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ABSTRACT
Several bacterial pathogens produce Toll/interleukin-1 receptor (TIR) domain-
containing protein homologs that are important for subverting the Toll-like receptor
(TLR) signaling cascades in hosts. Consequently, promoting the persistence and survival
of the bacterial pathogens. However, the exact molecular mechanisms elucidating the
functional characteristics of these bacterial proteins are not clear. Physicochemical
and homology modeling characterization studies have been conducted to predict
the conditions suitable for the stability and purification of these proteins and to
predict their structural properties. The outcomes of these studies have provided
important preliminary data for the drug discovery pipeline projects. Here, using in
silico physicochemical and homology modeling tools, we have reported the primary,
secondary and tertiary structural characteristics of multiple N-terminal domains of
selected bacterial TIR domain-containing proteins (Tcps). The results show variations
between the primary amino acid sequences, secondary structural components and
three-dimensional models of the proteins, suggesting the role of different molecular
mechanisms in the functioning of these proteins in subverting the host immune
system. This study could form the basis of future experimental studies advancing our
understanding of the molecular basis of the inhibition of the host immune response by
the bacterial Tcps.

Subjects Biochemistry, Bioinformatics, Computational Biology, Microbiology, Immunology
Keywords Toll/interleukin-1 receptor domain, Bacteria, N-terminal domain , Immunity,
Homology modeling

INTRODUCTION
In mammalian hosts, the innate immune system works as the first line of defense
against microbial invasion. An immune response is induced upon recognition of the
bacterial conserved pathogen-associated molecular patterns (PAMPs) by the hosts’ pattern
recognition receptors (PRRs). TLRs are predominant PRRs that recognize various bacterial
PAMPs. Upon PAMPs recognition, TLRs oligomerize, initiating an intracellular immune
signaling cascade. TLR oligomerization brings both the ligand binding and the cytoplasmic
domains into close proximity, which is followed by the recruitment of various cytoplasmic
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adaptor proteins. The cytoplasmic protein interactions are known to be mediated by
the conserved cytoplasmic TIR domains present in the TLR receptors and cytoplasmic
adaptor proteins. These interactions activate downstream transcription factors including
the nuclear factor-κB (NF-κB) that upregulate the expression of multiple inflammatory
mediators (Kawai & Akira, 2010; Ve, Williams & Kobe, 2015).

Microbial pathogens have been shown to counter host innate immune defense pathways
through molecular mimicry and evasion of the immune response (Elde & Malik, 2009).
Several bacterial proteins with immune evasive properties have been detected in a range
of Gram-negative and Gram-positive bacteria. These proteins are TIR domain-containing
proteins (Tcps) that are structurally similar to several mammalian host Tcps, and are crucial
for bacterial subversion of the TLR signaling cascades. It was reported that the TIR domains
are involved in protein-protein interactions with TLR receptors and/or the cytoplasmic
adaptor proteins (Rana et al., 2013; Ve et al., 2012). In a previous study, more than 200
TIR homologues were identified in a wide range of bacterial species, including Brucella
species, Escherichia coli and Salmonella enterica serovar Enteritidis (Newman et al., 2006). A
subsequent work identified a Tcp in the non-pathogenic Paracoccus denitrificans (Low et al.,
2007). However, the role of Tcps in non-pathogenic bacteria remains poorly understood.
More recently, bacterial Tcps have been detected in Yersinia pestis, Staphylococcus aureus,
Helicobacter pylori, Yersinia pseudotuberculosis, Enterococcus faecalis and Pseudomonas
aeruginosa (Askarian et al., 2014; Imbert et al., 2017; Kaplan-Türköz, 2017; Kraemer et al.,
2014; Nörenberg et al., 2013; Patterson et al., 2014; Rana et al., 2011). Bacterial Tcps are
approximately 230-310 amino acids long containing TIR domains with primary sequences
varies between 150-200 amino acids. In bacterial Tcps, the TIR domain can be located
in either the N-terminal or the C-terminal region while the remaining regions are highly
variable (Patterson & Werling, 2013). Understanding the exact molecular mechanism of
Tcp-dependent bacterial evasion strategies for subverting the host immune system is
important as the number of reported bacterial Tcps is rising.

