in epidemic prevention and control,
subject to

(
∑K

k=1 wk
)
= 1. The amount of the k-th type of medical supply available at

the i-th civilian medical service is aik, and the amount the k-th type of medical supply
required per normal resident, suspected case, mild case, and severe case is ro

k , rs
k, rm

k , and
rv

k , respectively (1≤ i≤m; 1≤ k≤K). Note that the amount can be fractional, e.g., if every
500 suspected cases require one CT per day, then the amount of CT that is required per
suspected case is 0.002.

In the large-scale epidemic, most of the supplies that can be provided by the civilian
medical services are insufficient. Therefore, we want to utilize the supplies from m′ military
medical services. The amount of the k-th type of medical supply available at the j-th military
medical service is a′jk (1≤ j≤ m′; 1≤ k ≤ K). Non-fixed supplies can be delivered from
military medical services to civilian medical services; however, for fixed supplies, we have
to send residents or patients to the locations of military medical services. However, some
military medical services cannot admit outside patientsdue to confidentiality requirements.
We call such services closed military medical services, and then call the others that can
admit outside patients open military medical services Let m′′ be the number of open
military medical services, we set them as the first m′′ in all m′ military medical services
(m′′≤m′).

The problem needs to make decision in three aspects:

(1) Determining the amount of each k-th type of non-fixed supply that will be dispatched
from each j-th military medical service to each i-th civilian medical service, as
denoted by xijk (1≤ i≤m; 1≤ j≤m′; 1≤ k≤K1).

(2) Determining the amount of each k-th type of non-fixed supply that will be dispatched
from each j′-th closed military medical service to each j-th open military medical
service, as denoted by x′jj′k (1≤ j≤m′; m′′+ 1≤ j′≤m′; 1≤ k≤K1).

(3) Determining the numbers of normal residents, suspected cases, mild cases, and
severe cases that will be reallocated from each i-th civilian medical service to each
j-th open military medical service, as denoted by yo

ij, ys
ij, ym

ij , and yv
ij, respectively

(1≤ i≤m; 1≤ j≤m′′).

The above decision variables are all positive integers. Table 1 lists the input and
decision variables of the problem.
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Table 1. Input and decision variables used in the problem formulation.

Symbol Description

m Number of civilian medical services
m′ Number of military medical services
m′′ Number of open military medical services
no

i Number of normal residents in the i-th civilian medical service (1≤ i≤m)
ns

i Number of suspected cases in the i-th civilian medical service (1≤ i≤m)
nm

i Number of mild cases in the i-th civilian medical service (1≤ i≤m)
nv

i Number of severe cases in the i-th civilian medical service (1≤ i≤m)
K Number of medical supplies
K1 Number of non-fixed medical supplies
K2 Number of fixed medical supplies
wk Importance weight of the k-th supply in epidemic prevention and control (1≤ k≤K)
ro

k Amount the k-th supply required per normal resident (1≤ k≤K)
rs

k Amount the k-th supply required per suspected case (1≤ k≤K)
rm

k Amount the k-th supply required per mild case (1≤ k≤K)
rv

k Amount the k-th supply required per severe case (1≤ k≤K)
aik Amount the k-th medical supply available at the i-th civilian medical service (1≤ i≤m; 1≤ k≤K)
a′jk Amount the k-th medical supply available at the j-th military medical service (1≤ j≤m′; 1≤ k≤K)

cijk
Cost of delivering one unit of the k-th supply from the j-th military medical service to the i-th
civilian medical service (1≤ i≤m; 1≤ j≤m′; 1≤ k≤K1)

c′jj′k
Cost of delivering one unit of the k-th type supply from the j′-th closed military medical service
to the j-th open military medical service (1≤ j≤m′′; m′′+1≤ j′≤m′; 1≤ k≤K1)

co
ij

Cost of delivering one normal resident from the i-th civilian medical service to the j-th military
medical service (1≤ i≤m; 1≤ j≤m′′)

cs
ij

Cost of delivering one suspected case from the i-th civilian medical service to the j-th military
medical service (1≤ i≤m; 1≤ j≤m′′)

