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Abstract 

Background  Transcription factors (TFs) bind to different parts of the genome in different types of cells, but it is usu-
ally assumed that the inherent DNA-binding preferences of a TF are invariant to cell type. Yet, there are several known 
examples of TFs that switch their DNA-binding preferences in different cell types, and yet more examples of other 
mechanisms, such as steric hindrance or cooperative binding, that may result in a “DNA signature” of differential 
binding.

Results  To survey this phenomenon systematically, we developed a deep learning method we call SigTFB (Sig-
natures of TF Binding) to detect and quantify cell-type specificity in a TF’s known genomic binding sites. We used 
ENCODE ChIP-seq data to conduct a wide scale investigation of 169 distinct TFs in up to 14 distinct cell types. SigTFB 
detected statistically significant DNA binding signatures in approximately two-thirds of TFs, far more than might 
have been expected from the relatively sparse evidence in prior literature. We found that the presence or absence 
of a cell-type specific DNA binding signature is distinct from, and indeed largely uncorrelated to, the degree of over-
lap between ChIP-seq peaks in different cell types, and tended to arise by two mechanisms: using established motifs 
in different frequencies, and by selective inclusion of motifs for distint TFs.

Conclusions  While recent results have highlighted cell state features such as chromatin accessibility and gene 
expression in predicting TF binding, our results emphasize that, for some TFs, the DNA sequences of the binding sites 
contain substantial cell-type specific motifs.
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Introduction
Transcription factors (TFs) bind to gene promoters and 
enhancers to regulate gene expression, and are there-
fore major determinants of cell fate decisions, metabolic 
activity, and, when regulation goes awry, of disease [1–3]. 

TFs bind relatively short preferred DNA sequences, or 
motifs, typically 5 to 20 bases long [4, 5]. Because these 
motifs are so short, the human genome often harbors 
millions of potential matches for a given motif [6]. Yet, 
ChIP-seq studies of TF binding show that in any given 
condition, a TF typically binds only several thousands or 
tens of thousands of those sites [7]. Moreover, that same 
TF will bind some overlapping but some distinct sites 
when comparing different cell types or disease conditions 
[8]. There are many mechanisms that can drive differen-
tial binding of a TF, including: differential expression [9], 
chromatin accessibility [10], conformational changes or 
complexing with other regulatory factors [11], coopera-
tive or competitive binding [12, 13], and alternative splic-
ing [14].
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One of the lesser-studied mechanisms of differential 
binding is a change in the DNA preference of the TF 
itself. Indeed, one often assumes the reverse—that the 
DNA binding preference of a TF is the same regardless of 
the cell type or condition in which it is expressed. Binding 
motif databases such as JASPAR [15] and HOCOMOCO 
[16], and experimental methods such as HT-SELEX [17], 
are predicated on this assumption. Their success shows 
that, to a substantial extent, the assumption is good. Nev-
ertheless, there are several well-documented cases of 
DNA preference switching by TFs. For instance, estrogen 
receptor α binds distinct DNA patterns in different can-
cerous lines, such as breast cancer and endometrial can-
cer [18]. The strongest binding sites are bound across all 
cancer lines, but different lower affinity sites are bound 
depending on the binding co-factors available. Similarly, 
in human embryonic stem cells, SOX2 binds regions 
with distinct motifs depending on whether it is co-bind-
ing with PAX6, leading to hECS neural differentiation, 
or OCT4, leaning to self-renewal [19]. Wang et  al. per-
formed a systematic comparison of human TF binding 
preferences, including a study of other TF motifs present 
in the peaks of five TFs in five cell types [20]. Arvey et al. 
used machine learning to study cell-type specific deter-
minants of TF binding in different cell types, with the 
key finding that cell-type specific sequences were a key 
factor in predicting binding [21]. Keilwagen et  al. stud-
ied 31 transcription factors, identifying key features use-
ful in predicting cell-type specific binding [22]. Given the 
greater wealth of data available today, the time is right 
for a re-investigation of cell-type specificity in TF-DNA 
binding sites.

Motivated by the possibility that certain TFs might 
have cell-type specific DNA signatures at or in the vicin-
ity of their binding sites, we set out to perform a com-
prehensive and systematic search for the phenomenon. 
To perform this search, we developed SigTFB (Signatures 
of TF Binding), a deep learning framework to quantify 
the degree to which cell-type specific DNA signatures 
are present in a TF’s binding sites. One of the advan-
tages of SigTFB is that it can accommodate TF binding 
data from any number of cell types, without knowing 
which subset(s) of cell types, if any, may show different 
DNA binding signatures. Traditional differential motif 
enrichment analysis can identify known or de novo 
motifs that may vary between two datasets [23, 24], but 
it cannot identify subsets of datasets that vary relative 
to others. Moreover, its computational complexity and 
the necessary multiple comparison corrections scales 
quadratically with the number of datasets–problems 
that SigTFB avoids. Moreover, like other deep learning 
frameworks that have been highly successful for analyz-
ing TF binding [25–42], SigTFB is capable in principle of 

learning sophisticated DNA patterns that influence TF 
binding. This is a good choice when many different or 
even unknown molecular mechanisms could be gener-
ating binding signatures. However, our problem formu-
lation is unique compared to previous work, which has 
largely focused on separating binding sites from non-
binding sites—while sometimes optimizing other crite-
ria such as the spatial resolution of predictions [30–32], 
interpretability of results [35], or data efficiency [37]. In 
contrast, in our formulation, all instances are bona fide, 
empirical binding sites for a given TF, determined by 
replicate ChIP-seq experiments. Our task is to predict 
in which cell types those sites are bound. By comparing 
that prediction performance with performance when the 
target cell type is hidden, we can quantify the extent to 
which deep learning can identify cell-type specific DNA 
patterns. Our work also stands distinct from, and com-
plementary to, recent studies of how multiple TFs com-
bine to discriminate genuine/functional binding sites 
across the genome in a single cell type [43, 44]. Moreover, 
our question is distinct from the question of whether a 
TF has different roles or functions in different cell types. 
A TF may bind different sites in different cell types, and 
regulate different genes, and yet the DNA motif it binds 
in those sites can be identical. Conversely, differences in 
DNA binding motif in different cell types do not neces-
sarily imply that the functional role of that TF is notice-
ably different, particularly if there are key binding sites 
that remain the same between cell types. The question 
of DNA binding signatures is one that most directly per-
tains to the mechanisms that guide a TF to bind its target 
sites in different cell types.

