
RESEARCH ARTICLE

Longitudinal measurement invariance of

memory performance and executive

functioning in healthy aging

Pedro Silva Moreira1,2,3, Nadine Santos1,2,3, Teresa Castanho1,2,3, Liliana Amorim1,2,3,

Carlos Portugal-Nunes1,2,3, Nuno Sousa1,2,3, Patrı́cio CostaID
1,2,3*

1 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga,

Portugal, 2 ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal, 3 Clinical

Academic Center–Braga, Braga, Portugal

* pcosta@med.uminho.pt

Abstract

In this work, we examined the longitudinal measurement invariance of a battery composed

of distinct cognitive parameters. A sample of 86 individuals (53.5% females; mean age =

65.73), representative of the Portuguese older population, with respect to sex, age and level

of education was assessed twice over an average of two years. By means of a confirmatory

factor analysis approach, we tested whether a two-factor solution [corresponding to mea-

sures of memory performance (MEM) and executive functioning (EXEC)] was reliable over

time. Nested models of longitudinal invariance demonstrated the existence of partial strong

invariance over time. In other words, this indicates that there is an equivalence of the facto-

rial structure and factor loadings for all items; this was also observed for the item intercepts

for all the items, except for one of the items from the EXEC dimension. Stability coefficients

revealed high associations between the dimensions over time and that, whereas there was

a significant decline of the MEM across time, this was not observed for the EXEC dimension.

These findings reveal that changes in MEM and EXEC scores can be attributed to true

changes on these constructs, enabling the use of this battery as a reliable method to study

cognitive aging.

Background

The study of cognitive aging has been a topic of great interest for several years among the sci-

entific research, which has been greatly motivated by fact that the world population is progres-

sively living longer. The fact that cognitive aging may interfere with individuals’ quality of life

and the ability to make everyday decisions [1] motivates researchers in trying to unveil what

are the main variables that may delay the deleterious effects of aging [2]. In this context, both

cross-sectional and longitudinal analytical strategies have been implemented. The later

approach is of particular relevance, as it allows to capture subject-specific trajectories across

time. Nevertheless, there are some limitations associated with this method, considering that

cognitive functioning is a multifactorial process that comprises several aspects and that
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traditional typically focus on individual rather than multiple parameters/dimensions to assess

cognitive change.

With the goal of ensuring reliable conclusions concerning repeated measurements it is of

upmost relevance to ensure that individual scores between separate times of assessment are

representing a similar underlying construct, i.e., that the follow-up assessment represents the

same construct measured at the baseline. More specifically, when relying on the results

obtained from dimension reduction techniques, such as principal component analysis or

equivalent, it is important to test whether the same factorial structure is observed across groups

or distinct measurement intervals. For this purpose, a common approach is to rely on mea-

surement invariance techniques which are widely used to statistically demonstrate that the

dimensions are consistent across distinct groups or populations, such as groups or ethnicities

[3, 4]. These procedures are implemented by sequentially estimating a series of nested models,

in which specific restrictions are progressively established [4]. This approach has also been

implemented with the goal of establishing measurement invariance across time–referred as

longitudinal measurement invariance [5]. Within the confirmatory factor analysis (CFA)

approach, one can test whether factor parameters are similar across time [6].

In this study, with the aim of exploring longitudinal trajectories of executive and memory

functions performance during the process of aging, a longitudinal invariance analysis was per-

formed. With this strategy, we intended to avoid simple comparisons between individual tests

and, therefore, reducing number of comparisons and, consequently, the likelihood of commit-

ting type I errors. Instead, we focused on the creation of two latent variables, referring to exec-

utive functioning and memory performance, which were validated using a confirmatory factor

analysis (CFA) approach, as previously reported [7].

Methods

Participants

Eighty-six community-dwellers [53.5% females; mean age = 65.73 (SD = 8.24)], selected from

a larger cohort of 1051 individuals, representative of the Portuguese older population with

respect to age and education [7], participated in this study. The study was conducted according

to the principles expressed in the Declaration of Helsinki (59th Amendment) and approved by

national (Comissão Nacional de Proteção de Dados) and local (Hospital Escala Braga, Braga)

ethics committees. A written informed consent was obtained in-person from all the study par-

ticipants, highlighting: (i) the voluntary nature of the participation on the study, (ii) the right

to withdraw at any time, (iii) data confidentiality, (iv) a full description of the study goals, and

(v) an overview and explanation of the neuropsychological testing. The assessments were per-

formed individually by a team of experienced examiners.

