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The study aims to enhance the accuracy and practicability of CT image

segmentation and volume measurement of ICH by using deep learning

technology. A dataset including the brain CT images and clinical data

of 1,027 patients with spontaneous ICHs treated from January 2010 to

December 2020 were retrospectively analyzed, and a deep segmentation

network (AttFocusNet) integrating the focus structure and the attention

gate (AG) mechanism is proposed to enable automatic, accurate CT image

segmentation and volume measurement of ICHs. In internal validation set,

experimental results showed that AttFocusNet achieved a Dice coefficient

of 0.908, an intersection-over-union (IoU) of 0.874, a sensitivity of 0.913,

a positive predictive value (PPV) of 0.957, and a 95% Hausdorff distance

(HD95) (mm) of 5.960. The intraclass correlation coefficient (ICC) of the

ICH volume measurement between AttFocusNet and the ground truth

was 0.997. The average time of per case achieved by AttFocusNet,

Coniglobus formula and manual segmentation is 5.6, 47.7, and 170.1 s. In

the two external validation sets, AttFocusNet achieved a Dice coefficient

of 0.889 and 0.911, respectively, an IoU of 0.800 and 0.836, respectively,

a sensitivity of 0.817 and 0.849, respectively, a PPV of 0.976 and 0.981,

respectively, and a HD95 of 5.331 and 4.220, respectively. The ICC of

the ICH volume measurement between AttFocusNet and the ground truth

were 0.939 and 0.956, respectively. The proposed segmentation network

AttFocusNet significantly outperforms the Coniglobus formula in terms of
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ICH segmentation and volume measurement by acquiring measurement

results closer to the true ICH volume and significantly reducing the clinical

workload.

KEYWORDS

deep learning, intracerebral hemorrhage, computed tomography, segmentation,
volume measurement

Introduction

Intracerebral hemorrhage (ICH) is a hemorrhage
caused by primary, non-traumatic vascular rupture in the
brain parenchyma. In China, the incidence rate of ICH
is approximately 69.6/100,000 people every year (Gbd
2016 Stroke Collaborators., 2019), and the mortality rate
is 40% within 30 day. Only 12–39% of patients achieve
long-term functional independence (Zhang et al., 2021),
placing an enormous burden on society and families.
For this reason, early and accurate judgment of the
severity of an ICH is vital for guiding clinical treatment
decisions and predicting the long-term outcomes of
patients.

The larger the hematoma volume is, the worse the damage
to brain tissue. In general, emergency intervention, including
intubation, ventilation and neuromonitoring, should be applied
for acute ICH (Sheng et al., 2022), and a surgical decision
should be made if the hematoma volume exceeds 30 mL
(Rodriguez-Luna et al., 2017). Therefore, accurate measurement
of ICH volume is of vital significance for determining the
severity of brain injuries. Computed tomography (CT), the
preferred examination for the clinical diagnosis of ICHs, is
convenient and fast and has a definite effect. Currently, the
ICH volume is mostly measured via the “Coniglobus formula”
in clinical practice (Kwak et al., 1983). The principle is to
idealize the shape of the ICH as an ellipsoid and calculate
its volume using the formula V=A × B × C × 1/2, where
V is the ICH volume, A is the largest diameter of the lesion
on the maximum ICH slice in the CT image, B is the largest
width perpendicular to A in this slice, and C is the number
of ICH slices × slice thickness. The “Coniglobus formula” is
a simple and fast method for volume measurement and has
acceptable accuracy for ellipsoid shaped ICHs. However, the
non-ellipsoid shape of most ICHs in clinical practice and the
limited experience of radiologists result in large errors in the
measurement of ICH volume (Huttner et al., 2006; Freeman
et al., 2008), thus producing a certain degree of uncertainty
in clinical decisions. The quantitative CT method refers to the
accurate slice-by-slice delineation of the hemorrhage site and
calculation of the volume in a CT image and is regarded as
the gold standard for non-invasive measurement of the ICH

volume (Yan et al., 2013). However, this method is complex
and time-consuming, making it difficult to apply in clinical
practice.

