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A B S T R A C T

The fidelity and quality of reconstructed images in optoacoustic mesoscopy (OPAM) can be significantly im-
proved by considering the spatial impulse response (SIR) of the employed focused transducer into reconstruc-
tion. However, the traditional method fully taking the SIR into account can hardly meet the data-intensive
requirements of high resolution OPAM because of excessive memory and time consumption. Herein, a modified
back-projection method using a space-variant filter for full-frequency correction of the SIR is presented, and
applied to the OPAM system with a sphere-focused transducer. The proposed method can readily manage the
large datasets of the OPAM and effectively reduce the extra time consumption. The performance of the proposed
method is showcased by simulations and experiments of phantoms and biological tissue. The results demonstrate
that the modified back-projection method exhibits better image fidelity, resolution and contrast compared to the
common and weighted back-projection methods that are not or not fully accounting for the SIR.

1. Introduction

Optoacoustic microscopy can be implemented in two approaches,
i.e. optical resolution optoacoustic microscopy (OR-OAM) and acoustic
resolution optoacoustic microscopy (AR-OAM). OR-OAM can provide
optical images where in the imaging resolution is limited by light fo-
cusing, while AR-OAM (also known as optoacoustic mesoscopy
(OPAM)) has the ability to provide optical images at acoustic resolution
operating at greater imaging depths [1–6]. OPAM pushes the imaging
depths to 10 mm at an imaging resolution of 4−100 μm using a high-
frequency focused ultrasound transducer having 10−100 MHz fre-
quency range [7–9]. OPAM bridges the gap between microscopic and
macroscopic imaging, making OPAM attractive for understanding the
biological mechanisms [7,8], tissue pathophysiology [9,10] and der-
matological applications [11,12]. Many reconstruction algorithms
based on time-reversal, delay and sum, spherical radon transform, and
model-based method have been developed to reconstruct optoacoustic
images with improved image quality [13–22]. Further modeling
transducer characteristics, such as the impulse response is known to
impact the image quality, especially for the piezoelectric transducer

[23,24].
OPAM utilizes transducers with high center frequency to capture

high-frequency signals generated by small-size objects, and a focused
transducer with the high numerical aperture (NA) is commonly em-
ployed to increase the detection sensitivity of the generated high-fre-
quency signals. The recorded optoacoustic signal using piezoelectric
transducers is a convolution of the original optoacoustic signal with the
electrical impulse response (EIR) and the spatial impulse response (SIR)
of the transducer [23]. EIR depends on the electrical property of the
piezoelectric crystal and is defined as a band-pass filter around the
center frequency of the transducer. The SIR, determined by the shape of
the transducer, is a spatially-dependent low-pass filter affecting the
amplitude and frequency of the signals [23–25]. Previous works have
shown that modeling impulse response of the transducer in the optoa-
coustic reconstruction process can provide better image quality and
image fidelity [23–27]. However, there is still not a precise and fast way
to fully consider the SIR for the high-resolution OPAM.