Cognitive assessment

A battery of cognitive tests was administered at two time points to test longitudinal effects of

aging on global cognition and memory performance. The time between assessments ranged

between 18 and 24 months. The battery was comprised of validated tests for the Portuguese

population, including: the Mini-Mental State Examination (MMSE) [8], which was used to

screen cognitive domains such as orientation, word recall, attention and calculation, language

and visual-construction abilities); number of words, colors and interference parameters from

the Stroop test [9], which assessed cognitive flexibility and inhibitory control; long-term stor-

age (LTS), consistent-term retrieval (CLTR) and delayed-recall (DR) domains from the Selec-

tive Reminding Test (SRT, used to evaluate verbal learning and memory) [10].
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Since the tests are assessed with different measurement units, test scores were transformed

in order to be expressed in the same scale. In longitudinal data analysis, there are different

standardization alternatives, including (i) standardization of repeated measures within indi-

viduals, (ii) standardization across individuals within measurement time points and (iii) stan-

dardization across individuals across time points, as described in Moeller [11]. These solutions

have some limitations, in terms of: examining mean-level differences between individuals,

examining mean level changes from one time point to another, and disentangling rank-order

and mean-level stability. This is particularly problematic for structural equation modelling

procedures, since with the z-score transformation, the information about mean-level changes

across time is lost [12]. Possible solutions for handling this issue include z-score standardiza-

tion for both time-points with baseline as the reference or estimating the proportion of maxi-

mum scaling (POMS), according to the formula:

POMS ¼
observed � minimum

maximum � minimum

Both alternatives allow the covariance matrices to remain suitable for exploratory and con-

firmatory factor analyses. For our purposes, we used the second alternative, as this can be com-

puted at the individual variable level (i.e., without the need to adjust for the baseline values).

With this approach, each variable varies between 0 (minimum possible value) and 1 (maxi-

mum possible value) [11].

Descriptive statistics were obtained for the individual cognitive parameters and intra-item

correlations between assessments were estimated. Variables’ distribution was assessed through

the analysis of univariate (skewness and kurtosis) and multivariate (Mardia’s test [13]) statis-

tics. Cronbach’s alphas were estimated for assessing the internal consistency of each variable at

individual time-points.

Longitudinal measurement invariance

To test for longitudinal measurement invariance, four latent variables were defined, corre-

sponding to the measures of executive functioning and memory performance for both the

baseline and follow-up periods, respectively (Fig 1). Items corresponding to the same item,

measured in both timepoints, were correlated with the goal of accounting for the specific effect

associated with each item.

The analytical pipeline was implemented by testing nested models of measurement invari-

ance. In the first step, a baseline model was estimated without any constraints to test whether

the factor structure is similar between timepoints–configural invariance. If the configural

invariance was assumed, a more restrictive level of invariance was tested, where the factor

loadings were constrained to be equal across the two time points–metric invariance, also com-

monly referred as the weak invariance. The next level of measurement invariance would be the

assessment of the equivalence of item intercepts across time intervals–the scalar, or strong

invariance–which constitutes a test for systematic response bias across timepoints. Neverthe-

less, response threshold differences may not reflect biases, but rather expected within-time-

points’ differences, i.e., if there is a specific expectation that the values of the construct will

change between assessments. Indeed, age-related cognitive declines are expected for older

individuals. As such, the assessment of this level of invariance is not appropriate and, thus, we

did not proceed to its verification. In the absence of a complete longitudinal measurement

invariance, partial invariance was tested, by releasing specific constraints on the model (i.e.,

factor loadings [14]. The assessment of measurement invariance was assessed by analyzing

models’ fit indices. Specifically, each model was assessed, by (i) analyzing its own fit indices
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and (ii) comparing these properties with the model with lower restrictions. The chi-square sta-

tistic (χ2) was used to assess goodness-of-fit. Even though this statistic constitutes a fundamen-

tal measure for a mathematical comparison of the two matrices, its statistical significance is

largely dependent on sample size and may not be an indication of a meaningful discrepancy

between the sample and implied covariances. To address this issue, the χ2 statistic was comple-

mented with the χ2/df ratio, which is aimed to compare the χ2 magnitude with the expected

values of the sample distribution. The comparative fit index (CFI), the Tucker Lewis index