With the flourishing development of artificial intelligence
technology represented by deep learning (DL) in recent years,
DL-based segmentation methods have been widely applied in
the segmentation and measurement of brain tissues (Valliani
et al., 2019). For ICHs, Cho et al. (2019) constructed a cascaded
DL model for ICH detection and segmentation, with an accuracy
of only 80.19% in ICH segmentation. Chilamkurthy et al.
(2018) developed a DL model combined with natural language
processing, trained it with over 300,000 brain CT images,
and employed it for the identification of various subtypes of
ICHs, skull fractures, and midline displacements (area under
the receiving operator characteristic curve (AUC) >0.9). Ye
et al. (2019) combined the convolutional neural network (CNN)
VGG-16 and the bidirectional gate recurrent unit (Bi-GRU)
to form an end-to-end deep neural network (DNN), which
was then trained and tested using 2,836 brain CT images
from three hospitals, with an AUC exceeding 0.8 in terms of
the identification of different subtypes of ICHs. An end-to-
end DNN model for ICH classification and segmentation was
proposed by Kuo et al. (2019) that demonstrated a near-expert
level in the detection of ICH subtypes. Arbabshirani et al. (2018)
collected approximately 50,000 brain CT images to validate
the effectiveness of a 3D CNN in ICH detection. Chang et al.
(2020) established a CNN-based method for ICH segmentation.
Zhao et al. (2021) applied the nnU-Net framework to the
segmentation and volume calculation of ICH and peripheral
oedema. Xu et al. (2021) evaluated Dense U-Net framework for
the segmentation and quantification of ICH, EDH (extradural
hemorrhage) and SDH (subdural hemorrhage). Rava et al.
(2021) evaluated the Canon automatic stroke detection system
and the automatic ICH segmentation tool in Vitrea and
investigated the performance of the system in ICH detection and
the effect of ICH volume on the detection performance of the
system. Compared with the Coniglobus formula, deep learning
technology demonstrates a higher accuracy in measuring the
intracerebral hematoma volume (Lai et al., 2020; Jia et al., 2021).
However, most studies of ICH segmentation have focused on the
application of existing deep networks, lack of improvement on
deep network to further improve performance.
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In this study, a large-scale dataset of ICH CT images
was established, and a DLN (AttFocusNet) for accurate
segmentation of CT images of ICH was constructed and
compared with other typical DLNs in terms of segmentation
performance. Experimental results in both internal and external
validation sets showed that AttFocusNet outperformed other
networks in terms of segmentation, exhibited much higher
accuracy than the Coniglobus formula in terms of ICH volume
measurement, and significantly reduced the workload of ICH
volume measurement in clinical practice, thus offering strong
support for the clinical diagnosis of ICH.

Materials and methods

Clinical data

The data used in this study were head CT images of 1,027
ICH patients within 24 h of admission to first affiliated hospital
of Army Medical University (Southwest Hospital), with a CT
slice thickness of 4.0 mm. All CT scans were randomly assigned
to the training dataset, validation dataset and testing dataset at a
ratio of 7:1:2 during the experiment. Table 1 shows the detailed
statistical information of each dataset. Age and hematoma
volume are reported as the mean± standard deviation (SD), and
the Glasgow coma scale (GCS) score and ICH score are reported

TABLE 1 Description of the data features of the training set, validation
set, and testing set.

Item Training
set

Validation
set

Testing
set

P-value

Number of cases
(n)

718 102 207

Age
(Mean± SD)

57.19± 12.67 55.56± 12.95 55.93± 13.33 0.211

GCS [Median
(Min, Max)]

13 (3, 15) 13 (3, 15) 13 (5, 15) 0.896

ICH [Median
(Min, Max)]

1 (0, 4) 1 (0, 4) 1 (0, 4) 0.664

Hemorrhage
volume
(Mean± SD)

32.65± 22.97 33.10± 25.90 33.83± 20.19 0.323

Intraventricular
extension of
intracerebral
hemorrhage (n)

277 40 78

Hemorrhage location

Basal ganglia 551 77 154

Lobe 143 20 46

Brain stem 5 0 1

Cerebellum 3 0 1

Ventricle 16 5 5

GCS, Glasgow coma scale; ICH, intracerebral hemorrhage; SD, standard deviation.

as the median (minimum, maximum). In addition, ICHs were
observed in the basal ganglia for approximately 76% of the cases
and found in locations such as lobes for the rest of the case. If
an ICH was found in multiple locations at the same time, it was
classified according to the first ICH location in the pathology
report.

