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Due to the inadequacy of endogenous repair mechanisms diseases of the nervous
system remain a major challenge to scientists and clinicians. Stem cell based therapy
is an exciting and viable strategy that has been shown to ameliorate or even reverse
symptoms of CNS dysfunction in preclinical animal models. Of particular importance
has been the use of GABAergic interneuron progenitors as a therapeutic strategy.
Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors
retain their unique capacity to disperse, integrate and induce plasticity in adult host
circuitries following transplantation. Here we discuss the potential of interneuron based
transplantation strategies as it relates to CNS disease therapeutics. We also discuss
mechanisms underlying their therapeutic efficacy and some of the challenges that face
the field.
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INTRODUCTION

Since the turn of 20th century neural transplantation has been studied as a potential therapeutic
strategy for neural reconstruction and repair (Cajal, 1928). Initial attempts with engraftment of
neural tissue in lower vertebrates remained largely unsuccessful with most studies concluding that
the adult brain was inhospitable for graft survival (Willis, 1935). However, several early studies
showed promise with engraftment of developing tissue (Dunn, 1917; Tidd, 1932; Clark, 1940).
Notably, one study (Clark, 1940) demonstrated viability of embryonic neocortical grafts dissected
from 15 to 20 days old embryos transplanted in the young mammalian brain. Strikingly, the
engrafted cells differentiated and migrated such that the graft showed laminar features and cell
morphologies characteristic of the developing cerebral cortex. Later, transplanted neonatal and
embryonic cells were shown to develop normal synaptic afferent and efferent connections with host
brain and spinal neurons (Björklund et al., 1976; Lund and Hauschka, 1976; Jakeman and Reier,
1991). Moreover, differentiation and integration of transplanted cells within the adult striatum and
hippocampus was shown to be associated with improvements in motor coordination and spatial
learning (Low et al., 1982; Gage et al., 1983, 1984; Björklund and Stenevi, 1984). Later studies
revealed details of the anatomical and functional integration of the grafted tissue into host circuits:
neurons within intraspinal grafts that were effective in improving motor function were shown to
extend axons along white matter tracts rostrally and caudally (Nornes et al., 1983; Jakeman and
Reier, 1991; Li and Raisman, 1993), and form synaptic relays (Cummings et al., 2005; Lu et al.,
2012). Together, these studies revealed wide ranging potential for neural stem cell transplantation
in CNS disease therapeutics.
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FACTORS AFFECTING VIABILITY AND
FUNCTIONALITY OF A NEURONAL
TRANSPLANT

In several studies the ideal age of embryonic donor tissue has been
shown to depend on the developmental stage of the donor tissue,
the time window including neuronal proliferation and migration
being optimal (Banker and Cowan, 1977; Kromer et al., 1983).
This is consistent with the finding that isolated hippocampal
neurons that have recently completed DNA synthesis and are in
the process of migration showed long term survival in cultures
as opposed to post-mitotic cells dissociated from the ventricular
zone or the cortical plate (Banker and Cowan, 1977). Other
favorable attributes of young tissue may include their relative
insusceptibility to transplant procedure related trauma, as well
as their particularly low 02 consumption rate which may buoy
their viability in new environments during the initial days after
implantation (Shyh-Chang et al., 2013).

A major objective of transplant studies has been to determine
factors that allow the grafted cells to integrate functionally into
host circuits, as such integration is thought to be important for
sustainable therapeutic effects. In early studies it was noted that
some types of transplanted embryonic cells displayed minimal
dispersion, with functional effects often limited to graft site.
For example, while cells within embryonic nigral tissue grafted
into the striatum of 6-OHDA lesioned rats differentiate into
dopamine neurons, the neurons do not disperse, but rather
form a dopamine “island” near the site of transplantation within
the striatum. Considering these observations, major factors
contributing to a transplant’s long term functionality would be
the age of donor tissue, its ability to demonstrate widespread
dispersion and integration within host, as well as the use of
disease relevant cell types.