(TLI), the root mean squared error of approximation (RMSEA) and the standardized root

mean square residual (SRMR) were used as additional indicators of fit adequacy. To compare

the difference of the fit between models, a Satorra-Bentler-scaled chi-square statistic (SB-χ2)

was used [15]. The assessment of invariance was complemented with the analysis of the

Fig 1. Representation of the model for assessing longitudinal measurement invariance.

https://doi.org/10.1371/journal.pone.0204012.g001
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difference between other indices. Specifically, following previous recommendations [16], a

decrease in CFI of� 0.01 and an increase in RMSEA of� 0.015 was considered unacceptable

to establish measurement invariance. The models were conducted using maximum likelihood

(ML) estimators. In the presence of multivariate non-normality, a robust ML estimator was

used [17]. Given that the establishment of measurement invariance may be influenced by the

sample size (which was modest for this statistical procedure, n = 86), Monte Carlo simulation

analysis were implemented to assess the power to reject the null hypothesis (H0) of longitudi-

nal invariance. Two sets of data (each with 1.000 datasets of n = 86), based on (i) uncon-

strained and (ii) constrained models were simulated. Using these simulations, we calculated

the percentage of datasets in which the change of specific model fit indices, from the uncon-

strained to the constrained model, was greater than pre-specified cutoffs (here, a change of

0.01 of the CFI and a significant change of the chi-square statistic). This percentage was the

estimated power for the rejection of H0 of longitudinal invariance. We tested the degree to

which we would have to constrain the strictest model, so that we would obtain a statistical

power (1-β) of .80, corresponding to Cohen’s [18] recommendations (which was suggested

base on a β:α ratio of 4:1, considering i.e., considering typical α and β levels of 0.05 and 0.20,

respectively).

With the goal of computing the stability coefficient across time, i.e., the correlation between

factors in distinct timepoints, the factor correlation was estimated, based on the strictest level

of longitudinal invariance. For this purpose, the factor variances were constrained to 1 and all

the factor loadings were freely estimated. The stability coefficient (correlation between two

wave factors) has been previously used as a valid measure to estimate test-retest reliability [19].

Finally, with the goal of analyzing the differences between assessment timepoints in each latent

factor, the mean evolution was computed for both dimensions and the statistical significance

of the different from baseline to follow-up was assessed.

The R “base” package was used to conduct descriptive bivariate statistics. Measurement

invariance analysis was implemented with Mplus [17]. Monte Carlo simulations were imple-

mented with the “simsem” package [20] in R. The code for the statistical analysis is available at

the Open Science Framework (https://osf.io/t2vgf).

Results

Table 1 summarizes the descriptive statistics of the cognitive parameters at baseline and fol-

low-up periods, including the mean, standard deviation, skewness and kurtosis. Participants

displayed lower scores on cognitive tests at the follow-up than at the baseline. Univariate skew-

ness [ranging from -1.27 (MMSET0) to 0.86 (SRT CLTRT1)] and kurtosis [ranging from -1.06

(SRT DRT1) to 1.52 (MMSET0)] were within acceptable limits. The Mardia’s multivariate nor-

mality test yielded statistically significant results (SkM = 793.78, p< .001, KM = 3.13, p = .002).

The correlation between items over time is presented in Table 2. As can be observed, the corre-

lation between the same item at different time-points ranged from r = .533 (for the SRT-DR

test) to r = .780 (for the Stroop W test).

The results of the cross-sectional CFA model revealed appropriate fit indices for the base-

line model (χ2
(13) = 15.79, p = .261, CFI = .993, TLI = .989, RMSEA = .050, p(RMSEA) = .450).

To account for the significant results obtained with the Mardia’s test, robust procedures were

conducted to deal with the violation of the multivariate normality assumption. These proce-

dures are less dependent on the assumption of multivariate normality distribution, by produc-

ing bias-corrected standard errors and chi-square statistics, given that these deviances are

small-to-moderate in magnitude [21]. From the available robust methods, a recent publication

demonstrated that the Asparouhov and Muthén maximum likelihood mean- and variance-
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adjusted (MLMV) produced the most accurate results for small sample sizes and non-normal

distributions [22]. Nevertheless, there is a reduced number of studies comparing the

Table 1. Descriptive statistics of MEM and EXEC parameters.