Image deconvolution approaches have been developed to improve
the reconstructed optoacoustic images [22,28,29]. However these ap-
proaches do not model transducer characteristics, further algorithms
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have been proposed to remove the influence of EIR by deconvolving the
recorded optoacoustic signals with the EIR of the transducer [25,30,31]
and many groups have also modeled SIR in the optoacoustic re-
construction process [23–27,32–35]. SIR has been successfully in-
corporated into the forward model while performing model-based op-
toacoustic inversions [26,27]. In Ref [27], the finite-sized transducer
was discretized into smaller elements and with an assumption of the SIR
of all these smaller elements to be the same, the resultant transducer
SIR was modeled as a super-position of the SIR of these smaller ele-
ments. Only model-based algorithms have been reported to fully con-
sider the influence of SIR on the signal's amplitude and frequency in the
optoacoustic reconstruction [27]. However, model-based schemes are
associated with huge memory requirements, and high computational
complexity/load [13,14,27], and these works have modeled transducer
properties for larger sample size and with low frequency transducers
(having center frequency of 2.5−5 MHz). Note that the acceleration of
reconstruction process and the reduction of the computational load
have been realized on graphics processing unit (GPU) [26], however
modeling the transducer characteristics within the model-based scheme
is still thousand times slower than common back-projection (CBP) al-
gorithms. Therefore, time domain (direct back-projection formula) al-
gorithms are commonly used in OPAM for fast and efficient computa-
tion, while considering the massive size of the acquired optoacoustic
data and the finer mesh grids of reconstructed optoacoustic images
required for generating high quality OPAM images. Prior works have
focused on modeling the SIR through weighted back-projection (WBP)
algorithms [25,32–34]. A commonly used approach for modeling SIR, is
to take the maximum values of SIR at different locations for building a
weight matrix, this weight matrix provides a spatially-varying ampli-
tude for the back-projection algorithm. Most of the prior works have
just considered the spatially varying response of the SIR, but ignored
the frequency dependent impact of the SIR modeling [32–34]. A fre-
quency-dependent approach has been presented to decrease the signal
distortion in both magnitude and bandwidth caused by the SIR, through
obtaining the summation of the reconstructed results using weighted
matrices at several selected frequencies [25]. However, for the broad-
band optoacoustic signals, the computation of weighted matrixes to
cover the whole bandwidth of signals is computationally expensive. In
Ref. [35], a spatiotemporal optimal filter is designed to compensate for
the SIR in the mean square error sense, and the image resolution is
significantly improved by the model-based correction method which is
actually a back-projection method. However, this method is not suitable
for OPAM with large datasets, because of the huge matrix construction
and inversion during the calculation of the filter matrix.

In order to find an efficient way to accurately account for the SIR in
high-resolution OPAM, we present a new method to fully integrate the
effect of SIR using a space-variant filter in the back-projection algo-
rithm. At different spatial positions, the space-variant filter corre-
sponding to the SIR of the employed transducer is constructed to de-
convolve the distorted signal. The SIR can be obtained from an
analytical solution [36,37] and several toolboxes [38,39]. The parallel
version of the proposed method was also implemented on GPU to ac-
celerate the reconstruction process close to the CBP algorithm. The
performance of the proposed method is compared with the CBP and
WBP methods in both simulation results and experiment results of
phantoms and ex vivo biological tissue.

2. Method and material

2.1. Background

A common back-projection algorithm can be written as follows
[18]:
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where dΩ is the solid angle element and Ω0 is the solid angle related to
the whole transducer surface S, t is the time, and c is the speed of sound
in the medium. p tr′( , ) is the signal received at different detecting
position r′, p r( )0 is the distribution of initial optoacoustic pressure p0 at
reconstruction position r. In the practical OPAM systems, the piezo-
electric transducer with a finite size is usually employed, which means
the optoacoustic signal suffers the distortion by the influence of EIR and
SIR. First, the effect of EIR can be removed using previously developed
approach described in Ref [24]. The derivative of the EIR can be ob-
tained by measuring the optoacoustic signal generated by a point-like
absorber located at the focus of transducer. Then, the derivative of the
measured signals is deconvolved with the derivative of the EIR. Here,
for convenience, we define b tr′( , ) as the back-projection term, p tr′( , )s
as the deconvolution results of the back-projection term b tr′( , ), which
can be expressed as:

=p t deconv b tr′( ) (EIR, ( , ))s (2)

where deconv means the deconvolution process. As the influence of EIR
has been removed, a discrete and simplified version of Eq. (1) can be
expressed as:

∑=p p tr r′( ) ( , ),m
k

s k km0
(3)

where r′k is the detection position of the kth measuring point, rm is the
reconstruction position of the mth point of the region of interest (ROI),
and = −t cr′ r| |/km k m .