The molecular functions and structural characteristics of various TIR domains from
mammals, bacteria and plants have been the focus of several studies (Ve, Williams & Kobe,
2015). The available data suggest that microbial Tcps may function as dimers. However, the
molecular mechanism of the Tcps dimerization is not clear (Alaidarous et al., 2014;Kaplan-
Türköz et al., 2013; Ve et al., 2012; Ve, Williams & Kobe, 2015). Several studies suggested
that domains other than the TIR domain (including the Tcps N-terminal domains),
either from microbial or host Tcps, are involved in the Tcps dimerization, protein-protein
interactions and/or binding to phosphoinositides in the cell plasma membrane (Alaidarous
et al., 2014; Askarian et al., 2014; Kaplan-Türköz et al., 2013; Ve, Williams & Kobe, 2015;
Xiong et al., 2019). Therefore, it is important not to focus on microbial TIR domains as
sole players in microbial host immune subversion. Investigating the molecular mechanism
of the full-length proteins and their N-terminal domains (NTDs) will provide a clearer
understanding of themechanisms involved.However, studies have shown that the solubility
and stability of full-length Tcps decreases in solution (Alaidarous et al., 2014; Patterson
et al., 2014; Salcedo et al., 2013). In this study, we use in silico approaches to determine
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Figure 1 Sequence alignment of the NTDs of selected bacterial Tcps. The sequence alignment estimated by Clustal Omega and viewed using
Jalview.

Full-size DOI: 10.7717/peerj.10143/fig-1

the physicochemical and structural characteristics of multiple NTDs of selected bacterial
Tcps.

MATERIALS AND METHODS
Prediction and analysis of the primary amino acid sequences
The bacterial Tcps sequences used in this study were retrieved from the Universal Protein
Resource (UniProt) (http:/www.uniprot.org) in the FASTA format for analysis. These
proteins include the Tcps from the Uropathogenic Escherichia coli (TcpC, UniProt
ID A0A0H2V8B5) (Yadav et al., 2010), Brucella melitensis (BtpA, UniProt ID Q8YF53)
(Alaidarous et al., 2014; Kaplan-Türköz et al., 2013), Brucella abortus (BtpB, UniProt ID
Q2YN91) (Salcedo et al., 2013), Salmonella enterica serovar Enteritidis (TlpA, UniProt
ID A0A3V4TC50) (Newman et al., 2006), Paracoccus denitrificans (PdTLP, UniProt ID
A1AY86) (Chan et al., 2009; Low et al., 2007), Staphylococcus aureus (TirS and SaTlp1,
UniProt ID M1XK12 and D2N983, respectively) (Askarian et al., 2014; Patterson et al.,
2014), Yersinia pestis (YpTdp, UniProt ID Q8CL16) (Rana et al., 2011), Helicobacter
pylori (HP1437, UniProt ID O25978) (Kaplan-Türköz, 2017), Yersinia pseudotuberculosis
serotype O:1b (TcpYI, UniProt ID A0A0U1QVR5) (Nörenberg et al., 2013), and Yersinia
pseudotuberculosis serotype O:3 (TcpYIII, UniProt ID A0A0H3B787) (Nörenberg et al.,
2013). The sequences of the above-mentioned proteins were used for the analysis and
construction of the three-dimensional (3D) models of their NTDs using computational
modeling approaches. The primary structures of the NTDs were analyzed using the
ExPASy-ProtParam tool (Gasteiger et al., 2005). The NTDs boundaries involve the amino
acids along the N-terminus prior to the TIR domain of the selected bacterial Tcps (Fig. 1).

Physicochemical characterization
Physicochemical properties including themolecularweight (Mwt), amino acid composition
(AA), theoretical isoelectric point (pI), number of negative residues (-R), number of positive
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residues (+R), extinction coefficient at 280 nm (EC), half-life (hrs), instability index (II),
aliphatic index (AI) and grand average of hydropathy (GRAVY) of the NTDs of selected
bacterial Tcps were analyzed using ExPASy-ProtParam tool (Gasteiger et al., 2005).

Secondary structure prediction
For the prediction of secondary structure components, twoweb servers were used, including
SOPMA (Geourjon & Deléage, 1995) and GOR IV (Garnier, Gibrat & Robson, 1996). The
default parameters were used. The percentages of secondary structure components were
predicted based on the analysis of relative frequencies of each amino acid in the helices,
sheets and turns present in the X-ray crystallographic templates of the proteins.

Multiple sequence alignment
Multiple sequence alignment for the NTDs of the selected bacterial Tcps was performed
using the Clustal Omega server (Madeira et al., 2019) and viewed using the Jalview server
(Waterhouse et al., 2009).