Using our SigTFB method, we investigated the bind-
ing of 169 distinct human TFs assayed by one or more 
antibodies (AB) (for a total of 199 distinct TF-AB pairs) 
across multiple cell types (ranging from 2 up to 14 for 
any given TF; 35 distinct human cell types in total). We 
found that different TFs show varying degrees of cell-
type specific DNA binding signatures, with approxi-
mately two-thirds of TFs having significant cell-type 
specific signatures. Importantly, we found that the mere 
presence of differential binding is not the same as hav-
ing a DNA signature of differential binding. Many TFs 
bind very different sites in different cell types, yet show 
no specific, discriminating DNA signatures at those dif-
ferential sites. In such cases, TF binding differences may 
be due to mechanisms that do not leave strong local sig-
nals in the DNA, such as chromatic accessibility [10]. We 
also compared our results when analyzing data from the 
same TF assayed by different antibodies, and find that, 
with a few exceptions, there is generally good agreement 
on whether a TF displays cell-type specific DNA binding 
signatures. Finally, we show that across all TFs and cell 
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types, differences in DNA signatures commonly emerge 
as differences in the frequency of presence of the same 
motifs, but in several cases, as radical switches to the 
inclusion of different motifs.

The remainder of the paper is organized as follows. 
First, we introduce the supervised learning problem for-
mulation that we propose for quantifying the presence 
of cell-type specific DNA binding signatures. Next, we 
describe our deep learning-based SigTFB method for 
solving that problem. We then analyze two TFs in detail: 
ATF7, which shows substantial cell-type specificity in the 
DNA sequences of its peaks, and CTCF, which does not. 
We then provide a summary analysis of all TFs. Next, we 
perform some embedding and motif analyses to further 
investigate cell-type specific sequences in peaks and the 
deep learning representations of those sequences. Finally, 
we conclude with a discussion of our results, its strengths 
and limitations, and directions for future work.

Results
A supervised learning formulation for detecting cell‑type 
specific DNA‑binding signatures
In this section, we describe a novel supervised learning 
problem whose solution allows one to identify and quan-
tify cell-type specific DNA-binding signatures in a collec-
tion of known binding sites for a single TF across a set 
of cell types. The essential idea is to take DNA sequences 
from known binding sites, and employ supervised learn-
ing to predict whether a TF binds that sequence in a 
given cell type. In addition, the supervised learning is 
asked to make the same prediction, but when the target 
cell-type information is hidden. The difference in predic-
tive performance between the cell-type specific instances 
and the cell-type hidden (or general) instances quantifies 
the extent to which the learner is able to pick up cell-type 
specific DNA signatures that improve binding prediction.

For our study, we turned to the ENCODE project peak 
calls [7] to identify high-quality, known TF binding sites. 
Because different antibodies for a TF can have different 
specificities or biases, we chose not to mix data from 
different antibodies. We identified 169 TFs satisfying 
the following criteria: 1) The TF is assayed by the same 
antibody in at least two human cell types; 2) for each cell 
type, “experiment” level peaks are available. Such peaks 
are present in at least two replicate ChIP-seq experi-
ments and pass an irreproducible discovery rate test at a 
2% threshold; and 3) there are at least 1000 such peaks for 
each cell type. Some TFs satisfied these criteria for more 
than one antibody, so in total we identified 199 transcrip-
tion factor-antibody (TF-AB) combinations that we could 
use to study cell-type specificity in DNA binding. The 
full list of experiment accession numbers is available in 

Supplementary Table 1. We downloaded the called peaks 
for these accession numbers from the ENCODE website.

In our formulation, each TF-AB combination is stud-
ied separately. For each TF-AB, we begin by constructing 
a “unified” set of peaks across all the cell types in which 
that TF was assayed by that AB, using the approach 
developed by Basset et  al. [45] in their study of chro-
matin accessibility (Fig.  1a). Starting with the set of all 
peaks identified in all cell types (for that TF-AB pair), we 
repeatedly merge any two peaks that overlap by at least 
30bp, keeping track of which cell types contribute to each 
merged peak. At the end of this process, we have a set 
of unified peaks annotated with source cell types (at least 
one, and as many as all cell types). The unified peaks can 
be of varying sizes depending on the sizes of the origi-
nal peaks, their degree of overlap, and how many differ-
ent peaks are combined. To “normalize” them for ease 
of supervised learning, the center of each unified peak is 
taken and extended by 50bp in each direction, such that 
the length of the intervals is 101bp. (This window size 
has been common in other, similar studies, and our own 
pilot study showed degradation of performance below 
101bp, and no gain with bigger windows. See Discussion 
for more information.) Where there are C number of cell 
types, each unified peak is translated into 2C supervised 
learning instances. In C of those instances, the input is 
the DNA sequence of the unified peak center along with 
a one-hot encoding of one of the cell types, and the out-
put is one or zero depending on whether that cell type 
had a peak or not at that location. These are called the 
cell-type specific instances. The other C instances associ-
ated with the unified peak are identical, except that the 
part of the input vector encoding the cell type is zeroed 
out. We call these the cell-type general instances. As 
mentioned above, the intuition behind this formulation 
is that the difference in predictive performance between 
the cell-type specific instances and the cell-type general 
instances is a measure of the extent to which knowing the 
cell type informs ones interpretation of the input DNA 
sequence. In other words, it is a measure of the presence 
of cell-type specific binding site sequences, or DNA bind-
ing signatures, for this TF-AB pair, across this set of cell 
types.

SigTFB: a two‑stage deep learning model to study 
DNA‑signatures associated to TF binding
To solve the learning problem described in the previous 
section, we developed a deep learning architecture and 
two-stage training approach called SigTFB (Fig. 1b). The 
two-stage approach is modeled after that of Nair et  al. 
[46]. Stage 1 of training is meant to help initializing the 
first DNA sequence-interpreting layers of the network, 
and is described further in the Methods section. In stage 
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2, the network’s inputs and outputs are as described 
above. Our network includes a modified version of 
DeepBind [25] of one hidden layer convolutional layer 
followed by one fully connected layer (Fig.  1b). Unlike 
DeepBind, the number of channels in our model is set as 
a hyperparameter. We also investigated the use of more 
complex models, with more than one convolutional layer. 
However, one convolutional layer gave the best results in 
terms of validation accuracy and loss. The lower part of 
the network in Fig. 1b takes as input the length C binary 
vector encoding a specific cell type or a zero vector, pro-
cesses it through dense layers and then combines that 
with the DNA-processing side of the network through 
additional dense layers until reaching a binary output 
node.