The resolution of all CT images was resampled to a
512 × 512 matrix, and then the scan slices of chest and
abdomen were removed. As a result, 40 slices of CT images
of each patient were preserved. The CT values of ICHs were
mainly concentrated in the range of [−60, 140]. To ensure
the segmentation effect, before the CT images were sent to
the DLN, they were first windowed according to the above
CT value range and then normalized. This data collection
was reviewed and approved by the Ethics Committee of First
Affiliated Hospital of Army Medical University (Southwest
Hospital) (No. KY2021185).

Development of the deep learning
model for intracerebral hemorrhage
segmentation

The attention gate (AG) is an attention mechanism
proposed by Oktay et al. (2018) for three-dimensional (3D)
segmentation of pancreatic CT images. In the model learning
stage, the AG is able to suppress the parts irrelevant to the
task features and focus on learning the features related to the
task. In this study, the two-dimensional (2D) implementation
of the AG is carried out and then combined with U-Net to
obtain a 2D segmentation network, AttUNet. On this basis, a 2D
segmentation network, AttFocusNet, based on AttUNet and the
focus structure is proposed, which can be seen in Figure 1. The
CT images of ICHs are input slice by slice, and the image features
are extracted using an encoder with a focus structure, which is
combined with AG in the encoder stage, to finally obtain the
accurate segmentation of ICHs.

In DL-based image segmentation methods, feature
dimensionality reduction is performed by encoders mostly
through convolutional pooling. The signals at some small ICH
points are hypointense on CT images, so they may be deemed
to be redundant information and removed during feature
extraction. The focus structure in YOLO-V5 is introduced
to integrate the image information into the channel space
for convolution, and the complete image features without
pooling are fused with the features after convolutional pooling
to effectively preserve the integrity of the overall features of
the ICH during encoding. Figure 2 shows the focus structure,
where C, H, and W represent the number of channels, height
and width, respectively. In the focus structure, a feature map
with C channels was sampled with a step size of 2 to evenly
distribute the features of the feature map into 4C channels, and
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FIGURE 1

The structure diagram of AttFocusNet based on focus and the AG (D* and U* represent the convolutions in the encoding process and decoding
process, respectively).

FIGURE 2

The scheme of the focus structure.

the feature map with C/2 channels was then output through
convolution.

The output of the focus structure contains redundant low-
level features that can be effectively suppressed by the AG, thus
capturing more important features relevant to the task. The
2D implementation of the AG is shown in Figure 3, where
the inputs skip-input and up-input have the same feature size,
where up-input is the feature input after sampling on the Ui

slice and skip-input is the feature input of the Dj slice of the
encoder corresponding to the Ui slice. After convolution, up-
input and skip-input are subjected to feature splicing, pass
through the rectified linear unit (ReLU) activation function,
and are subjected to the next convolution. Finally, the features
of the sigmoid activation function are integrated with those of
skip-input to obtain the output of the 2D AG.

The proposed AttFocusNet was implemented based on
the PyTorch DL framework, with a workstation equipped

with NVIDIA Quadro RTX5000 video memory (16 G) for
model training and the RMS prop optimization function as the
optimizer. The initial learning rate, epoch and batch size were set
to 0.00001, 40 and 2, respectively. The learning rate was adjusted
by a conditional trigger strategy, which was triggered when the
model failed to converge for two consecutive epochs.

Volume measurement

The manual segmentation results of CT slices obtained by
neurosurgeons were considered as the ground truth (GT), which
could be used to evaluate the segmentation performance of deep
models. The segmentation of each CT slice in this study was
performed by a junior neurosurgeon with 7 years of working
experience using the Mimics software, and the segmentation
result was further corrected by a senior neurosurgeon with
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FIGURE 3

The structure diagram of 2D AG.