2.2. Construction of space-variant filter

When the optoacoustic signal generated from a specific spatial lo-
cation is detected by an ultrasound transducer with a finite surface S,
the optoacoustic signal will arrived at the different points rd on the
transducer surface at different times. Thus, the SIR can be mathemati-
cally expressed as the integral of the optoacoustic field obtained by the
transducer surface:
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where h tr( , )s is the SIR. By setting the parameters such as the ROI, the
sampling frequency and the shape of transducer, the corresponding
solution of SIRs in the ROI can be obtained. The exact analytical solu-
tion of SIR for different shapes, such as rectangular transducer [36] and
slightly sphere-focused transducer [37], have been analytically derived.
Furthermore, the simulation toolboxes Field II [38] and DREAM [39]
can also calculate the specified SIR which are almost the same with the
exact analytical solution. The constructed spatial-variant filter h tr( , )k

is the SIR vector h tr( , )s at the kth measuring point. We calculate a
space-variant filter consisting of a specific SIR calculated at a specific
spatial position according to the detection position. All the space-var-
iant filters at different spatial positions according to the detection po-
sition can be combined into a matrix form.

2.3. Space-variant filter in back-projection scheme

The space-variant filter h tr( , )k is designed to compensate for the
SIR in the direct back-projection algorithm. At a single projection angle
of θ, the SIR filter can be considered as h d t( , )k , changing with the
propagated distances. Since the distance corresponds to the propaga-
tion time, the SIR filter can also be regarded as an output changed with
two-dimension time, of which expression is equivalent to the time-
variant filter established to correct the acoustic attenuation [40]. A
particular form of non-stationary convolution usually applied in
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seismology [41] can be used to formulate the time-variant filtering
method. It can be mathematically expressed as:

∑= −p t h t t τ p τ( ) ( , ) ( ),
τ

s0
(5)

where −h t t τ( , ) is the time-variant filter varying as a function of
output time. We expand this definition for the space-variant filter in the
back-projection scheme which can be expressed mathematically as:

∑= = −p p t h t t τ p τr( ) ( ) ( , ) ( ),k k

τ

k
s
k

r r0 0,
(6)

where = ctcosθ ct θr [ , sin ]. One position corresponds to one time point,
so the space-variant filter h tr( , )k can be rewritten as −h t t τ( , )k

r . The
general back-projection reconstruction algorithm can be easily under-
stood as projecting the measured signals to different spatial positions,
which is equal to perform the convolution with the impulse functions
( −δ t d c( / )). The SIRBP method proposed in this paper employs spatial-
variant filters to replace the impulse functions, realizing the convolu-
tion with the measured signal received at the detection position. In Eq.
(6), the optoacoustic signal p τ( )s

k is received by the employed trans-
ducer at kth detection point. A space-variant filter consisting of a spe-
cific SIR can be calculated at a specific spatial position with respect to
the detection position in the ROI. The space-variant filters −h t t τ( , )k

r
at different spatial positions with respect to the detection position in the
ROI can be constructed into a matrix form. Then the image of p r( )k

0 at
the kth detection point can be reconstructed. In practice, a matrix form
of Eq. (6) can be expressed as:
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The size of the matrix hk
r is M × N, where M is the total number of

reconstruction positions (equal to the number of space-variant filters),
N is the time length of the detected optoacoustic signal (equal to the
size of space-variant filter). Since each row of the matrix in Eq. (7) is
independent, the matrix can be split into lots of vectors to allow parallel
computation by GPU framework. The final image of initial optoacoustic
pressure p0 can be obtained by the summation of all the images of p r( )k

0
from all the detection positions. As the space-variant filters depend on
the relative positions between the reconstruction positions and the
detection position, the filter matrix do not need recalculation at dif-
ferent detection positions or in different scanning geometries.

Fig. 1 shows the filtering process on the optoacoustic signal p t( )s
k

received at kth detection point. Two specified positions with the same
distance d are selected, that is to say = = =d ctr r| | | |i j n. It can be ob-
served that even at the same time tn, the space-variant filters at two
different spatial positions are different. This situation arises because the
spherical wave propagating from two different spatial locations could
be detected by the detector surface with different phase. The influence
of SIR on the amplitude and frequency of the signal can be clearly
understood from Fig. 1.