We use negative log likelihood loss for training. The 
entire training procedure is performed in 10x cross-
validation, with held-out performance being recorded 
for each cell type, along with the macro-average across 
cell types. Within each fold, performance is also aver-
aged over 10 random initial weight sets and training 
trajectories. During both training and testing, instances 
are randomly chosen in mini-batches to have the same 
number of positive and negative instances from each cell 
type, and the same number of cell-type specific and cell-
type general instances, avoiding any problems with class 
imbalance. Finally, all of that is wrapped within Ax [47] 

for tuning the various network layer size hyperparame-
ters M, N, K, P1, P2 and Q shown in Fig. 1b. The AUROC 
is computed for each cell type and for cell-type specific 
and general instances separately. The macro-averaged 
AUROC is computed across cell types, and the difference 
in macro-averaged AUROC between cell-type specific 
and general instances is used as our measure of cell-type 
specificity.

In the next two sections, we provide a detailed analy-
sis of our results for two transcription factors. First, we 
examine a transcription factor with a high degree of cell-
type specificity in its DNA binding signature. Then, we 
present an example where SigTFB found little evidence of 
cell-type specificity in the DNA binding signature.

ATF7 binding shows cell‑type specific DNA binding 
signatures
To illustrate our approach, we first focus on Activating 
Transcription Factor 7 (ATF7). As a member of the ATF 
family, ATF7 binds to the cyclic AMP response element 
(CRE) with the consensus DNA sequence “TGA​CGT​
CA” [48, 49]. Members of the ATF family are basic leu-
cine zipper (bZIP) factors that complex with other bZIP 
factors to form homodimers or heterodimers [48–51]. 
These ATF TFs exhibit varying functionalities in different 
tissues and cancerous cell types, including tumour sup-
pressive and oncogenic functions [49]. For instance, the 

Fig. 1  Supervised learning formulation and deep learning architecture. a Empirical binding sites are unified across cell types. In “cell-type specific” 
instances, each site’s DNA sequence and one-hot encoded cell type is associated to a binary bound/unbound output. In matching “cell-type 
general” instances, the cell-type information is hidden, but DNA input and bound/unbound output remain the same. b Simplified diagram of deep 
learning architecture, and its division into Stage 1 and Stage 2 Models. Stage 1 is shown in the red outline, and Stage 2 is shown in the blue outline. 
In Stage 1, the input instance is a one-hot encoded DNA sequence of size 101× 4 . This is passed through the convolutional layer (Conv) with N 
filters of size M, through a maxpool layer (Maxpool) of length N, a fully connected layer (Dense) of length K, then the output layer of length C 
to predict if the TF is bound or not in the different cell types. Stage 2 takes cell-type information of length C as input as well, as depicted in panel (a). 
This is first passed through fully connected layers of lengths P1 and P2, and then concatenated with the output of the maxpool layer from Stage 1. 
The concatenated output is passed through a fully connected layer of length Q to predict whether the sequence is bound or not in that cell type
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deletion of ATF7 results in the spread of lymphoma [49]. 
Conversely, the activation of ATF7 in gastric or hepato-
cellular carcinoma promotes the proliferation of cancer 
cells. As such, ATF7 may be used as a biomarker for the 
early detection of tumours in liver and gastric cell types. 
Due to the differences observed, we suspect ATF7 to 
bind to different places along the genome in different cell 
types.

Our ENCODE [7] data compendium (see “A super-
vised learning formulation for detecting cell-type specific 
DNA-binding signatures”  section) includes ATF7 peaks 
in four cell types: GM12878, K562, HepG2 and MCF-7. 
The cancerous cell types HepG2, MCF-7 and K562 cor-
respond to liver hepatocellular carcinoma, breast cancer 
and myelogenous leukemia respectively. GM12878 is a 
non cancerous lymphoblastoid cell type. Figure 2a shows 
a Venn diagram of the peak overlaps between the four 
cell types. The number of peaks per cell type are shown 
after the cell-type name in brackets. A mere 1.36% of the 
total number of peaks across all four cell types overlap, 
and the majority of the peaks are unique to one of the 
four cell types. For example, 22.36% of the K562 peaks 
do not overlap with peaks from other cell types. There is 
greater peak overlap between the pairs HepG2 and MCF-
7, and GM12878 and K562.

The lack of overlap between peaks in the four cell types 
does not imply cell-type specificity in DNA binding pref-
erence, as sequences in those peaks may be very similar. 
Differences in output may be due to dissimilarities in 
terms of noise, bias or even the number of peaks of the 
ChIP-seq experiments. For instance, HepG2 has over 
40,000 peaks while MCF-7 has fewer than 30,000. There-
fore, no more than 75% of HepG2 peaks could possibly 
overlap with MCF-7 peaks.

To determine if there are cell-type specific DNA sig-
natures in the ATF7 peaks, we applied our deep learning 
method, SigTFB, as described in the previous section. 
Figure  2b shows the receiver operating characteristic 
(ROC) curves for each cell type with and without the 
cell-type identity being provided, as well as averaged 
performance across all cell types. The plot shows high 
variability in site prediction across across cell types. Pre-
dictions for HepG2 (solid red curve) are significantly bet-
ter than for MCF-7 and K562 (solid purple and green), 
which are better than for GM12878 (solid blue). In this 
case, predictions are more accurate when the network 
is informed of cell type than when it is not (e.g. solid 
curves versus dashed curves). This trend is also true for 
the macro-averaged ROC curve (gray color in Fig.  2b). 
Figure  2c shows the area under the ROC curve (AUC) 
per cell type per condition for the ATF7 TF, where the 
shaded and unshaded bars are cell-type general and cell-
type specific cases respectively. For each cell type, as well 

as the macro-averaged result, there is a clear difference 
between the two conditions. Cell-type specific classifica-
tion outperforms cell-type general classification with a 
macro-averaged AUC difference of 0.2 ( p ≪ 0.05 ; one-
sample t-test on AUC difference). Thus, we can conclude 
that the network has detected DNA signatures discrimi-
nating peaks in different cell types. Further below, we 
investigate what exactly those signatures might be.