INTERNEURON PROGENITORS AS A
CANDIDATE FOR CELL BASED
THERAPY

While the early studies served as proof-of-principle for the
concept of cell based therapy, mechanisms by which transplanted
cells modify diseased brain circuitries have remained largely
unknown. With refined knowledge of neurodevelopment (Merkle
and Alvarez-Buylla, 2006; Muotri and Gage, 2006; Fuentealba
et al., 2015) studies carried out over the past two decades have
now begun to offer mechanistic insights and renewed evidence
for the therapeutic efficacy of cell transplantation in CNS diseases.
Of particular relevance has been the use of γ-amino butyric
acid (GABA)-ergic inhibitory neuron precursors (Wonders and
Anderson, 2006; Tricoire et al., 2011; Southwell et al., 2014)
(Figure 1). Constituting only about 20% of the adult cortical
neuronal population, inhibitory neurons are potent regulators
of normal brain function, sculpting the excitation-inhibition
balance and entraining activity of neuron ensembles in brain
circuits (Klausberger et al., 2003; Klausberger and Somogyi,
2008; Lewis et al., 2012). Maturation of GABA circuits has

been shown to set off and regulate critical period plasticity
in brain sensory systems, offering a putative neurobiological
handle with which to interrogate neurodevelopmental origins of
neurological disorders (Hensch, 2005). As such imbalances in
excitation-inhibition and dysfunction of inhibitory interneurons
are hypothesized to underlie several neurological disorders like
schizophrenia (SCZ; Harrison, 2015), autism spectrum disorders
(Peñagarikano et al., 2011), Alzheimer’s disease (AD; Andrews-
Zwilling et al., 2010), Parkinson’s disease (PD; Salin et al., 2009),
epilepsy (Möhler et al., 2004), and neuropathic pain (NP) (Moore
et al., 2002).

EPILEPSY

Impaired inhibition has been described as a key pathognomonic
feature in animal models of (Sloviter, 1987; Cossart et al., 2001)
and human patients with (de Lanerolle et al., 1989; Mathern
et al., 1995) epilepsy. For example, studies in temporal lobe
epilepsy, the most common type in adults, have revealed deficits
in hippocampal pyramidal neuron distal dendritic domain-
targeting interneurons, including interneuron subpopulations
expressing somatostatin (SST; Buckmaster and Jongen-Rêlo,
1999; Cossart et al., 2001; Kobayashi and Buckmaster, 2003),
neuropeptide Y (NPY; Mathern et al., 1995; Sundstrom
et al., 2001), and calbindin (CB; Wittner et al., 2002). In
addition, a decrease in the density of hippocampal basket
and chandelier parvalbumin (PV) immunoreactive cells has
been reported (DeFelipe, 1999; Arellano et al., 2004; Ogiwara
et al., 2007); however, perisomatic GABA innervation appears
to be intact (Wittner et al., 2001, 2005). Despite compensatory
sprouting of interneurons (Mathern et al., 1995; Arellano
et al., 2004) imbalances in input-output relationship of
pyramidal cells (Cossart et al., 2001) result in abnormal cortical
network activity (Ogiwara et al., 2007). Introducing functional
GABAergic neurons hence provides a means of replacing lost or
dysfunctional inhibitory cells and tempering increased electrical
activity seen in epilepsy.