T0 T1

Mean Median SD Skewness Kurtosis Mean Median SD Skewness Kurtosis

SRT LTS 27,16 29,50 13,54 0,06 -0,61 22,36 20,00 13,93 0,60 -0,70

SRT CLTR 16,37 18,00 13,26 0,37 -0,64 15,28 11,00 13,10 0,86 -0,16

SRT DR 5,51 6,00 3,11 -0,10 -0,67 4,24 4,00 3,18 0,15 -1,06

Stroop W 64,83 62,00 21,31 0,10 -0,93 60,12 59,00 24,55 -0,23 0,00

Stroop C 48,35 48,50 16,08 -0,06 -0,03 45,35 45,50 16,84 -0,28 0,05

Stroop WC 28,91 28,00 12,76 0,26 -0,37 27,13 27,00 14,35 0,01 -0,75

MMSE 26,67 27,00 3,29 -1,27 1,52 25,56 26,00 3,65 -1,12 0,74

https://doi.org/10.1371/journal.pone.0204012.t001

Table 2. Correlation matrix among MEM and EXEC transformed scores for T0 and T1.

T0—

SRT

LTS

T0—SRT

CLTR

T0—

SRT DR

T0—

Stroop W

T0—

Stroop C

T0—

Stroop

WC

T0—

MMSE

T1—

SRT

LTS

T1—SRT

CLTR

T1—

SRT DR

T1—

Stroop W

T1—

Stroop C

T1—

Stroop

WC

T1—

MMSE

T0—SRT

LTS

183.4 159.1 30.9 184.0 154.0 105.3 26.8 112.9 105.8 22.2 229.2 153.5 121.4 29.0

T0—SRT

CLTR

.886�� 175.9 30.2 171.4 146.0 101.8 27.6 112.1 104.9 20.6 204.0 136.4 108.5 28.4

T0—SRT

DR

.735�� .733�� 9.7 34.5 28.1 21.6 6.0 25.7 23.5 5.3 43.3 29.9 23.4 6.6

T0—

Stroop W

.638�� .607�� .521�� 453.9 255.5 180.9 39.3 160.1 147.8 29.6 408.0 237.6 183.9 48.0

T0—

Stroop C

.707�� .684�� .562�� .746�� 258.7 160.8 30.9 130.2 121.4 22.3 274.0 203.9 164.1 35.9

T0—

Stroop

WC

.610�� .602�� .544�� .665�� .784�� 162.7 20.7 101.8 97.9 16.2 191.4 149.8 133.2 25.1

T0—

MMSE

.601�� .632�� .585�� .560�� .584�� .494�� 10.8 23.9 22.0 4.9 37.3 26.7 25.3 8.9

T1—SRT

LTS

.598�� .607�� .593�� .539�� .581�� .573�� .522�� 194.1 175.0 34.5 175.4 147.6 126.3 31.7

T1—SRT

CLTR

.596�� .604�� .577�� .529�� .576�� .586�� .511�� .959�� 171.7 31.0 162.1 132.9 122.1 28.1

T1—SRT

DR

.516�� .490�� .533�� .437�� .436�� .401�� .466�� .779�� .746�� 10.1 32.5 26.0 22.1 5.7

T1—

Stroop W

.689�� .627�� .568�� .780�� .694�� .611�� .461�� .513�� .504�� .416�� 602.7 333.4 252.7 53.2

T1—

Stroop C

.673�� .611�� .571�� .662�� .753�� .697�� .482�� .629�� .602�� .487�� .806�� 283.6 207.7 35.3

T1—

Stroop

WC

.624�� .570�� .524�� .601�� .711�� .727�� .536�� .632�� .649�� .486�� .717�� .859�� 206.1 30.0

T1—

MMSE

.588�� .587�� .584�� .618�� .612�� .540�� .745�� .623�� .588�� .489�� .594�� .574�� .573�� 13.3

��p < .001.