2.4. Experimental setup

The OPAM system used to evaluate the performance of the proposed
method with experiment data was shown in Fig. 2. A tunable optical
parametric oscillator laser (Opotek Inc., Carlsbad, CA, USA) provided
the short-pulsed laser light with a repetition rate of 10 Hz and sub-10 ns
pulse duration. The illumination light at the wavelength of 700 nm was
guided into a custom-made 640-fiber bundle, then partitioned into four
arms. A sphere-focused ultrasound transducer with the center fre-
quency of 15 MHz, the focal length of 19.8 mm and the diameter of 6
mm was mounted on two motorized precision stages: a translation stage
and a rotation stage (M-605.2DD and M-062.PD, Physik Instrumente,
GmbH, Germany). The stages were selected to implement a translate-
rotate scanning described in detail elsewhere [42]. The optoacoustic

signals were first amplified by a 50 dB amplifier, then were digitized via
a data acquisition (DAQ) card with a sampling rate of 125 MS/s, and
finally were stored by the computer controlling system. The scanning
radius of transducer was set to be 20 mm, approximately equal to the
focal length. The transducer, the heads of the four-arm fiber and the
samples were immersed in water for the acoustic coupling. The water
temperature was maintained at 20℃, corresponding to the speed of
sound of 1480 m/s.

2.5. Numerical and experimental samples

1) Simulation study: A phantom including absorbers of 60 μm, 100 μm,
120 μm and 200 μm diameter was used to quantitatively access the
imaging performance of the proposed method for OPAM. To reduce
the acquisition time, a sphere-focused transducer with focal length
of 10 mm and diameter of 3.4 mm was employed, scaled down in
equal proportion according to the transducer used in practice. The
focal point was coincident with the center of the phantom. 3600
detecting positions covered an angle of 360° with a 2 deg angular
step, and linearly moved in the range of 10 mm with a step of 500
μm. The ROI of 7 mm × 7 mm was discretized into 350 pixel×350
pixel. The simulated optoacoustic signals were generated by a si-
mulation toolbox of K-Wave [43]. In order to test the robustness of
the proposed method, a white Gaussian noise was further added to
the simulated data with the signal-to-noise ratio (SNR) of 15 dB.

2) Sample 1: Absorbing microspheres with the diameter of 50 μm: To test
the enhancement of the spatial resolution by the proposed method, a
group of microspheres were randomly dispersed in agar gel and
molded to a cylinder with the diameter of 12 mm. 4320 detecting
positions covered an angle of 360° with a 2 deg angular step, and
linearly moved in the range of 12 mm with a step of 500 μm.

3) Sample 2: Absorbing microspheres with the diameter of 100 μm: To
verify the image quality of the reconstructed image obtained by the
proposed method, microspheres with bigger diameter were chosen
to form the sample 2. 3600 detecting positions covered an angle of

Fig. 1. The filtering process on the optoacoustic signal p t( )s
k by the proposed

space-variant filter method. (a) Two different spatial positions have the same
distance d from the transducer surface. (b) At position ri, the space-variant filter
h t( )i

k
r is acted on the optoacoustic signal, which is different from the space-

variant filter h t( )j
k
r in (c) at the position rj.
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360° with a 2 deg angular step, and linearly moved in the range of
12 mm with a step of 600 μm.

4) Sample 3: Mouse kidney: To evaluate the performance of the pro-
posed method in real biological tissues, the ex vivo mouse kidney
was imaged. The sample was chosen for its abundant vessel bran-
ches with various sizes. The settings of detecting positions were
consistent with those in sample 2.