Construction and evaluation of protein models
The 3D models of the NTDs of the selected bacterial Tcps were constructed using three
homology modeling servers, including Phyre2 (Kelley et al., 2015), SWISS-MODEL
(Waterhouse et al., 2018) and I-TASSER (Yang & Zhang, 2015). The available default
and/or automated options were used. After optimization, the 3D models were verified
using the RAMPAGE (DePristo, De Bakker & Blundell, 2004; Lovell et al., 2003) and ProSA-
web (Sippl, 1993; Wiederstein & Sippl, 2007) servers. RAMPAGE validates 3D models by
plotting the Ramachandran plot. Generally, the best models exhibit high percentage of the
total number of residues in the most favored regions and additional allowed regions and
less percentage of the residues in the disallowed or outlier regions of the Ramachandran
plot. ProSA-web server validates the quality of the protein models using available protein
structures derived from PDB based on z-scoring system. Models were visualized using
PyMOL (The PyMOL molecular graphics system, Version 2.0 Schrödinger, LLC).

RESULTS AND DISCUSSION
Prediction and characterization of primary protein sequences of
NTDs of the selected bacterial Tcps
The amino acid sequences of the NTDs of the selected bacterial Tcps were retrieved
from UniProt (http:/www.uniprot.org). The details of the unique UniProt IDs, amino
acid sequence boundaries and bacterial species of the NTDs of the selected proteins are
provided in Table 1. We use the ExPASy-ProtParam tool (Gasteiger et al., 2005) to analyze
the proteins primary structures and compute different parameters for their physicochemical
properties (Table 2 and Table 3). All 20 amino acids were detected, of which the percentage
of alanine, isoleucine, leucine, lysine and serine was the highest, while that of tryptophan
and cysteine was the lowest (Table 2).

In this study, the molecular weight (Mwt) of NTDs varied from 9.30 kDa (Yersinia
pseudotuberculosis NTD) to 24.57 kDa (Staphylococcus aureus NTD) (Table 3). ExPASy-
ProtParam tool computes the extinction coefficient (EC) at wavelength 280 nm. Table 3
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Table 1 Amino acid boundaries, UniProt IDs, and bacterial species of NTDs of the selected bacterial
Tcps.

NTD protein
name

Amino acid
boundaries

UniProt ID Organism

N-TcpC 1-170 A0A0H2V8B5 Uropathogenic Escherichia coli O6:H1 CFT073
N-TIpA 1-159 A0A3V4TC50 Salmonella enterica serovar Enteritidis CFSAN000052
N-BtpA 1-118 Q8YF53 Brucella melitensis biotype 1 16M
N-BtpB 1-156 Q2YN91 Brucella abortus 2308
N-PdTLP 1-165 A1AY86 Paracoccus denitrificans 1222
N-YpTdp 1-136 Q8CL16 Yersinia pestis
N-TirS 1-142 M1XK12 Staphylococcus aureus
N-SaTIp1 1-202 D2N983 Staphylococcus aureus ST398
N-HP1437 1-83 O25978 Helicobacter pylori 26695
N-TcpYI 1-92 A0A0U1QVR5 Yersinia pseudotuberculosis serotype O:1b IP 31758
N-TcpYIII 1-91 A0A0H3B787 Yersinia pseudotuberculosis serotype O:3 YPIII

Notes.
Amino acid boundaries are defined by the position number of the amino acid in the primary four sequences of the full-length
bacterial Tcps.

Table 2 Number and percentages of amino acids present in the NTDs of selected bacterial Tcps estimated by ExPASy-ProtParam tool.

No. (%)Amino
acid N-TcpC N-TIpA N-BtpA N-BtpB N-PdTLP N-YpTdp N-TirS N-SaTIp1 N-HP1437 N-TcpYI N-TcpYIII

A (Ala) 11 (6.5) 7 (4.4) 20 (16.9) 12 (7.7) 34 (20.6) 6 (4.4) 4 (2.8) 11 (5.4) 6 (7.2) 10 (10.9) 10 (11.0)

R (Arg) 4 (2.4) 10 (6.3) 6 (5.1) 9 (5.8) 12 (7.3) 4 (2.9) 8 (5.6) 11 (5.4) 1 (1.2) 8 (8.7) 9 (9.9)