The variances of the transformed scores (using proportion of maximum scaling) are represented on the diagonal of the table (light grey); parameters’ covariances are

represented on the upper-triangle (dark grey); correlation coefficients are represented on the lower triangle (no shading); underlined coefficients refer to rest-retest

reliability.

https://doi.org/10.1371/journal.pone.0204012.t002
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appropriateness of each robust procedure with small samples and, to the best of our knowl-

edge, there is a scarcity of published reports comparing different robust methods for longitudi-

nal invariance. Thus, even though we relied on the MLMV method as the primary source for

our analytical pipeline, we also compared the results obtained with other robust procedures,

including Asparouhov and Muthén mean-adjusted ML (MLR), Satorra and Bentler mean-

adjusted ML (MLM).

The results of the longitudinal measurement invariance are presented in Table 3. The

unconstrained model exhibited adequate fit properties (χ2
(60) = 68.78, p = .205; CFI = .988,

TLI = .981, SRMR = .042, RMSEA = .041, p(RMSEA) = .603). The comparison between the met-

ric invariance and unconstrained models was statistically significant (SB-χ2
(5) = 15.61, p =

.008), according to the SB-χ2 statistic. However, the variation of CFI and RMSEA (CFI = .979,

RMSEA = .052) values was within the margin for accepting measurement invariance.

This result supports the existence of metric longitudinal invariance. The results from the

Monte Carlo simulation study highlighted that a standardized difference of approximately 0.7

in one single loading would have to be observed to reject the null-hypothesis (H0) of longitudi-

nal invariance (with a sample size of n = 86) with a statistical power of 80%. Table 4 displays

the variation of the statistical power, according to varying loadings’ standardized differences.

While these results demonstrate that large differences need to be observed to detect non-

invariance with sufficient statistical power, it would also be relevant to explore whether with

large sample sizes one would reject the H0 of longitudinal invariance. To further elucidate on

this issue, we implemented a complementary approach in which the real estimates (i.e., the

parameters’ estimates for T0 and T1) were subjected to Monte Carlo simulations with varying

sample sizes (from 100 to 1.000 individuals). It was observed that considering the largest tested

sample size, the power to reject H0 would be of 51.5% for the chi-square significance (Table 5).

The stability coefficient for the global cognition factor between timepoints was computed

using the metric invariance model. To achieve this, the factor variances were set to 1 and all

Table 3. Model fit indices of nested longitudinal invariance models.

df SB-χ2 ΔSB-χ2 pΔSB CFI TLI RMSEA p(RMSEA) SRMR

MLR Configural Invariance 60 76.39 — — .985 .977 .056 .374 .042

Metric Invariance 65 91.64 14.48 .013 .976 .966 .069 .174 .061

MLM Configural Invariance 60 68.98 — — .989 .984 .050 .473 .042

Metric Invariance 65 88.06 14.76 .011 .981 .974 .064 .243 .061

MLMV Configural Invariance 60 68.78 — — .988 .981 .041 .603 .042

Metric Invariance 65 80.31 15.61 .008 .979 .970 .052 .439 .061

df–degrees of freedom; SB-χ2 –Satorra-Bentler chi-square statistic; CFI–comparative fit index; TLI—Tucker Lewis Index; RMSEA–root mean square error of

approximation; SRMR–standardized root mean square residual. All indices are estimated based on robust maximum likelihood estimation.

https://doi.org/10.1371/journal.pone.0204012.t003

Table 4. Power to reject the null-hypothesis (H0) of longitudinal measurement invariance as a function of varying

differences in one factor loading.

Standardized difference Chi-Square CFI

0.01 0.005 0.002

0.01 0.159 0.085 0.214 0.361

0.02 0.232 0.136 0.31 0.445

0.05 0.646 0.501 0.664 0.754

0.07 0.858 0.74 0.842 0.904

https://doi.org/10.1371/journal.pone.0204012.t004
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the factor loadings for each factor were freely estimated. Cross-sectional associations between

latent global cognition and memory demonstrated a larger association at the baseline assess-

ment (r = .845, p< .001) than at the follow-up (r = .710, p< .001) (Fig 2). The difference

between these coefficients was statistically significant, as demonstrated by the Fisher r-to-z

transformation (z = 2.26, p = .024). The correlations between the same factors measured across

time was statistically significant for both the EXEC (r = .942, p< .001) and MEM (r = .663,

p< .001), even though the magnitude of association was statistically higher for the first latent

factor (z = 6.17, p< .001). These results should not be interpreted as a lack of change from the

first to the second timepoints. Instead, they represent a covariation between the scores of

MEM and EXEC for T0 and T1, i.e., the subjects that achieve higher scores at T0 also have

higher scores at T1. These associations are visually represented on Fig 2. Finally, considering

the inter-factor association between different timepoints, it was observed that while both these

correlations between MEM-T1 with EXEC-T2 (r = .824, p< .001) and between EXEC-T1 with

MEM-T2 (r = .678, p< .001) are statistically significant, the former is significantly higher than

the later (z = 2.21, p = .027).