cm
ij

Cost of delivering one mild case from the i-th civilian medical service to the j-th military
medical service (1≤ i≤m; 1≤ j≤m′′)

cv
ij

Cost of delivering one severe case from the i-th civilian medical service to the j-th military
medical service (1≤ i≤m; 1≤ j≤m′′)

bjk
Minimum amount of k-th supply that must be reserved at the j-th military medical service
(1≤ j≤m′; 1≤ k≤K)

no
j

Maximum number of normal residents that can be received by the j-th military medical service
(1≤ j≤m′′)

ns
j

Maximum number of suspected cases that can be received by the j-th military medical service
(1≤ j≤m′′)

nm
j

Maximum number of mild cases that can be received by the j-th military medical service
(1≤ j≤m′′)

nv
j

Maximum number of severe cases that can be received by the j-th military medical service
(1≤ j≤m′′)

C Upper limit of the total scheduling cost
S Lower limit of the overall supply satisfaction rate

xijk
Amount of the k-th supply that will be dispatched from the j-th military medical service to the i-th
civilian medical service

x′jj′k
Amount of the k-th supply that will be dispatched from the j′-th closed military medical service to
the j-th open military medical service

yo
ij

Number of normal residents that will be reallocated from each i-th civilian medical service to each
j-th military medical service (1≤ i≤m; 1≤ j≤m′′)

ys
ij

Number of suspected cases that will be reallocated from each i-th civilian medical service to each
j-th military medical service (1≤ i≤m; 1≤ j≤m′′)

ym
ij

Number of mild cases that will be reallocated from each i-th civilian medical service to each j-th
military medical service (1≤ i≤m; 1≤ j≤m′′)

yv
ij

Number of severe cases that will be reallocated from each i-th civilian medical service to each j-th
military medical service (1≤ i≤m; 1≤ j≤m′′)
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3.1. Supplies Satisfaction Rates

We can calculate the satisfaction rate of each type of supply at each service, according
to the above input and decision variables. For the i-th civilian medical service (1≤ i≤m),
the final numbers of normal residents, suspected cases, mild cases, and severe cases to be
served are as follows:

n̂o
i = no

i −
m′′

∑
j=1

yo
ij (1)

n̂s
i = ns

i −
m′′

∑
j=1

ys
ij (2)

n̂m
i = nm

i −
m′′

∑
j=1

ym
ij (3)

n̂v
i = nv

i −
m′′

∑
j=1

yv
ij (4)

Subsequeently, the final amount of each k-th type of supply that is required by the i-th
civilian medical service is:

r̂ik = n̂o
i ro

k + n̂s
i rs

k + n̂m
i rm

k + n̂v
i rv

k (5)

The amount of each type of fixed supply that is available at the civilian medical service
does not change, while that of each non-fixed supply is increased by the assistance from
military medical services. The final amount of each k-th type of supply available at the i-th
civilian medical service is:

âik =

{
aik + ∑m′

j=1 xijk, 1≤ k≤K1

aik, K1+1≤ k≤K
(6)

Therefore, the satisfaction rate of the k-th type of supply at the i-th civilian medical
service is:

θ(i, k) = min
( âik

r̂ik
, 1
)

(7)

Next, for the j-th open military medical service (1≤ j≤m′′), the numbers of normal
residents, suspected cases, mild cases, and severe cases to be served are as follows:

n̂′oj =
m

∑
i=1

yo
ij (8)

n̂′sj =
m

∑
i=1

ys
ij (9)

n̂′mj =
m

∑
i=1

ym
ij (10)

n̂′vj =
m

∑
i=1

yv
ij (11)

Subsequently, the amount of each k-th type of supply that is required by the j-th open
military medical service is:

r̂′jk = n̂′oi ro
k + n̂′si rs

k + n̂′mi rm
k + n̂′vi rv

k (12)
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The final amount of each k-th type of supply available at the j-th open military medical
service is:

â′jk =

{
a′jk −∑m

i=1 xijk + ∑m′
j′=m′′+1 x′jj′k, 1≤ k≤K1

a′jk, K1+1≤ k≤K
(13)

Therefore, the satisfaction rate of the k-th type of supply at the j-th open military
medical service is:

θ′(j, k) = min
( â′jk

r̂′jk
, 1
)

(14)

The first objective of the problem is to maximize the overall weighted satisfaction rate
of all medical supplies, as follows:

max S(x, y) =
1

m+m′′

( m

∑
i=1

K

∑
k=1

wkθ(i, k) +
m′′

∑
j=1

K

∑
k=1

wkθ′(i, k)
)

(15)

3.2. Scheduling Costs

Delivering supplies and residents/patients involves costs. We use cijk to denote
the cost of delivering one unit of the k-th type of non-fixed supply from the j-th mil-
itary medical service to the i-th civilian medical service (1 ≤ i ≤ m; 1 ≤ j ≤ m′; 1 ≤
k ≤ K1), c′jj′k to denote the cost of delivering one unit of the k-th type of non-fixed
supply from the j′-th closed military medical service to the j-th open military med-
ical service (1≤ j≤m′′; m′′+1≤ j′≤m′; 1≤ k≤K1), and co

ij, cs
ij, cm

ij , and cv
ij to denote the

cost of delivering one normal resident, suspected case, mild case, and severe case from
the i-th civilian medical service to the j-th open military medical service, respectively
(1≤ i≤m; 1≤ j≤m′′).

Remark: in practice, the delivery cost is not linearly proportional to the amount of
supplies or number of patients. We make this assumption to simplify the cost computation.
For example, suppose that the cost of scheduling a vehicle from the j-th military medical
service to the i-th civilian medical service is 100, a unit of the k-th type of supply occupies
two percent of the volume of the vehicle, then we set cijk =5. Although the cost is subject
to variation (e.g., the last vehicle is often not fully loaded), we neglect such a variation
because of the large amounts of supplies to be delivered.

The total scheduling cost of a solution (x, y) is:

C(x, y) =
m

∑
i=1

m′

∑
j=1

K1

∑
k=1

cijkxijk +
m′′

∑
j=1

m′

∑
j′=m′′+1

K1

∑
k=1

c′ijkx′ijk +
m

∑
i=1

m′

∑
j=1

(co
ijy

o
ij + cs

ijy
s
ij + cm

ij ym
ij + cv

ijy
v
ij) (16)

The second objective of the problem is to minimize the total scheduling cost. In
practice, the decision-maker typically sets an upper limit C for the total scheduling cost
and a lower limit S for the overall supply satisfaction rate. We utilize C to transform the
second objective to scale the second objective to the same order of magnitude as the first
objective, as follows:

max C′(x, y) = 1− min(C(x, y), C)
2C

(17)

3.3. Constraints

A solution (x, y) to the problem must satisfy the following constraints.

• A military medical service must reserve a minimum amount bjk of each type of supply
(e.g., for unexpected military use):
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a′jk −
m

∑
i=1

xijk +
m′

∑
j′=m′′+1

x′jj′k ≥ bjk, 1≤ j≤m′′; 1≤ k≤K1 (18)

a′jk −
m

∑
i=1

xijk −
m′′

∑
j′=1

x′j′ jk ≥ bjk, m′−m′′+1≤ j≤m′; 1≤ k≤K1 (19)

a′jk −
m

∑
i=1

yo
ijr

o
k −

m

∑
i=1

ys
ijr

s
k −

m

∑
i=1

ym
ij rm

k −
m

∑
i=1

yv
ijr

v
k ≥ bjk, 1≤ j≤m′′; K1+1≤ k≤K (20)

• The number of residents/patients received by an open military medical service has
an upper limit (denoted by an overline):

m

∑
i=1

yo
ij ≤ no

j , 1≤ j≤m′′ (21)

m

∑
i=1

ys
ij ≤ ns

j , 1≤ j≤m′′ (22)

m

∑
i=1

ym
ij ≤ nm

j , 1≤ j≤m′′ (23)

m

∑
i=1

yv
ij ≤ nv

j , 1≤ j≤m′′ (24)

• The number of residents/patients sent from a civilian medical service cannot be larger
than the current number:

m′

∑
j=1

yo
ij ≤ no

i , 1≤ i≤m (25)

m′

∑
j=1

ys
ij ≤ ns

i , 1≤ i≤m (26)

m′

∑
j=1

ym
ij ≤ nm

i , 1≤ i≤m (27)

m′

∑
j=1

yv
ij ≤ nv

i , 1≤ i≤m (28)