CTCF binding does not show cell‑type specific DNA 
binding signatures
We next examine CCCTC-binding factor (CTCF), 
which can function as a transcriptional repressor, tran-
scriptional activator, or as an insulator barrier between 
genomic domains. The CTCF binding domain is defined 
by 11 zinc fingers, and binding preference is believed to 
be invariant across cell types [52–54]. Importantly, this 
does not mean that CTCF always binds the same sites 
in different cell types, nor does it mean that it has the 
same function in different cell types. Indeed, by binding 
different sites or by binding the same sites with differ-
ent binding partners, CTCF can have cell-type specific 
functions. For instance, CTCF has been shown to bind 
specific groups of regulatory elements in different brain 
cell types [55–57], where it specifically regulates mem-
ory-related genes, among others [58]. Conversely, these 
cell-type specific functions or binding sites do not imply 
any difference in direct CTCF-DNA binding preference 
or other signature. Therefore, we used SigTFB to test 
whether CTCF binding sites had any cell-type specific 
DNA signatures.

In our ENCODE data compendium, CTCF is assayed 
by five different antibodies. Here, we focus on the anti-
body that was used the most, giving us empirical binding 
sites for CTCF in 14 different cell types: smooth muscle 
cell, GM23338, bipolar neuron, neural progenitor cell, 
fibroblast of dermis, myotube, PC-3, astrocyte, HCT116, 
hepatocyte, osteoblast, OCI-LY7, MCF-7 and SK-N-SH. 
The percentage overlap of ChIP-seq peaks between each 
pair of cell types is shown in Fig. 2d, where each entry of 
the heatmap shows the percentage of peaks of the row’s 
cell type overlapping peaks in the column’s cell type. 
Additionally, the number of peaks per cell type are shown 
in brackets after the row cell type label. Overlap percent-
ages range from approximately 50% to 90%, with an aver-
age of 77%. Cell types with fewer peaks tend to be better 
covered by cell types with more peaks, suggesting an ele-
ment of peak detection power is at play. For instance, the 
astrocyte dataset has the fewest peaks at ≈37,000, which 
are more than 90% covered by the CTCF peaks in every 
other cell type – even distantly related cell types such as 
osteoblasts or fibroblasts (first row in Fig. 2d).



Page 6 of 16Awdeh et al. BMC Genomics          (2024) 25:957 

Fig. 2  Illustration of SigTFB on ATF7 and CTCF. a Venn diagram of percentage overlap between cell types for ATF7. b ROC curves per cell type 
per condition: cell-type general (dashed line) and cell-type specific (solid line) for ATF7. c AUC per cell type per condition: cell-type general (shaded) 
and cell-type specific (not shaded) for ATF7. Numbers at the tops of pairs of bars are the AUC difference between cell-type general and specific 
instances. d Heatmap of percentage overlap between 14 cell types in CTCF assayed by antibody ENCAB000AXX. e ROC curves per cell type 
per condition: cell-type general (dashed line) and cell-type specific (solid line) for CTCF. f AUC per cell type per condition: cell-type general (shaded) 
and cell-type specific (not shaded) for CTCF. Numbers at the tops of pairs of bars are the AUC difference between cell-type general and specific
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Figure  2d gives some intuition about the datasets. 
However, as seen for ATF7, a simple intersection analy-
sis is not sufficient to determine cell-type specificity. 
We further investigated the binding activity of CTCF by 
training SigTFB on CTCF and its 14 corresponding cell 
types. Figure  2e shows the ROC curves for each of the 
cell types and the macro-averaged ROC across all cell 
types. Compared to ATF7, there is relatively little differ-
ence in binding site predictability across cell types and 
nearly no difference in predictability for a given cell type, 
with or without cell-type identity information. Cell types 
OCI-LY7 (lavender line) and bipolar neuron (indigo line) 
have the worst prediction performance, and also have the 
highest number of peaks. Possibly, some fraction of these 
peaks are less reliable, which would explain both inflated 
peak numbers and prediction difficulty. Figure 2f shows 
there is little to no difference in the area under the ROC 

curves (AUC) between cell-type specific (solid line) and 
cell-type general (broken line) conditions for each cell 
type ( p > 0.5 ; one-sample t-test on percentage differ-
ences). Consequently, these results illustrate the ubiqui-
tous non-cell-type specific nature of CTCF DNA binding 
preferences. Importantly, they also demonstrate the spec-
ificity of SigTFB, in that it does not incorrectly report 
cell-type specificity where there is none to be found.

Comprehensive analysis of cell‑type specific 
DNA‑signatures in 169 transcription factors
Motivated by our results for ATF7 and CTCF, we 
expanded our study to investigate cell-type specific DNA 
binding signatures in all 169 TFs (199 TF-AB pairs). Fig-
ure 3a displays a scatter plot of the mean AUC of predic-
tion when the network is (y-axis) or is not (x-axis) told 
what cell type it is predicting for. Each point corresponds 

Fig. 3  Summary statistics from our comprehensive study on DNA signatures in TF binding using SigTFB. a Scatter plot of cel-type specific AUC 
versus cell-type general AUC with the color gradient depending on the -log10 p-values. b Bar chart of AUC differences. c Scatter plot of percentage 
overlap(%) and AUC differences, with the color gradient depending on number of cell types per TF-AB. d Scatter plot of AUC differences for TFs 
with more than two ABs. The letter “D” at the top of the panel indicates a TF with strong evidence of direct sequence-specific DNA binding, 
as opposed to possible indirect DNA binding through intermediaries
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to a TF-AB combination. The color gradient depends 
on the negative log 10 p-values for statistical signifi-
cance of difference between the cell-type specific and 
cell-type general predictions, across the 10 folds of cross 
validation. We observe a continuum of cell-type speci-
ficity, where TFs with the least cell-type specificity lie 
in the x = y diagonal of the scatter plot. For these TFs, 
the cell-type information does not improve prediction. 
The position of a point along the diagonal may depend 
on the extent to which there are common motifs for 
the TF across cell types, the extent to which the peaks 
themselves overlap across cell types, data set quality, or 
other factors. Conversely, points lying above the diagonal 
indicate that the network predicts binding better when 
informed of the cell type; these are TFs with the most sig-
nificant cell-type specificity, where the network responds 
differently to input DNA sequences depending on the cell 
type for which it is predicting. Points in the the upper left 
corner correspond to TFs where cross-cell-type predic-
tion is virtually impossible, but is highly accurate for spe-
cific cell types. For such TFs, each cell type is expected 
to have specific DNA motifs that discriminate its binding 
sites.