2.6. Image reconstruction methods

In the numerical simulation, the EIR of the transducer are not
provided thus the recorded data are only influenced by the SIR of the
virtual transducer. The reconstructed results of the proposed method
(abbreviated as the SIRBP method in the following) were compared
with several reconstructed images performed by the CBP method, the
WBP method with the weighted matrix consisting of the maximum
value of SIR (WBPS) and the weighted matrix composed by the sensi-
tivity field of some single-frequency signals. The WBP methods with the
weighted matrix composed by the sensitivity field of the signal of 5
MHz, 15 MHz and 25 MHz were named as WBP5, WBP15 and WBP25
methods, respectively. The pixel size of reconstructed images was set to
be 10 μm. In the experiments, the WBPS method usually adopted in the
optoacoustic reconstruction procedure was selected among the WBP
methods to comparison. All the reconstructed methods were conducted
on the identical data. A band-pass filter from 0.1 MHz to 28 MHz
(Butterworth, order 3) was employed for noise removal before re-
construction. The pixel size of reconstructed images was set to be 10
μm. The derivative of EIR of the used transducer was obtained by
measuring the signal generated by a point-like microsphere with the
diameter of 20 μm. The image results were initially reconstructed by
CBP method. Subsequently, the measured optoacoustic signals were
corrected with the experimentally derivative of EIR and then used to
reconstruct the EIRBP results. The WBPS and SIRBP results were both
reconstructed by the measured signals already deconvolved with the
EIR. The exact analytical solution of the SIR of the employed transducer
was calculated [37] and then used in the SIRBP method. The measured
signals from different detecting positions can be simultaneously re-
constructed by multiple threads, and a loop was added in each thread
for the time length of the SIR in SIRBP method. All the mentioned re-
constructed methods were executed on the GPU framework. The com-
putational time in a GPU framework of the SIRBP method is about 15
times longer than the CBP method (when the run time of CBP method is
0.12 s, the SIRBP method needs 1.79 s for the same ROI). The com-
putations were done on a NVIDIA GTX 750 GPU with 64 GB memory. In
this work, with the pixel number of (350 × 350) and the time length of
(1 × 1000), the size of the filter matrix is (350 × 350)×(1 × 1000)

with sparse characteristics. No nonlinear processing method is applied
in all the reconstructed images in this paper.

3. Results

3.1. Results from simulation data

Fig. 3 shows the original image and the reconstructed images ob-
tained by six different algorithms after normalization. The cross-section
profiles of the microspheres in Fig. 3 have been shown in Fig. S3. In
Fig. 3b, the CBP result presents streak-type artifacts on the whole
background, mainly resulting from the heterogeneous sensitivity field
of the sphere-focused transducer. A series of WBP results and the SIRBP
result have better performance in background noise suppression. The
spider artifacts are clearly observed in the WBPS, WBP15 and WBP25
results, which are disappeared in the WBP5 result and the SIRBP result.
The SIRBP result offers the darkest background and minimal artifacts.

In order to evaluate the reconstructed results of different algorithms
explicitly, we calculate the contrast-to-noise ratio (CNR) and full width
at half maximum (FWHM) of absorbers. Both the CNR and FWHM are
the average of each three absorbers with the same size. Furthermore, a
noisy simulation data (with the SNR of 15 dB) is adopted to evaluate the
stability and robustness of the proposed algorithm. By considering the
sensitivity heterogeneity of used transducer, the CNR values of last five
results are all higher than the CBP result. In Fig. 4a, the CNR values of
SIRBP image and WBP25 image are higher in all the absorbers of four
different sizes in both noiseless and noisy situations. The CNR value of
each size absorber in SIRBP image is around 25 dB higher than CBP
image. There is a reasonable downward trend of CNR in all the re-
constructed results compared with the noiseless results, expressed in
Fig. 4a by the white lines. In the noisy situation, in addition to the
almost similar CNR values of the 60 μm-diameter absorbers in the
WBP25 and SIRBP results, the CNR values of the absorbers of other sizes
in the SIRBP result are highest than all the other reconstructed results.
Although in a noisy situation, the CNR value of each size absorber in
SIRBP image is around 20 dB higher than CBP image.

In Fig. 4b, for the 60 μm-diameter absorbers, the FWHM value of
WBP5 result is obviously deviated from the real size, while the FWHM
of WBP25 result among the WBP results is smallest. On the other hand,
for the 200 μm-diameter absorbers, the FWHM of WBP25 result is too
small and the FWHM of WBP5 result is closest to the real size among the
WBP results. The FWHM values of WBP15 result are similar to those of
WBPS result, as the green line is almost overlapped with the brown line
in Fig. 4b. For both the 60 μm-diameter and 200 μm-diameter absor-
bers, the FWHMs of SIRBP result are closest to the corresponding real
size. Overall, the FWHM value of SIRBP results shown in the red line is

Fig. 2. Schematic top view of the set-up and scan geometry.