N (Asn) 21 (12.4) 10 (6.3) 0 (0) 5 (3.2) 5 (3.0) 9 (6.6) 14 (9.9) 15 (7.4) 9 (10.8) 5 (5.4) 3 (3.3)

D (Asp) 7 (4.1) 9 (5.7) 5 (4.2) 11 (7.1) 6 (3.6) 9 (6.6) 6 (4.2) 8 (4.0) 6 (7.2) 0 (0) 0 (0)

C (Cys) 1 (0.6) 1 (0.6) 0 (0) 3 (1.9) 0 (0) 2 (1.5) 0 (0) 0 (0) 0 (0) 3 (3.3) 3 (3.3)

Q (Gln) 7 (4.1) 14 (8.8) 12 (10.2) 7 (4.5) 11 (6.7) 5 (3.7) 11 (7.7) 10 (5.0) 4 (4.8) 3 (3.3) 0 (0)

E (Glu) 10 (5.9) 11 (6.9) 11 (9.3) 12 (7.7) 13 (7.9) 14 (10.3) 14 (9.9) 18 (8.9) 4 (4.8) 1 (1.1) 3 (3.3)

G (Gly) 4 (2.4) 2 (1.3) 2 (1.7) 8 (5.1) 4 (2.4) 3 (2.2) 1 (0.7) 3 (1.5) 1 (1.2) 9 (9.8) 12 (13.2)

H (His) 4 (2.4) 3 (1.9) 2 (1.7) 4 (2.6) 0 (0) 6 (4.4) 0 (0) 4 (2.0) 2 (2.4) 1 (1.1) 1 (1.1)

I (Ile) 22 (12.9) 16 (10.1) 5 (4.2) 8 (5.1) 6 (3.6) 16 (11.8) 14 (9.9) 13 (6.4) 7 (8.4) 1 (1.1) 0 (0)

L (Lue) 15 (8.8) 11 (6.9) 5 (4.2) 14 (9.0) 16 (9.7) 13 (9.6) 13 (9.2) 15 (7.4) 5 (6.0) 1 (1.1) 1 (1.1)

K (Lys) 10 (5.9) 25 (15.7) 20 (16.9) 9 (5.8) 21 (12.7) 7 (5.1) 26 (18.3) 40 (19.8) 13 (15.7) 1 (1.1) 2 (2.2)

M (Met) 3 (1.8) 3 (1.9) 4 (3.4) 2 (1.3) 4 (2.4) 2 (1.5) 5 (3.5) 4 (2.0) 2 (2.4) 2 (2.2) 1 (1.1)

F (Phe) 15 (8.8) 1 (0.6) 2 (1.7) 9 (5.8) 0 (0) 2 (1.5) 0 (0) 7 (3.5) 4 (4.8) 0 (0) 0 (0)

P (Pro) 3 (1.8) 2 (1.3) 0 (0) 7 (4.5) 5 (3.0) 8 (5.9) 2 (1.4) 3 (1.5) 4 (4.8) 4 (4.3) 8 (8.8)

S (Ser) 10 (5.9) 20 (12.6) 15 (12.7) 4 (2.6) 12 (7.3) 8 (5.9) 12 (8.5) 7 (3.5) 9 (10.8) 26 (28.3) 19 (20.9)

T (Thr) 4 (2.4) 10 (6.3) 6 (5.1) 12 (7.7) 12 (7.3) 3 (2.2) 7 (4.9) 10 (5.0) 1 (1.2) 6 (6.5) 7 (7.7)

W (Trp) 4 (2.4) 0 (0) 0 (0) 5 (3.2) 0 (0) 2 (1.5) 0 (0) 1 (0.5) 0 (0) 1 (1.1) 1 (1.1)

Y (Tyr) 11 (6.5) 2 (1.3) 1 (0.8) 4 (2.6) 1 (0.6) 7 (5.1) 1 (0.7) 15 (7.4) 2 (2.4) 6 (6.5) 6 (6.6)

V (Val) 4 (2.4) 2 (1.3) 2 (1.7) 11 (7.1) 3 (1.8) 10 (7.4) 4 (2.8) 7 (3.5) 3 (3.6) 4 (4.3) 5 (5.5)
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Table 3 Physicochemical properties of NTD proteins of selected bacterial Tcps.