• The overall supply satisfaction rate cannot be below the low limit:

S(x, y) ≥ S (29)

• The total scheduling cost cannot exceed the upper limit:

C(x, y) ≤ C (30)

4. Method

The above problem is a bi-objective constrained integer programming problem. It is
known to be NP-hard, even if only one objective is retained [11]. In a large-scale epidemic,
the number of services, number of types of supplies, and number of residents/patients are
all often very large and, thus, it is impractical to use traditional exact algorithms, such as
branch-and-bound [23], to solve such instances within a reasonable computational time.

We propose a multi-objective WWO (MOWWO) algorithm, which is capable of ob-
taining a near Pareto-optimal front within a short response time, in order to efficiently
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solve the problem. WWO is metaheuristic borrowing principles from the shallow water
wave theory to solve optimization problems [12]. WWO evolves a population of solutions,
each having a wavelength λ that is inversely proportional to its fitness. At each generation,
each solution produces a child solution in the hyper-sphere with a radius of λ, such that
high-fitness solutions exploit small areas around them, while low-fitness solutions explore
large areas in the solution space, so as to balance global and local search. WWO also
performs an intensive local search around a newly found best solution, and it violates a
solution if it fails to generate a better child after a specified number of generations to avoid
search stagnation.

4.1. Solution Initialization

For the considered medical supplies scheduling problem, we create a population of
solutions by initializing each solution while using the following steps:

(1) For each i-th civilian medical service, determine a percent pi, such that its current
available supplies (including human resources and other hardware and software
resources) are just sufficient to treat pino

i normal residents, pins
i suspected cases,

pinm
i mild cases, and pinv

i severe cases (1≤ i≤m);
(2) If pi is less than 100% (which indicates that the civilian medical service cannot serve

all of the residents/patients allocated to it), set a random ratio γo
i ∈ [0, 1] of normal

residents that will be sent to open military medical services, and randomly divide
(1−pi)γ

o
i no

i into m′′ parts to obtain decision variables yo
ij (1≤ i≤m; 1≤ j≤m′′);

(3) Similarly, set random ratios γs
i , γm

i , γv
i of suspected cases, mild cases, and severe

cases that will be sent to open military services, and randomly divide each of
(1−pi)γ

s
i ns

i , (1−pi)γ
m
i nm

i , and (1−pi)γ
v
i nv

i into m′′ parts to obtain decision vari-
ables ys

ij, ym
ij , and yv

ij, respectively (1≤ i≤m; 1≤ j≤m′′);
(4) For each k-th type of non-fixed supply, calculate the set Ck of civilian medical services,

where the supply is not sufficient for treating the residents/patients remaining at the
services (1≤ k≤K1);

(5) For each j-th open military medical service and each k-th type of non-fixed supply,
if the supply is sufficient for the residents/patients that are received by the service,
divide the remaining amount of this supply into |Ck| parts for the civilian medical
services to obtain |Ck| decision variables xijk, and set xijk = 0 for other i /∈ Ck
(1≤ i≤m; 1≤ j≤m′′; 1≤ k≤K1);

(6) For each k, update Ck by removing those civilian medical services that receive
sufficient k-th type of supply (1≤ k≤K1);

(7) For each k, calculate the set Ok of open military medical services, where the k-th
type of supply is not sufficient to treat the residents/patients received at the services
(1≤ k≤K1);

(8) For each j′-th closed military medical service and each k-th type of non-fixed supply,
divide the amount (a′jk − bjk) of this supply into |Ck ∪ Dk| parts for the civilian and
open military medical services to obtain |Ck ∪ Dk| decision variables x′jj′k, and set
x′jj′k =0 for other i /∈ Ck and j /∈ Dk (1≤ j≤m′′; m′′+ 1≤ j′≤m′; 1≤ k≤K1).