T. Lu, et al. Photoacoustics 19 (2020) 100193

4



closest to the standard black line.
To quantitatively assess the reconstruction by different re-

constructed methods, the parameter d showing the difference between
the reconstructed image and the original image is defined as

∑ ∑ ∑ ∑= −
= = = =( )d f r r( ) ,

i

N

j

N
i j i j i

N

j

N
i j1 1 , ,

2
1 1 ,

2x y x y

(8)

where f is the reconstructed image and r is the original image. The size
of the image is Nx×Ny. The smaller value of d indicates the better image
fidelity of the reconstructed result compared to the original phantom

image. Furthermore, the universal quality index (UQI) representing the
similarity between the reconstructed image and the original image is
expressed as

=
+ +

UQI f r
f r

σ σ
f r

f r
{ , }

2Cov{ , }
( ) ( )

2
( ) ( )

,
f r

2 2 2 2 (9)

where f is the mean of reconstructed image, r is the mean of the ori-
ginal image, σf and σr are the variances of the reconstructed image and
reference image, respectively. f rCov{ , } is the covariance. The larger
value of UQI suggests that the reconstructed image is more similar to
the exact one. Besides, the peak signal-to-noise ratio (PSNR) of the re-
constructed result is also calculated, which is defined as

∑ ∑= × −
= =( )PSNR N N f r10 log ( ) .x y i

N

j

N
i j i j10 1 1 , ,

2x y

(10)

We calculated these three indexes for the six different reconstruction
methods, and the numerical results are given in Table 1. Compared to
the CBP result, the three indexes of the WBP results are all weakened
while those of the SIRBP result is enhanced. The increase of the PSNR
value and UQI value are 4.358 dB and 0.272, respectively. The d value
is reduced by 0.339.

Fig. 3. (Simulation) The original image containing different sizes absorbers and
the reconstructed images obtained by six different algorithms after normal-
ization. (a) Numerical phantom (Ph). Reconstructions performed with (b) the
CBP method, (c) the WBPS method, (d) the WBP5 method, (e) the WBP15
method, (f) the WBP25 method and (g) the SIRBP method. The diameters of
absorbers are: 60 μm, 100 μm, 120 μm and 200 μm, respectively. Images are
shown in the same colorbar after normalization.

Fig. 4. (Simulation) Analysis parameters of the reconstructed images of four
different sizes absorbers by six different methods. (a) CNR of the reconstructed
images of four different sizes absorbers by six different methods. (b) FWHM of
the reconstructed images of four different sizes absorbers by six different
methods.
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3.2. Results from experimental data

Fig. 5 shows the reconstructed results of 50 μm-diameter micro-
spheres (sample 1) by use of the CBP, EIRBP, WBPS and SIRBP methods.
When the influence of EIR is removed, the background of the EIRBP
result (Fig. 5b) is obviously suppressed compared with the CBP result
(Fig. 5a). With the maximum value of SIR as the weighted matrix in
WBP algorithm, the homogeneity of background in Fig. 5c is enhanced
but the magnitude of background is increased. The effective suppres-
sion on the background noise by the SIRBP method can be observed in
Fig. 5d. The enlarged views of several randomly selected microspheres

Table 1
PSNR, d and UQI of reconstructed results by different algorithms.

CBP WBPS WBP5 WBP15 WBP25 SIRBP

PSNR (dB) 26.581 20.627 24.894 21.760 13.835 30.939
d 0.893 1.773 1.085 1.556 3.875 0.554
UQI 0.165 0.068 0.118 0.078 0.030 0.437

Fig. 5. (Experiment) Image reconstructions of 50 μm-diameter microspheres
with (a) the CBP method, (b) the EIRBP method, (c) the WBPS method and (d)
the SIRBP method. (e)-(h) are the zoom-in images of the blue square marked in
the four methods. Images are shown in the same colorbar after normalization.

Fig. 6. (Experiment) Image reconstructions of 100 μm-diameter microspheres
with (a) the CBP method, (b) the EIRBP method, (c) the WBPS method and (d)
the SIRBP method. (e)-(h) are the zoom-in images of the blue square marked in
the four methods. Images are shown in the same colorbar after normalization.
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are shown in the second column in Fig. 5. Both the image contrast and
quality in the SIRBP result are generally improved compared to the
other three results.