Protein
name

AA Mwt pI -R (Asp
+ Glu)

+R (Arg
+ Lys)

EC (assuming all
Cys residues
from cystines)

EC (assuming all
Cys residues
are reduced)

Half-life
(hrs)

II AI GRAVY

N-TcpC 170 20.27 5.77 17 14 38390 38390 30 45.12 98.18 −0.115
N-TIpA 159 18.37 9.97 20 35 2980 2980 30 60.04 74.28 −1.194
N-BtpA 118 13.09 9.87 16 26 1490 1490 30 51.09 54.92 −1.090
N-BtpB 156 18.02 5.37 23 18 33585 33460 30 24.77 83.14 −0.340
N-PdTLP 165 17.80 10.15 19 33 1490 1490 30 38.62 77.88 −0.716
N-YpTdp 136 15.80 4.74 23 11 21555 21430 30 48.17 108.9 −0.285
N-TirS 142 16.66 9.96 20 34 1490 1490 30 53.88 85.14 −1.186
N-SaTIp1 202 24.57 9.89 26 51 27850 27850 30 44.08 69.55 −1.207
N-HP1437 83 9.45 9.40 10 14 2980 2980 30 39.15 74.10 −0.849
N-TcpYI 92 9.46 10.15 1 9 14565 14440 30 79.08 31.96 −0.695
N-TcpYIII 91 9.30 10.03 3 11 14565 14440 30 63.47 31.21 −0.733

Notes.
The table shows, for each NTD protein, the number of amino acids (AA), molecular weight (Mwt), isoelectric point (pI), number of negative residues (-R), number of positive
residues (+R), extinction coefficient at 280 nm (EC), instability index (II), aliphatic index (AI), and grand average of hydropathicity (GRAVY).

shows several NTDs with high EC values at 280 nm, including N-TcpC, N-BtpB, N-SaTLP1
and N-YpTdp (EC values of 38390, 33585, 27850 and 21555, respectively), with respect to
the concentrations of cystine, Trp and Tyr (cysteine does not absorb light appreciably at
wavelengths >260 nm, while cystine does (Gasteiger et al., 2005) (see Table 2). Knowing
the EC value of a protein might help scientists in optimizing the purification procedure
of their protein of interest (Gasteiger et al., 2005). The instability index (II) values of the
NTDs of the selected proteins are shown in Table 3. The II provides an estimate of the
stability of the protein of interest in a test tube. If the II of a protein is below 40, then the
protein is considered to be stable, and if the II is above 40, then the protein is considered to
be unstable (Gasteiger et al., 2005). Therefore, the results (Table 3) show that NTDs from
PdTLP, BtpB and HP1437 are predicted to be stable in a test tube.

The isoelectric point (pI) is the pH of the solution at which the net charge of the surface
amino acids of a protein equal to zero (Gasteiger et al., 2005). The computed pI values of
the NTDs are shown in Table 3. The pI of the protein varies from acidic, as for N-YpTdp
(pI = 4.74), to alkaline, as for N-PdTLP (pI = 10.15) and N-TcpYI (pI = 10.15). The
computed pI value is useful for screening a suitable buffering system for the purification of
the protein of interest, which is important for ensuring the stability of the purified protein
(Gasteiger et al., 2005). In addition, Table 3 shows the total number of negatively charged
residues (-R (Asp + Glu)) and the total number of positively charged residues (+R (Arg
+ Lys)). All NTDs consisted of fewer negatively charged residues than positively charged
residues except for N-TcpC, N-YpTdp andN-BtpB. Negatively charged amino acid residues
(i.e., Ala, Asp and Glu) are polar and hydrophilic in nature, and they are accessible to the
surrounding environment as parts of proteins.When a protein has fewer negatively charged
residues than positively charged residues, it may reflect that the protein is involved in
intercellular protein-protein interactions (Bhagavan & Ha, 2011). The aliphatic index (AI)
of a protein is defined as the relative volume occupied by aliphatic side chains, which include
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Ala, Val, Ile and Leu, and contribute to protein thermostability (Gasteiger et al., 2005).
The AIs for the NTDs of selected proteins are shown in Table 3. High AI means that
proteins are predicted to be thermally stable and are hydrophobic in nature (i.e., they
contain a large number of hydrophobic amino acids, including Met, Ala, Leu, Gly, Pro,
Phe, Ile, Val and Trp) (Gurskaia, 1968). Table 3 shows that, in this study, the majority
of NTDs had high AI except for N-BtpA, N-TcpYI and N-TcpYIII, indicating their low
thermal stability.