20 years of working experience. From the Digital Imaging
and Communications (DICOM) file header of CT images of
ICHs, the voxel spacing X and Y in the horizontal and vertical
directions, respectively, as well as the slice thickness T of CT
scan can be obtained. Once the ground truth of all slices was
obtained, the intracerebral hemorrhage volume of each patient
could be calculated as follows

V =
L∑

i=1

XYTWi (1)

where Wi is the total number of voxels in the i(1 ≤ i ≤ L)-
th slice of the ICH area and L is the total number of slices of
the CT image. Note that the intracerebral hemorrhage volume
that calculated using GT of each slice could be considered as the
ground truth of intracerebral hemorrhage volume (V-GT).

Evaluation of performance

The ICH segmentation performance was evaluated using
the Dice, intersection-over-union (IoU), sensitivity, positive
predictive value (PPV), and 95% Hausdorff distance (HD95)
metrics. Let true positive (TP) represent the number of true
positive samples predicted to be positive samples, false positive
(FP) represent the number of true negative samples predicted
to be positive samples, and false negative (FN) represent the
number of true positive samples predicted to be negative
samples. Then, the above indicators are calculated as follows.

Dice =
2TP

FP + 2TP + FN
(2)

IoU =
TP

FP + TP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

PPV =
TP

TP + FP
(5)

Note that HD represents the distance between the surface point
sets of the calculated true sample and the predicted sample. Let
G denote the ground truth and P denote the predicted value set
of ICH. HD can be calculated as follows:

HD(G, P) = max(h(G, P), h(P,G)) (6)

where h(G, P) = max
g∈G

{
min
p∈P
||g − p||

}
and

h(P,G) = max
p∈P

{
min
g∈G
||p− g||

}
Note that the HD value is usually multiplied by 95% (HD95) for
practical application to eliminate the influence of a very small
subset of outliers.

Results

Metrics evaluation

AttFocusNet was compared with UNet++ (Zhou et al.,
2020), AttUnet, PraNet (Fan et al., 2020), 3DUNet (Çiçek et al.,
2016), and UNETR (Hatamizadeh et al., 2022) in terms of
segmentation performance (Table 2). AttFocusNet exhibited
the best comprehensive performance, outperforming other
networks in terms of Dice, IoU, sensitivity, PPV, and, more
prominently, HD95, fully demonstrating the effectiveness of
AttFocusNet.

TABLE 2 Comparison of the segmentation performance of
different methods.

Algorithm Dice IoU Sensitivity PPV HD95 (mm)

UNet ++ 0.900 0.865 0.911 0.950 6.829

AttUNet 0.893 0.859 0.899 0.956 7.253

PraNet 0.788 0.716 0.795 0.905 16.01

3DUNet 0.857 0.806 0.866 0.930 6.873

UNETR 0.700 0.638 0.825 0.799 13.668

AttFocusNet 0.908 0.874 0.913 0.957 5.960

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.965680
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-965680 September 29, 2022 Time: 10:38 # 6

Peng et al. 10.3389/fnins.2022.965680

FIGURE 4

Distribution of the segmentation performance of different deep models (White dots, squares, vertical lines, and peaks represent the median,
interquartile range, 95% confidence interval, and data density distribution, respectively).

The segmentation performance of each network on the
testing dataset is shown in a violin plot (Figure 4), where
the width between the left and right peaks (as shown by
the white dashed lines) indicates the density of the data
distribution.

Segmentation effect

Figure 5 exhibits segmentation results from the different
methods. The first row shows the original CT image of different
slices, the second row shows the corresponding GT with
respect to each slice in the first row, and rows 3–8 show the
segmentation results by different methods.

Figure 6 presents the CT images and segmentation results
of the patients for whom the results of the two methods show
differences of 1.86 and 74.05 mL, respectively.

The segmentation results obtained by AttFocusNet were
used to generate the 3D visualization of the ICH via Mimics
software, as shown in Figure 7.