The estimated factor mean for the follow-up assessment was significantly lower than the

baseline values for MEM (ΔM = -.260, p = .010), whereas no statistically significant differences

were found for EXEC (ΔM = -.001, p = .984). Thus, the results indicate an equality of latent

factor means for EXEC, but not for MEM.

Table 5. Estimation of the statistical power to reject the null-hypothesis (H0) of longitudinal measurement invari-

ance, using the obtained estimated for both timepoints, as a function of varying sample size.

Sample Size Chi-Square

100 0.113

200 0.151

500 0.266

1000 0.515

https://doi.org/10.1371/journal.pone.0204012.t005

Fig 2. Scatter plots representing the association between timepoints for (A) MEM and (B) EXEC.

https://doi.org/10.1371/journal.pone.0204012.g002
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Discussion

This study explored the longitudinal measurement invariance of a battery of cognitive tests

across time in a sample of older individuals. Results revealed that two main dimensions, execu-

tive and memory performance, are characterized by longitudinal measurement invariance. In

particular, it was observed that there is an equality of the factorial structure and factor loadings

across time. From a methodological perspective, it is important to discuss some important lim-

itations of this investigation. Even though we did not detect non-invariance according to pre-

viously described approaches in the literature (i.e., a decrease in CFI of� 0.01 and an increase

in RMSEA of� 0.015), the comparison between the metric and configural models originated

significant differences of the chi-square statistic. Being the significance of this statistic largely

dependent on sample size, both for absolute and difference tests [23], one may argue that

obtaining a significant result with a modest sample size would indicate that there is support for

the rejection of measurement invariance. While we acknowledge this issue, it is relevant to

emphasize that significant changes of the chi-square statistic may arise from trivial discrepan-

cies between the unconstrained and constrained models and from violations of the normality

assumption [24]–which was evidenced by the obtained significance of the multivariate Mar-

dia’s test. Furthermore, the results from the Monte Carlo simulations demonstrated that large

standardized differences are required for the rejection of measurement invariance with our

study’s sample size. Nonetheless, we could also observe that (1) the difference in loadings

between timepoints of assessment was below 0.1 standardized units for all the items–which is

considered of little importance [25]–and that (2) the actual differences between the two time-

points did not lead to the rejection of measurement invariance with simulated large sample

sizes (n = 1.000) with sufficient statistical power. This provides evidence for the stability of the

latent measures across time.

These results indicate that the parameters comprising the two dimensions covary across

time. From a neurobiological perspective, this suggests the existence of a common basis under-

lying individuals’ performance on the different parameters comprising each of these dimen-

sions. It is relevant to note that the executive dimension was particularly stable across time, as

demonstrated by the absence of statistically significant differences between T0 and T1. On the

other hand, memory displays a considerably steeper decay across time, which points towards a

dissociable decline of cognitive functioning during the process of aging [1, 26]. In addition,

the considerable association between memory performance at T0 and the executive dimension

at T1 highlights the relevance of how the actual memory performance may impact the cogni-

tive trajectory during the process of aging.

With these findings, it is demonstrated that using a standardized battery of cognitive tests

as an alternative for assessing cognitive evolution in a longitudinal fashion may be a reliable

practice. In fact, given that the composition of the latent factors follows a similar structure

between separate assessments, this may be of upmost relevance for reducing the amount of

comparisons and, consequently the likelihood of committing type I-errors [27, 28]. In sum,

with this work we demonstrated the appropriateness of using this battery of cognitive tests to

measure two latent constructs, memory and executive functioning. Furthermore, due to the

observation of longitudinal invariance at the scalar level, we conclude that these measures can

be compared across time [29, 30] as a means to establish growth trajectories during the process

of aging.
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