The reconstructed results of 100 μm-diameter microspheres (sample
2) in the ROI are presented in Fig. 6 as a further evidence. The and CBP
result (Fig. 6a) WBPS result (Fig. 6c) are not able to reconstruct the
spherical shape, while modeling the SIR and EIR is able to accurate
reconstruct theshape of microspheres. In the zoom-in images, the SIRBP
method is outperforming of suppressing the noise and homogenizing
background. Overall, the shape and amplitude of the microsphere are
both maintained in a high level in the SIRBP result (Fig. 6d).

Finally, the reconstructed results of the sample 3 (the ex vivo kidney
of an adult mouse) are presented. Fig. 7a-d reveals the basic structure of
this organ by the four reconstructed methods. The background noise in
WBPS result (Fig. 7c) and SIRBP result (Fig. 7d) are effectively sup-
pressed compared with the CBP result (Fig. 7a) and EIRBP result
(Fig. 7b). Two particular interest regions marked by the yellow and red
squares in the four methods are shown in Fig. 7e-h and Fig. 7i-l, re-
spectively. From the zoom-in images of the yellow region in Fig. 7e-h,
the CBP result (Fig. 7e) and EIRBP result (Fig. 7f) show that many tiny
structures of the kidney have been buried in the background because of
the strong and complex background noise, but the image contrast of
EIRBP result (Fig. 7g) is better than CBP result. The shape of the tiny
blood vessels is extracted and clearly recognized in both the WBPS
result and SIRBP result (Fig. 7h), and the SIRBP result shows better
clarity. In the red region, the extremities of the blood vessels are sub-
merged with the background noise in the CBP result (Fig. 7i), while it
can be gradually distinguished in the EIRBP result (Fig. 7j) and WBP
result (Fig. 7k) from the strong background, and be observed in the
SIRBP result (Fig. 7l) with highest image quality. The little branches
and the boundary of vessels can be also identified in SIRBP result. These

results demonstrate that the SIRBP method offers comprehensive ad-
vantages in the image quality and fidelity.

4. Discussion

In this work, a modified back-projection reconstruction procedure
fully incorporating the SIR of the employed transducer was proposed, in
order to improve the image quality and fidelity of OPAM reconstructed
images without additional extensive computation. The computation
time of the proposed SIRBP method in a GPU framework was only about
15 times longer than the CBP method, much shorter than running time
of the GPU-based model-based method considering the transducer size
(approximately 2000 times longer than the CBP method [26]). The
imaging performance of the SIRBP method was verified by both simu-
lation and experiment results of phantoms and ex vivo biological tissue.
Overall, the images obtained by the SIRBP method showed best fidelity,
resolution and contrast compared with the images reconstructed by
other back-projection methods.

It has been reported that only model-based method has fully con-
sidered the SIR in reconstruction process [27]. The performance of the
model-based correction method in Ref [35] and the model-based
method considering SIR in Ref [26] has been discussed under the
scanning mode usually employed in optoacoustic tomography, shown
in the Supplementary Information. Fig. S2(d) shows the SIRBP method
has the greatest ability of image denoising for optoacoustic tomo-
graphy. Fig. S2(b) demonstrates the shape of the absorbers can be better
recovered by the model-based correction method in Ref [35] than the
SIRBP method for optoacoustic tomography. However, those model-
based methods are not suitable for OPAM with the large datasets be-
cause of the difficult matrix inversion and matrix construction. As the
SIR is sparse at each position in the ROI, the filter matrix is sparse and