4.2. Solution Evolution

The original WWO is for single-objective optimization. Here, we extend it for multi-
objective optimization. First, we employ the fast non-dominated sorting procedure of
NSGA-II [24] to compute a rank rank(X) for each solution X = (x, y) in the population.
That is, the rank of each non-dominated solution in the population is 1; afterwards, these
current non-dominated solutions are temporarily excluded from the population and the
rank of each new non-dominated solution is 2; this procedure continues until all of the
solutions are ranked. Any infeasible solution that violates a constraint is considered to be
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dominated by all feasible solutions. According to the rank of each solution X, we calculate
its wavelength as:

λ(X) = α · rank(X)

rankmax
(31)

where rankmax is the maximum rank number among the population and α is a control
parameter.

At each generation, each solution X produces a child solution while using the follow-
ing procedure:

(1) For each i-th civilian medical service (1 ≤ i ≤ m), try m′′/2 times, each of which
performs one of the following three operations with a probability of λ(X):

(1.1) randomly select a j-th open military medical service with yo
ij >0 (1≤ j≤m′),

let ∆ = rand(0, yo
ij), and set yo

ij = yo
ij−∆;

(1.2) randomly select two different j-th and j′-th open military medical services
(1≤ j, j′≤m′), let ∆ = rand(0, min(yo

ij, yo
ij′)), set yo

ij = yo
ij+∆ and yo

ij′ = yo
ij′−∆;

and,
(1.3) if γo

i > 0, let ∆ = rand(0, γo
i no

ij), randomly select a j-th open military medical
service (1≤ j≤m′), and set yo

ij = yo
ij+∆.

(2) For each i-th civilian medical service (1 ≤ i ≤ m), try m′′/2 times, each of which
performs operations similar to the above to change ys

ij.

(3) For each i-th civilian medical service (1 ≤ i ≤ m), try m′′/2 times, each of which
performs operations that are similar to the above to change ym

ij .

(4) For each i-th civilian medical service (1 ≤ i ≤ m), try m′′/2 times, each of which
performs operations similar to the above to change yv

ij.

(5) If the fitness of X is in the second half of the population, use solution initialization
steps 4)–8) to reset the other components of the solution, and then stop the procedure.

(6) Otherwise, for each j-th open military medical service and each k-th non-fixed supply
(1≤ j≤m′′; 1≤ k≤ K1), try m/2 times, each of which, with a probability of λ(X),
randomly select two different i-th and i′-th civilian medical services (1≤ i, i′≤m), let
∆ = rand(0, min(xijk, xi′ jk)), set xijk = xijk+∆ and xi′ jk = xi′ jk−∆.

(7) For each j′-th closed military medical service and each k-th non-fixed supply (m′−
m′′+1 ≤ j′ ≤ m′′; 1 ≤ k ≤ K1), try (m+m′′)/2 times, each of which, with a proba-
bility of λ(X), randomly select an i-th civilian medical service and an i′-th civil-
ian or a j-th open military medical services (1 ≤ i, i′ ≤ m; 1 ≤ j ≤ m′′), let ∆ =
rand(0, min(xij′k, xi′ j′k)) or ∆ = rand(0, min(xij′k, x′jj′k)), set xij′k = xij′k±∆ and
xi′ j′k = xi′ j′k∓∆ or x′jj′k = xjj′k∓∆.

The above procedure may produce an infeasible solution that violates
Constraints (18)–(24), (29) and (30), but Constraints (25)–(28) are always kept satisfied. We
try to repair an infeasible solution, as follows:

• If Constraint (18) is violated, we continually select a random i with xijk > 0 and
decrease xijk by one until the remaining amount of the k-th type of supply in the j-th
open military medical service is equal to bjk;

• If Constraint (19) is violated, then we continually select a random i with xijk >0 or j′

with x′j′ jk >0 and decrease xijk or x′j′ jk by one until the remaining amount of the k-th
type of supply in the j-th closed military medical service is equal to bjk;

• If Constraint (21) is violated, we continually select a random i with yo
ij >0 and decrease

yo
ij by one until the number of residents/patients that are received by the j-th open

military medical service is equal to noj;
• Similarly, if Constraint (22) or (23) or (24) is violated, then we continually select a

random i and decrease the number of patients sent from the i-th civilian medical
service to the j-th military medical service by one until the constraint is satisfied.
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Therefore, after repairing, only Constraints (19), (29), and (30) may be violated, and,
in such a case, the solution has the maximum rank in the population.