Figure 3b shows a histogram of the distribution of AUC 
differences between cell-type specific and general pre-
dictions for the different TF and AB combinations, with 
select TFs highlighted. Out of 199 TF-AB combinations, 
127 TF-ABs, or 116 distinct TFs, have a statistically sig-
nificant AUC difference of at least 0.1, suggesting that a 
majority of TFs have some degree of cell-type specific 
DNA signatures in their binding sites. TFs that play a 
pivotal role in cancer either as oncogenes or suppressors, 
such as MYC [59], BACH1 [60], ATF7 [49], and SOX6 
[61], show a relatively higher cell-type specificity than 
other TFs, such as CTCF [53] and HCFC1 [62], that are 
involved in chromatin regulation or other cellular pro-
cesses. Supplementary Table 1 lists the AUC differences 
for all TF-AB pairs.

As explained above, the lack of overlap between bind-
ing sites in different cell types is not evidence per se 
of any differential DNA signature. We next examined 
whether there is any association between the two. Fig-
ure  3c plots the mean pairwise percentage peak over-
lap versus the mean AUC difference for each TF-AB. 
No clear relationship between the two variables is seen 
(Spearman correlation r  = -0.1). With either a high 
percentage overlap between 75% and 80% or a lower 
percentage overlap between 65% and 70%, the AUC dif-
ference ranges between roughly zero and 0.4. This con-
firms that peak overlap is not in itself an indicator of 
cell-type specificity in DNA binding signatures.

We also considered the possibility that AUC differences 
might somehow be an artifact of the number of cell types 

in the analysis. For instance, if there were only two cell 
types, perhaps it is more likely that some one of the two 
would contain some spurious signal that allows peak dis-
crimination. Conversely, perhaps the more cell types are 
assayed, the more likely there is to be an “outlier” cell 
type with spurious DNA signals in the peaks. We found 
little evidence of such a phenomenon. The color gradient 
in Fig. 3c indicates the number of cell types tested. The 
correlation of AUC difference to number of cell types is a 
minor (r = -0.1).

Of the 169 distinct TFs we studied, 24 were assayed 
with multiple ABs. Lack of consistency across ABs due 
to different off-target biases or binding affinities may 
impact the TF’s DNA signatures. Moreover, different ABs 
may have been used on different sets of cell types. Nev-
ertheless, we may be reassured of the generality of our 
results if our measure of cell-type specificity is consist-
ent between different sets of experiments with different 
ABs for the same TF. Figure 3d shows a plot of the AUC 
differences for the 24 TFs assayed by least 2 ABs. For 
example, CTCF was assayed with six different ABs, all of 
which returned relatively low estimates of cell-type spec-
ificity (five of six being below 0.04). Conversely, several 
TFs show consistently high cell-type specificity across 
multiple ABs, including TCF12, SPI1, MNT, IKZF1 and 
DPF2. The least consistency is seen for the TF ETV6. 
Surprisingly, both datasets for ETV6 explore the same 
two cell types GM12878 and K562, yet produce very dif-
fering results for cell-type specificity: essentially 0 for one 
antibody and 0.37 for the other. This may be due to differ-
ences in the ABs used, or could be a result of differences 
in the total number of peaks per dataset for each TF-AB 
combination. Overall, however, there is strong consist-
ency in our measure of cell-type specificity of TF bind-
ing, even when assayed by different ABs.

We also marked TFs in Fig. 3d with a “D” above them 
when there was strong evidence from prior research that 
the TF directly binds DNA in a sequence specific man-
ner, as opposed to indirectly as part of a complex. We 
took as “strong evidence” the TF being annotated with 
the Gene Ontology molecular function “RNA polymerase 
II cis-regulatory region sequence-specific DNA binding”, 
and having a DNA binding motif in one or both of the 
JASPAR [15] and HOCOMOCO [16] databases. Despite 
the possibility that direct- versus indirect-DNA binders 
might have different propensities towards cell-type speci-
ficity, we see no obvious trend in that regard.

TFs with cell‑type specificity show differential enrichment 
for known TF‑DNA binding motifs
As mentioned above, SigTFB attempts to identify the 
presence of cell-type specific DNA signatures in a TF’s 
peaks, but doesn’t explicitly tell us what those signatures 
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are. In this section, we investigate further what those 
signatures might be, starting with ATF7. First, adopting 
a similar approach to AI-TAC [63], we used the t-SNE 
algorithm to represent each ChIP-seq peak per cell type 
by its activation values in two dimensions across the 
neurons of the final fully connected layer of the stage 2 
model. Figure  4a and  b show the ATF7 t-SNE plots for 
cell-type general and specific instances respectively. Each 
point/instance is colored depending on which cell type(s) 
it belongs to. The cell-type general instances (Fig.  4a) 
appear as a single cluster, although the peaks from some 
cell types do tend to be on one side or the other of the 
mass. The network’s internal representations of the cell-
type specific instances however, group perfectly by cell 
type (Fig.  4b). A similar analysis of the CTCF learned 
model (Fig. 4c, d) shows a single cluster for both general 
and specific instances. Although the cell-type specific 
instances show some increasing grouping by cell type, it 
apparently has little effect on predictive power, as we saw 
negligible AUC difference above. These results reinforce 
our contention that SigTFB is able to learn cell-type spe-
cific representations of DNA binding sequences, espe-
cially for ATF7 in comparison with CTCF.

Next, we explored the filters from the convolutional 
layer by converting the filters into PWMs and using 
Tomtom [64] to search for the PWMs in the JASPAR 
database [15]. In the ATF7 network, we found that most 
filters had a match or partial match to a small number 
of known TFs. For example, ≈40% of the filters matched 
bested to a JUND motif. ATF7 and JUND both have basic 
leucine zipper domains, with similar consensus bind-
ing sequences, and are known to physically interact [65]. 
Another set of filters matched the motif for SP2, which 
has a very different zinc finger binding domain that pre-
fers a gapped sequences of G’s or C’s.