The grand average of hydropathy (GRAVY) for a peptide or protein is the summision of
hydropathy values of all amino acids divided by the number amino acids in the sequence
(Gasteiger et al., 2005). When a protein is found to have greater negative GRAVY value,
this reflects the hydrophilic nature of the protein and the possibility of better interaction
between the protein and water (Gasteiger et al., 2005). In this study, NTDs, including
N-TlpA, N-BtpA, N-TirS and N-SaTlp1, were found to be more hydrophilic compared to
other NTDs (Table 3). ExpPASy-ProtParam tool is used to predict the half-life of proteins.
It can predict the time it takes for half of the amount of protein in a cell to degrade after
the protein has been synthesized (Bojkowska et al., 2011). The ExpPASy-ProtParam tool
can predict the half-life of proteins of three organisms, including human, Escherichia coli,
and yeast. However, the tool can be used to estimate the half-life of similar organisms
(Gasteiger et al., 2005). In our study, the half-life of all NTDs was found to be similar (equal
to 30 hrs), suggesting that the NTDs have long half-life. According to Moran et al. (2013),
a typical bacterial protein has half-life of 20 hrs. Therefore, the half-life of the NTDs in
this study needs further investigation both in vivo and/or in vitro (Bojkowska et al., 2011;
Reder, Michalik & Gerth, 2018).

Prediction and characterization of the secondary structures of NTDs
of the selected bacterial Tcps
The secondary structures of the NTDs of the selected bacterial Tcps were predicted
using SOPMA (Geourjon & Deléage, 1995) and GOR IV (Kouza et al., 2017) servers. Both
tools showed the presence of various percentages of the secondary structure components
between the NTDs, including alpha helices, beta sheets and random coils (Table 4). This
could be explained by the low sequence similarity and identity between NTDs of the
selected bacterial Tcps (Fig. 1). The predicted secondary structure components show that
N-TIpA, N-BtpA, N-PdTLP, N-TirS and N-SaTIp1 contain high percentages of alpha
helices. Previous studies reported that coiled-coil structure of the NTDs from BtpA and
TlpA are suggested to facilitate Tcps dimerization and/or colocalization into the plasma
membrane (Alaidarous et al., 2014; Xiong et al., 2019). This allows the bacterial Tcps to
mimic the function of adaptor proteins by binding to TLRs resulting in the suppression
of the host proinflammatory response (Radhakrishnan et al., 2009; Rana et al., 2013; Ve
et al., 2012). In addition, we suggest that the bacterial Tcps including N-TcpC, N-BtpB,
N-YpTdp, N-HP1437, N-TcpYI and N-TcpYIII are likely to have their NTDs involved in
the interaction with the adaptor proteins, as their secondary structure prediction showed
high percentages of coiled turns. The protein-protein interaction between bacterial Tcps
and the host adaptor proteins such as the myeloid differentiation factor 88 (MyD88)
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Table 4 Prediction of the percentages of secondary structure components in NTDs of selected bacterial Tcps using SOPMA and GOR IV servers.

N-TcpC N-TIpA N-BtpA N-BtpB N-PdTLP N-YpTdp N-TirS N-SaTIp1 N-HP1437 N-TcpYI N-TcpYIII

41.18 88.05 100 38.46 76.97 41.91 85.92 58.42 46.99 21.74 14.29 SOPMA
Alpha helix

39.41 52.83 90.68 30.13 85.45 47.06 73.94 59.41 44.58 7.61 0 GOR IV

20 3.14 0 25 7.28 19.86 2.81 15.85 20.48 7.6 14.29 SOPMA
Beta sheet

18.82 8.81 1.69 17.95 3.03 9.56 2.11 3.96 7.23 9.78 14.29 GOR IV

28.82 8.81 0 36.54 15.76 38.24 11.27 25.74 32.53 70.65 71.43 SOPMA
Random coil

41.76 38.36 7.63 51.92 11.52 43.38 23.94 36.63 48.19 82.61 85.71 GOR IV
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and the MyD88 adaptor-like (MAL) proteins is another suggested molecular function
of bacterial Tcps (Ve, Williams & Kobe, 2015). However, there is no evidence of a direct
interaction between these proteins reported yet. The variations in the secondary structure
components between the NTDs of the selected bacterial Tcps suggest that these proteins
might have different strategies for suppressing the TLR signaling pathways. However,
the exact molecular mechanism of bacterial Tcp-dependent immune suppression is still
unclear.