We compare two solution, as follows: a solution X is considered to be better than
another solution X′, if the rank of X is smaller than that of X′, or X and X′ have the same
rank, but the number of solutions in the population that are dominated by X is larger than
that are dominated by X′. If a child solution is better than its parent, it will replace its
parent in the population.

Whenever finding a new solution X∗ that dominates all of the current non-dominated
solutions, the algorithm performs extensive local search around X∗ to produce KN neigh-
boring solutions (where KN is a control parameter), each of which are obtained by ran-
domly selecting a dimension and set the corresponding component yo

ij =
o
ij ±1, ys

ij =
s
ij ±1,

ym
ij =m

ij ±1, yv
ij =

v
ij ±1, xijk = xijk ± 1, or x′jj′k = xjj′k ± 1 (the minus operation can only be

performed when minuend is positive). If a neighbor is infeasible, we also repair it using the
above steps. Among X∗ and its KN neighbors, the best one is retained in the population.

4.3. Algorithm Framework

Algorithm 1 presents the framework of the MOWWO algorithm for the integrated
civilian-military medical supply scheduling problem. The current non-dominated solution
set is returned when the algorithm stops. We present the set to the decision-maker with an
illustration of the objective function value distribution, and the decision-maker selects a
final solution for implementation according to his/her preference on supply satisfaction
rate and scheduling cost.

Algorithm 1: The multi-objective water wave optimization (MOWWO) algorithm for integrated civilian-
military scheduling of medical supplies for epidemic prevention and control.

1 Use the procedure described in Section 4.1 to initialize a population of solutions;
2 while the stopping condition is not met do
3 Perform non-dominated sorting of the solutions in the population;
4 foreach solution X in the population do
5 Calculate the wavelength λ(X) according to Equation (31);
6 Use the procedure described in Section 4.2 to produce a child solution X′;
7 Perform possible reparation on X′;
8 if rank(X′) < rank(X) or (rank(X’) = rank(X) and s(X’) > s(X)) then
9 Replace X with X′ in the population;

10 if X is a new non-dominated solution then
11 for k = 1 to kN do
12 Generate a neighbor X′ of X;
13 if X′ is better then
14 Replace X with X′ in the population;

15 else if X has not been improved for hmax generations then
16 Replace X with a new random solution between X and a non-dominated solution;

17 return the non-dominated solution set.

5. Results and Discussion

We test the proposed method on four problem instances that are constructed based on
data from three cities during January and February, 2020, the peak period of COVID-19
epidemic in China. Table 2 summarizes the main characteristics of the instances. In order
to validate the performance of the MOWWO algorithm, we compare it with the following
popular multi-objective optimization algorithms:

• The improved fast non-dominated genetic algorithm (NSGA-II) [24].
• The strength Pareto evolutionary algorithm (SPEA2) [25].
• The multi-objective biogeography-based optimization (MOBBO) algorithm [26].
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• The multi-objective particle swam optimization (MOPSO) algorithm [27].
• The multi-objective artificial bee colony (MOABC) algorithm [28].

Table 2. Summary of the main characteristics of the four problem instances, where ∑i no
i , ∑i ns

i ,
∑i nm

i , and ∑i nv
i denote the total numbers of normal residents, suspected cases, mild cases, and

severe cases, respectively.

ID m m′ m′′ ∑i no
i ∑i ns

i ∑i nm
i ∑i nv

i K1 K2

1 39 5 3 1,602,112 1556 385 132 12 7
2 42 6 4 3,195,823 2094 297 96 12 9
3 58 8 5 6,857,710 6720 2335 416 11 8
4 58 8 6 10,693,117 8164 3566 601 13 10