Consistency evaluation

The consistency of different methods was evaluated by linear
regression as shown in Figure 8, where the abscissa scale is the
V-GT and the ordinate represents the ICH volume measured by
the different methods.

External validation

In order to further evaluate the effectiveness of AttFocusNet,
we, respectively, selected CT images of 50 patients from CQ500
dataset (Chilamkurthy et al., 2018) and RSNA2019 dataset
(Flanders et al., 2020) for external validation, which was
shown in Tables 3, 4. The results showed that AttFocusNet
outperformed the other deep models on most metrics, fully
demonstrating the effectiveness of AttFocusNet.

Similar with Figure 8, the consistency of different methods
in external validation set was evaluated by linear regression
as shown in Figure 9, where the ICC of the ICH volume
measurement on CQ500 and RSNA2019 between AttFocusNet
and the ground truth were, respectively, 0.939 and 0.956, while
the ICC of the ICH volume measurement between Coniglobus
formula and the ground truth were, respectively, 0.805 and
0.948.

Discussion

A major objective of our study was to accurately segment
the ICH area from CT scans by DL as the premise of accurate
volume calculation. We constructed large-scale CT scans of
ICH, which is very important to ensure the segmentation
performance of the DL model. The proposed AttFocusNet
combines the focus structure with AttUNet. AttFocusNet
outperformed the other five DL models in five indicators,
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FIGURE 5

Comparison of the segmentation results of different methods.

especially HD95, clearly illustrating its effectiveness for ICH
segmentation. AttFocusNet segments the ICH area from CT
scans slice by slice and is significantly superior to 3D DL models
in the overall segmentation of ICH from CT scans. The difficulty
of training a 3D segmentation model is significantly higher
than that of a 2D segmentation model, while the segmentation
efficiency of a 3D DL model is usually lower than that of a 2D DL
model. Therefore, the use of slice-by-slice mode in AttFocusNet
can be considered a good choice for the volume measurement
of clinical ICH. As shown in Figure 4, the Dice coefficient
distributions of AttUNet and UNet + were between 0.8 and 1.0;
however, the significantly broader width indicated that AttUNet
achieved better comprehensive performance on the testing
dataset. The Dice coefficient distributions of PraNet, 3D U-Net
and UNETR were mainly between 0.7 and 0.9 with a narrow
width, indicating poor segmentation performance. AttFocusNet
achieved the best performance with a Dice coefficient close to
1.0 and the broadest width, indicating excellent segmentation
performance.

As shown in Figure 5, regardless of whether the bleeding
area was large or small, or the bleeding shape was ellipsoid
or non-ellipsoid, AttFocusNet always achieved the best
segmentation performance among the evaluated DL models,
thus providing a good foundation for the calculation of ICH
volume. As shown in Figure 6A, when the ICH had a relatively
ellipsoid shape, the volume measured by the Coniglobus

formula was similar to that measured by AttFocusNet.
When the ICH had a highly non-ellipsoid shape, as shown
in Figure 6B, the volume measurements of the Coniglobus
formula and AttFocusNet differed considerably, and the volume
measured by the Coniglobus formula was less accurate. The
above results are completely consistent with our understanding
of the Coniglobus formula. In fact, if the shape of ICH is
non-ellipsoidal, compared with the Coniglobus formula,
AttFocusNet was essentially validated against a poor method.
Note that most ICHs are non-ellipsoid in shape, which means
that our method has better application prospects in clinical
practice. The ICH score (Hemphill et al., 2001) is a strong
predictor of 30-day mortality and includes five independent
indicators: GCS score, age, ICH volume, IVH and ICH origin.
This information can be obtained from CT scans with the
exception of the GCS score, which must be evaluated by
clinicians. The proposed AttFocusNet is helpful for the volume
measurement of ICH regardless of hematoma shape, which
could be helpful to accurately determine the ICH score. Based
on the segmentation results, we can easily establish a 3D
model for the visualization of ICH by using Mimics software.
3D visualization can help clinicians conduct comprehensive
and accurate observations and analyses of ICH from a three-
dimensional perspective to design accurate treatment schemes
and improve the level of medical diagnosis and treatment and
the utilization value of medical imaging.
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FIGURE 6

Computed tomography (CT) images and segmentation results corresponding to the difference in volume measurements between AttFocusNet
and the Coniglobus formula. (A) A difference of 1.86 mL between volume measurements. (B) A difference of 74.05 mL between volume
measurements.