To assess more systematically which TF motifs might 
be present in ATF7’s binding sites, we constructed 35 
base pair windows around the positions that in silico 
mutagenesis found to have the most influence on net-
work output, and then ran FIMO to identify significant 
motifs hits for a library of 400 high-confidence human 
TF-DNA binding motifs from JASPAR [66]. (The 35 
base pair window size is larger than any motifs in the 
library, and provides a more focused analysis less likely 
to include the many short TF motifs by random chance.) 

Figure 4e shows the fraction of ATF7 peaks in each cell 
type that included motif hits for the 33 motifs with most 
significant results. ATF7 peaks in HepG2 and MCF-7 cell 
types have very similar enrichment patterns, and include 
expected high enrichment of ATF family motifs, as well 
as other similar motifs. The peaks in K562 are surpris-
ingly low in such motifs, although the enrichment levels 
are statistically significant. Instead, the K562 peaks are 
enriched in KLF- and SP-family motifs. The GM12878 
peaks have some enrichment for all of these families, 
along with several other unique results such as ELF and 
ETV motifs. The presence of these different cell-type spe-
cific motif hits, along with the convolutional filter analy-
sis, suggests that the ATF7 model may be looking at motif 
frequencies and/or the presence of other TF’s motifs, to 
help discriminate ATF7 peaks in different cell types. A 
parallel analysis of CTCF’s peaks found nearly identical 
motif enrichment across all cell types (Fig.  4f ), further 
confirming the lack of cell-type specific DNA signatures.

We extended the motif analysis to all 199 TF-AB pairs. 
Space limitations prevent a comprehensive presentation 
of the results, but Fig. 5 contains a heatmap of motif pres-
ence frequency for a broad selection of TFs from major 
families [67, 68] and for the motifs with highest average 
scores. Many insights and hypotheses can be obtained 
from detailed examination of the matrix, but several 
major observations can be made immediately. A common 
trend of many TFs is that the canonical motif and similar 
motifs are enriched to different degrees in different cell 
types. For instance, cluster A shows that MAX and USF 
family factors’ binding sites are, unsurprisingly, enriched 
for MAX and USF motifs. Similarly for clusters B, C, D1, 
D2 and E, which can been seen closer up in Supplemen-
tary Figure  1. However, there are interesting exceptions 
to these trends. For instance, in the A cluster, totally dif-
ferent experiments with two separate antibodies agree 
that MNT peaks in MCF-7 are lacking many motifs that 
are seen more abundantly in MNT peaks in HepG2 and 
K562 cell types, as well as in the peaks of many other TFs 
in the same group.

Another interesting phenomenon is the presence of 
alternative motifs, including primary motif variants, spe-
cifically in some cell types. For instance, in cluster D2, the 
peaks for JUND in the five cell types at the right of Sup-
plementary Figure 1D2 (HepG2, K562, MCF-7, SK-N-SH, 

Fig. 4  Neural network interpretation and motif enrichment in peaks. a-d tSNE embedding of unit activations in final dense layer. Points represent 
individual peaks, colored by originating cell type(s). a ATF7 peak embedding when cell-type information is withheld. b ATF7 peak embedding 
when cell-type information is provided. c CTCF peak embedding when cell-type information is withheld. d CTCF peak embedding when cell-type 
information is provided. e-f Enrichment of top JASPAR motifs in ATF7 (e) and CTCF (f) peaks, as the fraction: number of motif-containing peaks using 
default FIMO parameters, divided by total number of peaks

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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liver) show some signifiant enrichment for MAFK motif 
variants (at top of plot), whereas peaks in GM12878 or 
HCT116, which are generally higher on enrichment for 

JUN and FOS motifs, have little or no enrichment for 
the MAF variants at the top of the plot. Similar results 
can be seen in cluster A, for example where USF2 peaks 

Fig. 5  Enrichment fractions of a broad range of JASPER motifs (rows) in peaks of TFs in 11 major families across numerous tissue types (columns). 
Close up views of regions of the heatmap A, B, C, D1, D2 and E can be found in Supplementary Figure 1
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in SK-N-SH are absent MYCN motifs, although MYCN 
appears commonly in USF2 peaks in other cell types. The 
USF2 peaks in SK-N-SH are also unusually low on the 
MAX motif variant MAX.MA0058.2 (concensus CAC​
ATG​) but high on MAX.MA0051 (concensus CAC​GTG​
)–quite possibly because CAC​GTG​ is also a concensus 
motif for USF2 itself, but suggesting that USF2 might 
also bind the CAC​ATG​ variant significantly (which is not 
among any of the USF2 concensus sequences in JASPAR).

Returning to Fig. 5g, one can see many other interest-
ing exceptions to family-wise binding. For instance, near 
the top middle we see that in three of five cell types, 
peaks for ATF3 are substantially enriched in MAX/USF 
family motifs, whereas the other two cell types are virtual 
without these motifs. Numerous other such examples are 
found throughout the matrix, and are suggestive of many 
potential hypotheses regarding co-expression of TFs or 
lack thereof, co-binding, competitive binding, etc.

Discussion
The complex structural and biochemical nature of 
protein-DNA interactions has made it difficult to fully 
understand how various factors influence transcrip-
tional regulation and differential binding. We conducted 
a wide-scale investigation of 169 TFs across various cell 
types to identify and quantify differential binding prefer-
ences of TFs. We found that different TFs display varying 
degrees of cell-type specificity in their binding prefer-
ences, with approximately two-thirds of those we tested 
having statistically significant DNA signatures of differ-
ential binding. We observed that TFs that play a pivotal 
role in cancer either as oncogenes or suppressors, such 
as MYC, BACH1, ATF7 and SOX6, show a relatively 
higher cell-type specificity than other TFs, such as CTCF 
and HCFC1, that are involved in chromatin regulation or 
other cellular processes. Our work constitutes a broad 
survey of the possibility and prevalence of such DNA sig-
natures. However, the signatures found by SigTFB could 
reflect many different factors that influence the prefer-
ences of a TF, such as its intrinsic binding preference, 
chromatin accessibility or co-operative or competitive 
binding of other factors. Further experimental validation 
is needed if we are to determine mechanisms underly-
ing these signatures. For instance, for a number of TFs 
we observed the increased presence of binding motifs for 
other TFs. This could be tested experimentally by first 
verifying that those other TFs are expressed in the cell 
types of interest, and then performing ChIP-seq experi-
ments on those TFs to confirm binding at the same sites. 
If co-operativity/complexing is suspected, reciprocal 
IP experiments could be performed to identify physical 
interactions between the different TFs, or knockdown 

of one TFs could be performed followed by ChIP-PCR 
or ChIP-seq to determine if binding of the other TF is 
affected. As another example, if the direct DNA bind-
ing preference of a TF is suspected to have changed in 
different cell types, in  vivo affinity assays using enhanc-
ers constructs could be performed to verify this change. 
Therefore, much more experimental work, and poten-
tially computational work, is needed to test our findings.