We tune the parameters of all the algorithms on the four instances. Due to the
emergency of medical supplies scheduling, we set the maximum CPU time to 600 s as
the stop condition for each algorithm. The computational environment is a workstation
with an i7-6500 2.5GH CPU, 8GB DDR4 RAM, and an NVIDIA Quadro M500M card. On
each instance, we perform 50 Monte Carlo simulation runs of each algorithm. Among the
50 runs, we calculate the best aggregated objective function value that was obtained by
each algorithm, as follows:

max f (X) = wS(X) + (1−w)C′(X) (32)

where the aggregation weight w is respectively set to 0, 0.1, 0.2, . . . , 1.0.
Based on non-dominated solution set that was obtained by the algorithms, we also

calculate the following metrics according to the hyper-volume (where the reference point
is set to S(X) = S and C′(X) = 0.5) and coverage indicators [29,30] for each comparative
algorithm over the 50 runs:

• RH(SN , S′N), the ratio of the hyper-volumeHV of the non-dominated solution set SN
of MOWWO to that of the resulting solution set S′N of the comparative algorithm:

RH(SN , S′N) =
HV (SN)

HV (S′N)
(33)

• CV (SN , S′N), the fraction of S′N that are strictly dominated by at least one non-dominated
solution in SN (where � denotes the strict dominance relation):

CV (SN , S′N) =
|{X′ ∈ S′N |∃X ∈ SN : X � X′}|

|S′N |
× 100% (34)

• C ′V (S′N , SN), the fraction of SN that are strictly dominated by at least one non-dominated
solution in S′N :

C ′V (S′N , SN) =
|{X ∈ SN |∃X′ ∈ S′N : X′ � X}|

|SN |
× 100% (35)

Table 3 presents the above metric values of the comparative algorithm on the four
problem instances, and Figure 2a–d compare the best aggregated objective function values
that are obtained by the different algorithms on the four instances, respectively. The pro-
posed MOWWO algorithm has significant performance advantages over the comparative
algorithms on all four instances, as it can be observed from the results. On the smallest-size
instance 1, the solution set of MOWWO covers the whole solution sets of MOBBO and
MOABC, covers a majority of solutions of SPEA-2 and MOPSO, and covers a small fraction
of solutions of NSGA-II; on the contrary, none of the solutions of MOWWO are strictly
dominated by those of the other algorithms. On instance 2, the solution set of MOWWO
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covers the whole solution sets of MOBBO, MOPSO, and MOABC, and it covers 22.2% and
62.5% of those of NSGA-II and SPEA2, respectively. On instance 3, the solution set of
MOWWO covers the whole solution sets of MOBBO, MOPSO, and MOABC, and covers
a majority of those of NSGA-II and SPEA2. On the largest-size instance 4, the solution
set of MOWWO covers the whole solution sets of all other algorithms. Additionally, on
these instances, none of the solutions of MOWWO are strictly dominated by those of the
other algorithms.

Table 3. Comparison of the results of MOWWO with those of the other five algorithms on the four
problem instances.

ID Metrics NSGA-II SPEA2 MOBBO MOPSO MOABC

RH 1.009 1.084 1.608 1.323 1.695
1 CV 12.5% 85.7% 100% 88.9% 100%

C ′V 0% 0% 0% 0% 0%

RH 1.017 1.151 1.975 1.663 2.116
2 CV 22.2% 62.5% 100% 100% 100%

C ′V 0% 0% 0% 0% 0%

RH 1.258 1.346 1.715 3.106 2.884
3 CV 78.8% 88.9% 100% 100% 100%

C ′V 0% 0% 0% 0% 0%

RH 1.497 1.609 1.785 3.281 3.329
4 CV 100% 100% 100% 100% 100%

C ′V 0% 0% 0% 0% 0%
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Figure 2. Comparison of the aggregated objective function values obtained by the six algorithms on the four problem
instances. The horizontal axis denotes the weight of supply satisfaction rate, and the vertical axis denotes the aggregated
objective function value. (a) Instance 1; (b) Instance 2; (c) Instance 3; (d) Instance 4.
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Moreover, on each of the instances, the hyper-volume of the solution set of MOWWO
is always larger than those of the other four algorithms. In almost all cases, the aggregated
objective function value of MOWWO is the best among all of the algorithms. This indicates
that MOWWO can provide the most prominent solutions to the decision-maker no matter
which preference he/she has (e.g., has more preference to high satisfaction rate or low
scheduling cost or a balance between them). The results demonstrates that, among the
six algorithms, our MOWWO algorithm exhibits the best performance in solving the test
instances of the considered integrated civilian-military medical supply scheduling problem
for epidemic prevention and control.