Three-dimensional structural modeling and validation of the NTDs of
the selected bacterial Tcps
Although the structures of TIR domains of several bacterial Tcps have been determined,
the structures of full-length proteins or other domains in the Tcps have not yet been
determined (Alaidarous et al., 2014; Chan et al., 2009; Kaplan-Türköz et al., 2013). Here,
we have constructed models of the NTDs of several bacterial Tcps. The 3D models of the
NTDs were constructed using three homology modeling servers, including Phyre2 (Kelley
et al., 2015), SWISS-MODEL (Waterhouse et al., 2018) and I-TASSER (Roy, Kucukural &
Zhang, 2010). The three modeling servers produced similar NTD models for individual
NTD protein (Table 5). For example, the servers predicted coiled-coil structures containing
high alpha helices for N-TIpA, N-BtpA, N-PdTLP, N-TirS and N-SaTIp1 (Table 5).
Interestingly, this is consistent with the secondary structure prediction for these proteins
where these proteins are predicted to have more than 50% alpha helices contents (Table 4).
In addition, the secondary structure prediction of N-TcpC, N-BtpB, N-YpTdp, N-HP1437,
N-TcpYI andN-TcpYIII (Table 4) are consistent with themodels generated for the proteins,
containing low alpha helices andmore of other secondary structural components (Table 5).
As part of the virulence mechanisms, studies have suggested that dimerization of bacterial
Tcps are required for the binding to signaling and/or adaptor proteins or binding to
the phosphoinositides in the plasma membrane (Alaidarous et al., 2014; Fekonja, Benčina
& Jerala, 2012; Radhakrishnan et al., 2009; Rana et al., 2013; Ve, Williams & Kobe, 2015).
Therefore, based on the structural prediction in this study, it is suggested that bacterial
Tcps with the predicted coiled-coil NTD structures (including N-TIpA, N-BtpA, N-PdTLP,
N-TirS and N-SaTIp1) are likely to be involved in bacterial Tcps dimerization facilitating
the binding to signaling and/or adaptor proteins or binding to the phosphoinositides
in the plasma membrane. In addition, NTDs proteins with the prediction of having
low alpha helices contents (including N-TcpC, N-BtpB, N-YpTdp, N-HP1437, N-TcpYI
and N-TcpYIII) are likely to be involved only in the protein-protein interaction. Future
biochemical and experimental structural studies will bring insights into the exact molecular
mechanism behind the bacterial Tcps-dependent signaling inhibition (Elde & Malik, 2009;
Patterson et al., 2014).

RAMPAGE software used in this study to validate the constructed 3D models of
the proteins. RAMPAGE uses the Ramachandran plot, which presents the backbone
conformation of proteins based on the position of non-Gly residues in the disallowed
regions and phi/psi distribution in the model. The RAMPAGE score is an estimation

Alaidarous (2020), PeerJ, DOI 10.7717/peerj.10143 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.10143


Table 5 3Dmodels of the NTD proteins of selected bacterial Tcps using three modeling servers; Phyre2, SWISS-MODEL and I-TASSER.

Modeling server

NTD protein (amino acid boundary) Phyre2 SWISS-MODEL I-TASSER

N-TcpC (1-170)

N-TIpA (1-159)

N-BtpA (1-118)

N-BtpB (1-156)

N-PdTLP (1-165)

N-YpTdp (1-136)

N-TirS (1-142)

N-SaTIp1 (1-202)

(continued on next page)
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Table 5 (continued)

Modeling server

NTD protein (amino acid boundary) Phyre2 SWISS-MODEL I-TASSER

N-HP1437 (1-83)

N-TcpYI (1-92)

N-TcpYIII (1-91)

of the absolute quality of a model. Determined by comparing the model to similar-
sized reference experimentally solved structures present in the Protein Data Bank (PDB)
(Lovell et al., 2003). The models of the NTDs were analyzed by RAMPAGE, which revealed
that themajority of the residues fell in the favored and allowed regions of the Ramachandran
plot (Table 6). This indicated the good quality of the models constructed using the three
modeling servers. N-BtpB, N-TcpYI, and N-TcpYIII showed high percentage of outliers
for all models except the one generated using the SWISS-MODEL server.