Fig. 7. (Experiment) Image reconstructions of ex vivo kidney of an adult mouse with (a) the CBP method, (b) the EIRBP method, (c) the WBPS method and (d) the
SIRBP method. (e)-(h) are the zoom-in images of the yellow square marked in the four methods. (i)-(l) are the zoom-in images of the red square marked in the four
methods. Images in the first row are shown in the same colorbar after normalization. The maximum and minimum values of the images in the second and third rows
are adjusted for better observation.
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can fit into the memory of a standard computer. For the transducer with
regular shape, the memory and reconstruction time can be further re-
duced of the symmetric ROI. Once the shape of the transducer and the
ROI are confirmed, the corresponding SIR can be pre-calculated and
readily employed to the three-dimensional (3D) OPAM and other ar-
bitrary scanning geometries. In terms of the multiples from the com-
puting time of the CBP method demonstrated in Section 2.6, the run-
ning time of the proposed SIRBP method on GPU is significantly faster
than the GPU-based model-based method considering the SIR. Although
the calculation time of SIRBP method has a small increase relative to
CBP method, the image quality and fidelity by SIRBP method is sig-
nificantly improved.

The improvement of image fidelity by the SIRBP method has been
shown in the numerical simulation. Fig. 4b shows that different back-
projection methods in the reconstruction results for the absorbers of
different sizes exhibit different characteristics in image fidelity, re-
spectively. The FWHMs of the absorbers in the SIRBP result are closest
to their real sizes, especially for the absorbers of 60 μm-diameter and
200 μm-diameter. This indicates that the image fidelity of reconstructed
image by SIRBP method is enhanced for the sample containing absor-
bers of different sizes. The FWHM of the 200 μm-diameter absorbers in
the WBP25 result differs significantly from the real size, owning to the
WBP25 method with the weighted matrix consisting of the sensitivity
field of a higher frequency signal. In addition, the FWHM of the 60 μm-
diameter absorbers in the WBP5 result is distinctly larger than the real
size. Except the SIRBP result, the FWHMs of all absorbers in the WBP15
result and WBPS result are not much different from the actual sizes as a
whole, owing to the weighted matrix consisting of the sensitivity field
of a proper frequency signal and considering the influence of the SIR on
the signal amplitude, respectively. Overall, the SIRBP method has a
comprehensive advantage of image fidelity for the absorbers with
various sizes. It's reasonable that the fidelity of the reconstructed
images by SIRBP method is obviously enhanced for the full-frequency
correction of the broad frequency-band optoacoustic signals.

To test the enhancement of the spatial resolution by the SIRBP
method, the absorbers with diameter of 50 μm-diameter in experiment
were imaged in Fig. 5. For the microspheres magnified in the second
column of Fig. 5, the two adjacent microspheres indicated by red ar-
rows suffer severe distortions in the CBP, EIRBP, and WBPS results.
While they can be almost distinguished in the SIRBP result, suggesting
the highest image resolution by SIRBP method, which is indeed feasible
for the high-resolution OPAM imaging.

The enhancement of image contrast by use of the SIRBP method can
be recognized in both simulation and experiment results. In Fig. 4a, as
the size of the absorbers becomes larger, the CNR values of the SIRBP
result shows an increasing trend. In the noiseless situation, the CNR
value of the 60 μm-diameter absorbers in WBP25 result are higher than
that in the SIRBP result, while it’s opposite for the 200 μm-diameter
absorbers. In the noisy situation, the CNR value of the 60 μm-diameter
absorbers in SIRBP result is almost the same as that in WBP25 result.
Further, the CNR values of the other absorbers in SIRBP result become
highest, suggesting the stability and robustness of the SIRBP method.
The experimental results of microspheres and ex vivo biological tissues
indicates significant improvements of image contrast using SIRBP ap-
proach.

In this work, the SIRBP method models the SIR of the transducer
within the BP algorithms, and can handle large datasets in OPAM and
minimize the excessive time consumption. We observed that SIRBP
method was providing great imaging performance over other back-
projection methods which did not consider the complete SIR of the used
transducer.

In conclusion, the feasibility of the SIRBP method has been verified
on the 2D OPAM using a sphere-focused transducer, which is expected
to be a versatile method for quickly correcting the influence of the SIR.
The proposed work can further be extended to the 3D OPAM using
transducers of other shapes as the computing the SIR is straightforward.

This method are now contributed to the high resolution OPAM with the
large datasets, and then can be promoted to the optoacoustic tomo-
graphy and other optoacoustic imaging modalities. In the future, the
performance of the proposed method can be explored on the in vivo
imaging for pre-clinical study.
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