Other deep learning approaches, such as MTTFSite 
[69] and Phuycharoen et al. [70], have also explored dif-
ferential binding of TFs across cell types. While MTTF-
Site and Phuycharoen et  al. adopt a similar learning 
framework to SigTFB in stage 1 training, in terms of 
using a multi-task model, their problem formulation 
and objective fundamentally differ. In MTTFSite, for 
example, prior to training, shared non-unique cell-type 
instances are defined as bound regions across cell types 
that overlap by at least 100bp, while the remaining 
bound instances that do not overlap are cell-type spe-
cific. In SigTFB, however, the model is given all instances 
as input and learns to differentiate non-specific versus 
cell-type specific instances. The negative instances for a 
specific cell type in SigTFB are bound regions in other 
cell types, while in MTTFSite and Phuycharoen et  al. 
negative instances are unbound regions in all cell types. 
SigTFB essentially learns to differentiate between shared 
and unique motifs in cell types from only bound regions. 
Additionally, the scale of the study differs. MTTFSite and 
Phuycharoen et  al. investigate TFs in a total of five and 
three cell types respectively, while SigTFB explores the 
hundreds of TFs in ENCODE with at least more than 
two cell types available, or a total of 35 distinct cell types 
across all TFs.

Similar to Novakovsky et al. [71] and ChromDragoNN 
[46], SigTFB displays the effectiveness of transfer learn-
ing in a multi-task deep learning framework for the pre-
diction of binding profiles genome wide. Unlike these 
approaches, however, which mainly focus on cross cell-
type prediction, where models are trained on some cell 
types and tested on other cell types with limited data, 
we use transfer learning to acquire exclusive features per 
cell type. The multi-task setting in the first stage of learn-
ing allows the model to learn generalizable shared and 
unique features across cell types. In stage 2, the model is 
constrained to learn cell-type specific features, allowing 
the learning of a set of motifs that are associated to cell-
type specificity. In addition to the type of learning used, 
the data representation, the criteria chosen for model 
evaluation, and the hyperparameters selected are impor-
tant factors we account for during the learning phase to 
achieve a more accurate prediction of binding profiles at 
cell-type resolution.
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Most deep learning approaches, such as DeepBind [25], 
MTTFSite [69] and DanQ [27], were not used to inves-
tigate the differences in ABs for the same TF when ana-
lyzing ChIP-seq experiments. We hypothesized that ABs 
could greatly influence the quality of ChIP-seq experi-
ments. The polyclonal nature of ABs in ENCODE, for 
example, may result in ABs targeting the same protein to 
have different specificities, affinities and off-target bind-
ing. As a result, due to the lack of study on the consist-
ency of functionality and performance of ABs across TFs 
ENCODE wide, we separated experiments from different 
ABs for a particular TF, and investigated the consistency 
in binding preference across different ABs for the same 
TF. Overall, we found consistency across ABs for most 
TFs, although a few results were inconsistent. Lack of 
consistency may be due to factors such as the quality of 
the ChIP-seq datasets, the controls selected for peak call-
ing, or the cell types available.

Although we have uncovered substantial evidence for 
DNA signatures associated to cell-type specific bind-
ing, we acknowledge some limitations to our study. 
First, the fact that a TF does not show cell-type speci-
ficity in the cell types available from ENCODE does 
not imply that it will not show cell-type specificity in 
other cell types. The human genome contains almost 
1400 TFs [72], and despite the enormous effort of the 
ENCODE consortium, we found only 169 distinct TFs 
assayed in more than one cell type and meeting our 
other data set criteria. (This number has increased 
somewhat since we began our study, but remains far 
smaller than 1400.) It is thus impossible to detect cell-
type specific binding for the vast majority of TFs, and it 
is uncertain whether other TFs may show specificity in 
other cell types. This underlines the importance of con-
tinued empirical study of TF binding in a wide range 
of cell types. A second limitation is that, despite best 
efforts, deep learning can at times fail to solve a predic-
tion problem, even when a solution is possible in prin-
ciple. There may be TFs for which we failed to detect a 
cell-type specific signal, even when one is present. On 
the other hand, our careful checks against overfitting 
suggest that when a cell-type specific signal is present, 
it is likely genuine, especially when it is backed up by 
additional motif enrichment analyses. Thus, our results 
are best viewed as providing evidence for cell-type spe-
cific DNA signatures in many TFs, while providing evi-
dence against the same, without ruling it out, for other 
TFs. Thirdly, assumptions made regarding the network 
architecture, such as the 101 bp input sequence or 
fixed filter widths, may limit the learning capabilities 
of SigTFB. For instance, its inability to detect widely 
spaced motifs or motif pairs with fixed spacing, sug-
gests that some DNA signatures relevant for cell-type 

specificity may be possibly missing. Furthermore, in 
this work, we used ChIP-seq data due to its high avail-
ability and accessibility for multiple TFs and cell types. 
While ENCODE has many standards in place to ensure 
high data quality, other experimental approaches, such 
as ChIP-exo [73] or CUT&TAG [74], may provide less 
noisy, higher resolution and/or more precise estimates 
of TF-DNA binding, and thus may ultimately improve 
the search for DNA signatures. Finally, it is important 
to note that our confirmatory motif enrichment anal-
ysis is limited by the current state of knowledge. Like 
ENCODE, JASPAR includes data on a relatively small 
fraction of all human TFs. Not all motifs are in JAS-
PAR, and not having matches may result from a key TF 
not being in the database. While one could repeat the 
analysis with motif collections from other databases, 
such as HOCOMOCO [16] or TRANSFAC [75], a fun-
damental limitation remains that the majority of known 
or predicted TFs have not been assayed even once in 
any cell type. Motif analysis could be extended in other 
directions, however. For instance, although we opted 
for a deep learning approach to reduce a priori bias in 
looking for certain types of motifs, and to avoid a large 
number of individual or differential motif analyses, one 
could nevertheless carry out de novo motif finding on 
all of the datasets [76], and carry out differential motif 
finding [77], particularly between cell types or groups 
thereof that our SigTFB analysis suggests are substan-
tially different.