The modeled structures of the NTDs were also validated using the ProSA-web
server (Wiederstein & Sippl, 2007). ProSA-web gives a score that indicates the ‘‘degree
of nativeness’’ of the modeled protein structures, called as z-score. The value of z-score
indicates the quality of themodeled protein structure, with large negative z-score indicating
native fold while scores closer to positive values indicating problematic or erroneousmodels
(Wiederstein & Sippl, 2007). In this study, the z-scores for all the three models of N-TlpA,
N-BtpA, N-BtpB, N-PdTLP, and N-HP1437 were found to be highly negative (Table 7).
This indicates that the models are of reasonable quality and exhibit high degree of native
fold. Although in case of other NTDs, the z-scores of each of the three models are different
(Table 7), further experimental studies are required to determine the consistency of these
models. In addition, the servers available for constructing protein models use available
protein sequence data and known protein structures to generate protein structural models
(Kelley et al., 2015; Roy, Kucukural & Zhang, 2010; Waterhouse et al., 2018). This suggests
that scientists need to perform a greater number of structural studies on bacterial Tcps in
order to improve the computational structural modeling tools. Aiming towards producing
quality protein models highlighting the mechanism behind the bacterial Tcps molecular
function.
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Table 6 Ramachandran plot calculation using RAMPAGE server.

Server Ramachandran plot
calculation (% residues)

N-TcpC N-TIpA N-BtpA N-BtpB N-PdTLP N-YpTdp N-TirS N-SaTIp1 N-HP1437 N-TcpYI N-TcpYIII

Favored region 73.2 87.3 96.6 64.3 96.3 79.1 95.7 82.5 86.4 62.2 49.4

Allowed region 14.9 7.6 1.7 14.3 3.1 12.7 2.9 9.0 9.9 20 18.0Phyre2

Disallowed region 11.9 5.1 1.7 21.4 0.6 8.2 1.4 8.5 3.7 17.8 32.6

Favored region 89.7 100 94.2 82.5 95.2 83.7 91.5 93.8 91.2 96.4 85.7

Allowed region 7.4 0 2.9 14.3 2.4 16.3 7.0 3.1 5.3 3.6 14.3SWISS-MODEL

Disallowed region 2.9 0 2.9 3.2 2.4 0 1.6 3.1 3.5 0 0

Favored region 68.5 77.7 72.4 55.8 65.0 86.6 69.3 69.0 65.4 40.0 50.6

Allowed region 19 12.1 23.3 24.0 23.3 6.7 21.4 17.5 23.5 34.4 27.0I-TASSER

Disallowed region 12.5 10.2 4.3 20.1 11.7 6.7 9.3 13.5 11.1 25.6 22.5
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Table 7 Z -scores for overall model quality calculated using the ProSA-web server.

Server

Phyre2 SWISS-MODEL I-TASSER

N-TcpC −1.97 −0.91 −3.19
N-TIpA −3.12 −2.88 −2.84
N-BtpA −2.35 −2.51 −1.85
N-BtpB −1.43 −1.73 −3.17
N-PdTLP −3.77 −3.39 −1.66
N-YpTdp −3.16 −0.94 −5.10
N-TirS −1.70 −1.88 −0.94
N-SaTIp1 −2.72 −0.49 −2.00
N-HP1437 −3.22 −2.93 −5.52
N-TcpYI −1.30 −0.24 −2.40

NTD protein

N-TcpYIII −0.97 −0.47 −2.94

z-score

CONCLUSIONS
Understanding the molecular mechanism of bacterial Tcps-dependent evasion strategy
employed to suppress the host immune response using experimental approaches is
challenging. Most studies have reported low protein solubility when the bacterial Tcp
is expressed at full-length or as protein domains (Patterson et al., 2014; Rana et al.,
2013; Salcedo et al., 2013; Ve et al., 2012). In silico homology modeling studies provide
an opportunity to establish a pipeline for structural modeling and analysis of any protein as
part of understanding the molecular mechanism of the protein function and determining
therapeutic targets (Ke et al., 2016; Sliwoski et al., 2014; Ve et al., 2012). In this study, NTDs
of selected bacterial Tcps were selected for physicochemical characterization and homology
structural modeling using in silico approaches. The study presents the physicochemical
characteristics of selected NTDs that are vital for protein stability during the purification
of the proteins. In addition, the study provides the characteristics of secondary structures
and 3D models (of acceptable quality) of the NTDs. This study will be the base of
future biochemical and experimental structural studies, which may aid in elucidating
the functional molecular mechanism of the pathogenic bacterial Tcps.
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