From the perspective of the fitting of the linear regression,
the volumes measured by the Coniglobus formula were
highly scattered, with a number of outliers, poor consistency
with the V-GT, and an intraclass correlation coefficient
(ICC) of 0.776, indicating weak consistency between the
Coniglobus formula and the V-GT. In contrast, the volumes
measured by AttFocusNet showed an ideal fit, with few
outliers, high consistency with the V-GT, and an ICC of
0.997, indicating strong consistency between AttFocusNet and
the V-GT.

In terms of efficiency, AttFocusNet took approximately
5.6 s to provide automatic segmentation and volume analysis
for each patient, while the Coniglobus formula and manual
segmentation by the neurosurgeon (based on the Mimics
software) required 47.7 and 170.1 s for each patient on average.
Therefore, AttFocusNet can reduce the clinical workload
significantly while ensuring high measurement accuracy of
ICH volume. Once the ICH segmentation results are obtained,
we can accurately calculate the ICH volume. In terms
of consistency evaluation, compared with the Coniglobus

formula, the volume calculated by AttFocusNet was closer
to the V-GT, which further shows the effectiveness of the
segmentation algorithm.

Similar with internal validation, AttFocusNet outperformed
the other deep models for the external validation, which showed
that AttFocusNet had better generalization performance.
Moreover, according to the ICC values, compared with the
Coniglobus formula, the ICH volume obtained by AttFocusNet
had better consistency with V-GT, which fully showed the
effectiveness of the proposed deep network.

There were several limitations to our work. First, the
hematoma subtypes of the patients were either ICH or IVH,
while other subtypes, including extradural hemorrhage (EDH),
subdural hemorrhage (SDH), and subarachnoid hemorrhage
(SAH), were excluded. In addition, patients under 18 years of
age were excluded, which could limit the generalizability of
our model. Second, the ground truth masks required consensus
from more than one human expert, which would reduce errors
caused by fatigue, technical overload, lack of concentration
and other factors.
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FIGURE 7

Three-dimensional (3D) visualization of an ICH by mimics.

FIGURE 8

Comparison of the consistency.

TABLE 3 Comparison of the segmentation performance of different
methods on CQ500 dataset.

Algorithm Dice IoU Sensitivity PPV HD95 (mm)

UNet ++ 0.883 0.790 0.826 0.947 13.584

AttUNet 0.879 0.783 0.812 0.957 11.312

PraNet 0.809 0.680 0.747 0.882 24.161

3DUNet 0.842 0.727 0.782 0.913 37.052

UNETR 0.714 0.555 0.604 0.873 69.893

AttFocusNet 0.889 0.800 0.817 0.976 5.331

In conclusion, AttFocusNet provided automatic
segmentation and volume measurement of ICH. AttFocusNet
achieved high accuracy in ICH volume measurement regardless
of ICH shape and significantly reduced the clinical workload,
indicating that AttFocusNet is a promising approach

TABLE 4 Comparison of the segmentation performance of different
methods on RSNA2019 dataset.

Algorithm Dice IoU Sensitivity PPV HD95 (mm)

UNet ++ 0.895 0.810 0.834 0.965 3.735

AttUNet 0.896 0.811 0.829 0.974 4.733

PraNet 0.775 0.633 0.647 0.966 6.842

3DUNet 0.820 0.694 0.707 0.975 10.838

UNETR 0.361 0.220 0.572 0.264 133.924

AttFocusNet 0.911 0.836 0.849 0.981 4.220

FIGURE 9

Comparison of the consistency for external validation.
(A) CQ500. (B) RSNA2019.

for clinical practice. At present, Transformer has been
gradually applied to the feature extraction of 3D data in the
construction of DLNs, and the combination of AttFocusNet and
Transformer is expected to further improve the segmentation
effect in the future.
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