We have proposed a supervised learning problem for-
mulation that allows one to quantify the degree of cell-
type specificity in the DNA sequences of a TF’s binding 
sites. We solved that supervised learning problem with a 
deep learning approach, SigTFB. However, any number 
of other approaches could be explored, such as position 
weight matrices, logistic regression, decision trees or 
forests, support vector machines, or other deep learning 
formulations. Furthermore, whereas SigTFB’s approach 
makes relatively little a priori assumptions about what 
may constitute a discriminative DNA signature, one 
could test alternative representations of peak sequences, 
for instance using known motifs or k-mers. All the super-
vised learning data we used is available at https://​doi.​
org/​10.​20383/​103.​0605, so that anyone can try alternate 
approaches. In some scenarios, it may also make sense to 
alter the supervised learning formulation. For instance, 
we currently treat each different cell type as a monolithic, 
distinct entity. But in various senses, some cell types 
are more naturally similar to others. Perhaps some TFs 
behave one way in certain cancer types and a different 
way in healthy cells. Or perhaps a TF behaves one way in 
brain cells and a different way in the skin. In general, cell 
types might be represented by some metadata features, 

https://doi.org/10.20383/103.0605
https://doi.org/10.20383/103.0605
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and we could learn if any of those metadata features asso-
ciate with differential DNA signatures.

Conclusion
Many TFs are known to bind to different genomic sites 
in different cell types. Here, we demonstrated that for 
many of these TFs, different binding sites are associated 
with different DNA signatures. We developed a deep 
learning prediction framework, SigTFB, that is capable 
of detecting such DNA signatures, and used explanation 
techniques (tSNE representation embedding, in silico 
mutagenesis and motif enrichment analysis) to elucidate 
signatures from the trained networks. Our results have 
implications for ongoing efforts to predict TF binding 
in un-assayed cell types: the existence of cell-type spe-
cific signatures of binding implies some limitations to 
the success of such approaches that may not have been 
previously appreciated. Our findings also have implica-
tions for the representation of DNA binding preferences 
of TFs, suggesting that monolithic, cell-type independent 
representations, such as PWMs, may not be a satisfactory 
approximation in the long run for some TFs. Finally, our 
results set the stage for deeper investigation into mecha-
nisms of differential TF binding, suggesting certain TFs 
where investigation is more relevant and more likely to 
succeed.

Methods
SigTFB’s two‑stage training process
The training procedure we describe below proceeds 
in two stages, which use slightly different supervised 
learning formulations, which we call SL1 and SL2. To 
make clear the difference, we first introduce some nota-
tion. Let there be U unified peaks, C total cell types, 
and let Aij be a binary indicator of whether unified peak 
i ∈ {1, . . . ,U} includes a peak originally found in cell type 
j ∈ {1, . . . ,C} . Let Di be the length-404 one-hot encoded 
DNA sequence of unified peak i.

In SL1, each unified peak contributes one instance to 
the dataset. The input vector is Di , the one-hot encoded 
DNA sequence of the 101bp window centered on the 
peak, and the output vector is Ai· , the vector telling 
which cell types contributed to this peak. This multi-task 
formulation is used to pre-train part of the network, but 
is not ultimately the formulation that we want solved. 
We train using negative log likelihood loss function, and 
starting from random initial weights.

In SL2, as described above in “A supervised learning 
formulation for detecting cell-type specific DNA-binding 
signatures”  section, each unified peak contributes 2C 
instances to the dataset, or equivalently, there are two 

instances for each unified peak and each cell type. For 
unified peak i and cell type j, one of the instances has 
as input vector Di concatenated with a length-C binary 
vector having a 1 in position j. This instance has a sin-
gle binary output value (or label) which is equal to Aij . 
Intuitively, this instance can be interpreted like, “The 
DNA sequence Di in cell type j was ( Aij = 1 ) or wasn’t 
( Aij = 0 ) bound by the TF”. This is called a cell-type spe-
cific instance, because the target cell type we are query-
ing about is given. The second instance associated to each 
unified peak and each cell type is just like the first one, 
except that the length-C binary vector part of the input 
is set to all zeros. Such an instance, which we call cell-
type general, can be interpreted like, “The DNA sequence 
Di was ( Aij = 1 ) or wasn’t ( Aij = 0 ) bound, in a cell type 
who’s identity is being kept hidden”. We train on this data 
using the negative log likelihood loss function. The ini-
tial weights for the “upper” part of the network are taken 
from the SL1 training, but they are not frozen and so may 
change during stage 2 training. Other weights are initial-
ized randomly.

To allow us to optimize hyperparameters and avoid 
over-fitting the data, we use a nested cross-validation 
scheme which divides the data into training, validation, 
and test sets. The outer loop is a standard 10-fold cross 
validation, which generates a 90% train/10% test split for 
each fold. Within each training set, we further divide as 
80% train/20% validate, where the validation set is used 
for hyperparameter optimization. Along with network 
layer size parameters described above, we also optimize 
learning rate, weight decay, initial weight scales for con-
volutional and dense layers, and number of training 
epochs. We train using PyTorch 1.5.0 (GPU) with the 
Adam optimizer.

Motif analysis
To analyze the peak DNA sequences per cell type per 
TF-AB model, we use FIMO 5.0.3 to search for motifs 
in the subsequences using known JASPAR human 
motifs [15] that are based on at least 1000 sites and have 
log p-values of at least 100. This gives us a total of 400 
JASPAR motifs. For each cell type per TF-AB, and each 
motif, we find the ratio of the number of significant motif 
hits identified by FIMO to the number of total peaks for 
that cell type. By using this approach, we account for 
enrichment as well as the number of peaks per cell type 
per TF-AB. To construct the large enrichment heat-
map in Fig. 5, we find the top 20 motifs with the highest 
enrichment ratio per cell type, and take the union of the 
these motifs across the cell types.
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