Many of the early interneuron progenitor transplantation
studies were carried out in animal models of epilepsy. Alvarez-
Dolado et al. (2006) provided the first electrophysiological
evidence of functional integration of MGE derived neuronal
precursors grafted into the juvenile brain. In this study,
grafted MGE cells within the hippocampus migrated up to
∼5 mm from injection site at 2 months after transplantation,
acquired molecular markers of mature GABAergic interneurons
[by expressing GABA, PV, SST, calretinin (CR), and NPY]
and increased GABA mediated synaptic inhibition in regions
containing transplants. In a series of follow-up studies,
therapeutic efficacy of MGE progenitors was demonstrated by
the reduction of severity and frequency of seizures in genetic
(Baraban et al., 2009; Hammad et al., 2015) and acquired (Hunt
et al., 2013; Henderson et al., 2014; Jaiswal et al., 2015) rodent
models of epilepsy and hippocampal disinhibition (Calcagnotto
et al., 2010; Waldau et al., 2010). Notably, while MGE cell
transplantation in the hippocampus increased inhibitory post-
synaptic current (IPSC) frequencies in host pyramidal (Baraban
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FIGURE 1 | Interneuron development within the forebrain. Schematic showing coronal sections of the rodent anterior and posterior telencephalon. Shown are
the pallial and subpallial neurogeneic niches and their gene expression patterns. Following the discovery of tangentially migrating neurons in the developing cortex
(Walsh and Cepko, 1988, 1993) several cell lineage studies demonstrated that many of these neurons originated in the ventral telencephalic ganglionic eminences
and the POA and ultimately matured into GABAergic interneurons. For example, ablation of the embryonic ventral telecephalon or mutation of the homeodomain
transcription factor gene Dlx1/2 heavily expressed in this region results in a dramatic loss of neocortical GABAergic neuron populations (Anderson et al., 1997).
Ventral fate inducing sonic hedgehog(SHH) signaling has been shown to specify PV and SST expressing interneuron differentiation from ventral telencephalic
progenitors in culture and in vivo (Xu et al., 2010; Tyson et al., 2015). Several other homeobox genes such as Mash1 (Casarosa et al., 1999), Nkx2.1 (Sussel et al.,
1999), Lhx6 (Liodis et al., 2007), and FGFR (Gutin et al., 2006), as well as guidance cues such as the chemorepulsive semaphorin/neuropilin (Marín et al., 2001) and
chemoattractive neuregulin-1/ErbB4 (Flames et al., 2004) interactions have been shown to be critical for proper direction and selection of GABAergic cell identity,
subtype and migration. Genetic fate mapping of transplanted embryonic cells in cultures or in utero has revealed that MGE gives rise to PV- and SST-, while CGE
gives rise to CR-, VIP- and Reelin-expressing interneurons, with each cell group having a distinct spatio-temporal origin (Nery et al., 2002; Xu et al., 2004; Butt et al.,
2005; Miyoshi et al., 2010; Petros et al., 2015). In addition, the POA has been shown to be the origin of at least 10 percent of GABAergic interneurons comprising of
PV-, SST- and a small percentage of VIP-, NOS-, and CR-expressing interneurons (Gelman et al., 2011). Abbreviations: LGE, MGE, CGE (lateral, medial, caudal
ganglionic eminence); POA (preoptic area); CB (cabindin), CR (calretinin), PV (parvalbumin), SST (somatostatin), NPY (neuropeptide Y), RLN (reelin), NOS (nitrous
oxide) expressing interneurons.

et al., 2009) and granule cells (Henderson et al., 2014), it did not
significantly alter IPSC properties of host interneurons (Baraban
et al., 2009), whose inhibition is mediated by interneuron
subclasses generated from the caudally located CGE cells (Gulyás
et al., 1996; Wonders and Anderson, 2006; Caputi et al., 2009).
Remarkably, therapeutic efficacy was demonstrated as early as
2.5 weeks following transplantation suggesting possible roles for
non-synaptic mechanisms in disease amelioration (Figure 2; De
la Cruz et al., 2011). Translational significance of these findings
has been tested using transplantation of human pluripotent
stem cell derived MGE cells in a pilocarpine-induced temporal
lobe epilepsy mouse model (Cunningham et al., 2014; Hunt
and Baraban, 2015). While MGE transplants have been shown
to increase both synaptic and extrasynaptic inhibition onto
host pyramidal neurons (Baraban et al., 2009), activation of
extrasynaptic GABA receptors was reported as the basis of
MGE precursor transplantation induced amelioration of seizure
activity in the cortex (Jaiswal et al., 2015). Given the differential
involvement of heterogeneous interneuron populations in the

compensatory and epileptogenic mechanisms, including disease
initiation and exacerbation (Cohen et al., 2002; Panuccio et al.,
2009), GABA interneuron transplants may prove therapeutic
for some types or stages of epilepsy. Key to the success of
transplants will be to identify which types or stages of epilepsy can
benefit and determine the effective composition of the transplant.
This will be aided by rapidly developing technologies that allow
high throughput generation of developmentally and functionally
distinct interneuron subclasses (Doudna and Charpentier, 2014;
Colasante et al., 2015).