In order to validate the effectiveness of the methods, on each instance, we also eval-
uate the overall weighted satisfaction rate of all medical supplies that are obtained by
the solution of each of the six algorithms as well as the solution of mixed 0–1 integer
programming [19] that only uses civilian medical supplies. The weight of each type of
supply is determined by public health experts according to its importance in epidemic
control. Figure 3 presents the resulting satisfaction rates, which show that the integrated
civilian-military medical resource scheduling methods achieve significantly higher satis-
faction rates than the pure civilian medical resource scheduling method; among the six
algorithms used for integrated civilian-military scheduling, our MOWWO algorithm also
always achieves the highest satisfaction rate on each instance. In particular, the overall
satisfaction rates that are obtained by MOWWO are 143%, 150%, 160%, and 184% of those
of the pure civilian scheduling method on the four instances, respectively. Such high satis-
faction rate improvements can significantly contribute to the effectiveness of the prevention
and control of the epidemic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Instance 1 Instance 2 Instance 3 Instance 4

NSGA-II SPEA2 MOBBO MOPSO

MOABC MOWWO Civilian-only
Satisfication rate

Figure 3. Satisfaction rates that were obtained by the six algorithms as well as a mixed 0–1 integer
programming approach [19] (only using civilian medical supplies) on the test instances.

Finally, we summarize a general procedure, as follows, for applying the proposed
method in epidemic control:

(1) collect information regarding the demands and available amounts of different med-
ical supplies for all civilian medical services; when estimating the demands, we
should consider demand variations in the near future according to the dynamic
changes of the epidemic [31,32];

(2) collect information regarding potential military medical services that can provide
medical assistances, and then decide which military medical services are selected;

(3) construct an instance of the problem based on the data collected;
(4) apply the proposed algorithm or other algorithms to solve the problem instance, and

present the solutions with preference illustration to the decision-maker; and,
(5) monitor the implementation of the final solution; if the implementation deviates

from the calculation, or new requirement comes, adjust the model and/or solution
to better meet the new situation.
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6. Conclusions

This paper presents an integrated civilian-military medical supply scheduling problem,
the aim of which is to simultaneously maximize the overall satisfaction rate of the medical
supplies and minimize the total scheduling cost, while satisfying constraints, including
the maximum amount of supplies that can be provided by military medical services, the
maximum number of patients that can be received by open military medical services, lower
the limit of supply satisfaction rate, upper limit of scheduling cost, etc. In order to efficiently
solve this difficult problem, we propose an MOWWO algorithm, which exhibits significant
performance advantages when compared to some popular multi-objective optimization
algorithms on a set of problem instances constructed based on real COVID-19 data in China.

In the domain of emergency management, the integrated scheduling of civilian and
military resources is a common paradigm, and our model can be applied to similar prob-
lems in other mass disasters, such as earthquakes, typhoons, and chemical explosions.
Although they typically involve more types of supplies, the underlying mathematical
model does not differ significantly. Theoretically, our problem can be generalized to an
abstract model of integrated scheduling resources from two or more heterogeneous sources
to support a common task. It covers a wide range of practical problems, such as integrated
scheduling of civilian and military transportation capacities for troop delivery [33], in-
tegrated scheduling of in-school and out-school resources for course teaching [34], and
integrated scheduling of governmental and nongovernmental rescue teams for disaster
rescue [35]. Subsequently, the proposed algorithm can be easily adapted or extended to
efficiently solve these problems.

Currently, the problem formulation assumes that the number of residents/patients
for each civilian medical service is exact. In practice, such numbers are roughly estimated,
while the model and solution quality are sensitive to the accuracies of such numbers.
Therefore, our ongoing study is to incorporate mathematical models (e.g., [36,37]) in
order to predict the spread of the epidemic and consequent supply demands in a more
accurate manner. Our future work will also integrate the scheduling of vehicle for supply
delivery [38] and the scheduling of supply production [2] into our approach in order to
provide a more comprehensive decision support for epidemic prevention and control.
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