SCHIZOPHRENIA AND CORTICAL
PLASTICITY

Reductions in SST and PV expressing neurons or functional
markers thereof have been observed in the hippocampus and
prefrontal cortex in postmortem brains of patients with SCZ
(Hashimoto et al., 2003, 2008; Morris et al., 2008; Konradi et al.,
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FIGURE 2 | Toward a mechanistic understanding of transplant induced therapeutics. Transplanted GABAergic interneurons make synaptic connections and
enhance inhibitory tone within the host brain region (Alvarez-Dolado et al., 2006; Baraban et al., 2009). The importance of these new synaptic connections has been
demonstrated in the mature visual cortex where interneuron progenitor implantation but not pharmacological GABA augmentation induces cortical plasticity and
reopening of critical period (Fagiolini and Hensch, 2000; Hensch, 2005; Southwell et al., 2010; Davis et al., 2015). This has been attributed to the numerous,
individually weak inhibitory connections made by the transplanted neurons which may trigger local circuit reorganization (Southwell et al., 2010). However, given that
the behavioral effects of GABAergic interneuron transplants are not phenocopied by local pharmacological enhancement of GABA transmission, and sparseness of
transplanted neurons relative to the host population, it has been hypothesized that therapeutic effects of transplants may be mediated by mechanisms beyond that
of GABA replacement (Gilani et al., 2014; Southwell et al., 2014). Intriguingly, transplanted neural stem cells have been demonstrated to rescue dysfunctional host
dopamine neurons in MPTP-treated aged animals (Ourednik et al., 2002). Other proposed effects independent of synaptic connections with host neurons include
secretion of neuroprotective factors (Capone et al., 2007; Redmond et al., 2007; Liang et al., 2014; Goldberg et al., 2015). In addition transplanted neural cells have
been proposed to create homeostatic environments by releasing factors that repair and counter inflammation and scarring (Park et al., 2002; Lee et al., 2007). More
recently, interrogation of host circuit physiology following engraftment of undifferentiated and non-integrating cells revealed a dose-dependent dampening of cortical
excitability and depletion of host cell populations underscoring the importance of engraftment density in designing cell based therapeutic protocols (Weerakkody
et al., 2013). Considering the wide-ranging repertoire of transplant-induced effects, discovery of molecular mechanisms underlying these may uncover novel
treatment targets in the future.

2011). Indeed, disturbances in synchronous cortical oscillations,
generated by fast spiking PV neurons (Sohal et al., 2009) and that
are correlated with cognitive functions, are a physiological feature
of SCZ (Murray et al., 2011). Moreover, increased hippocampal
blood volume, a proxy for metabolic activity, a reliable feature of
SCZ and correlate of psychosis, can be produced by functional
deficits in GABAergic interneurons (Schobel et al., 2013; Gilani
et al., 2014).

Exploring the role of cortical interneurons in
schizophreniform cognitive deficits in mice, Tanaka et al.
(2011) demonstrated that transplantation of MGE cells in
the cortex can prevent phencyclidine induced behavioral
deficits, possibly via modulation of local cortical circuitry
(Southwell et al., 2010; Howard et al., 2014). Moreover, in a
genetic mouse model displaying a relatively selective deficit
in hippocampal PV interneurons (Glickstein et al., 2007),

transplantation of MGE cells into the hippocampus reversed
increased hippocampal activity (as measured with functional
magnetic resonance imaging), increased midbrain dopamine
neuron activity, increased response to psychostimulants and
impaired hippocampus dependent cognition (Gilani et al.,
2014). Given the central role of GABA in controlling the timing
of critical period plasticity (Hensch, 2005) MGE cells were
transplanted in the visual cortex to test whether transplantation
of inhibitory cells could induce a plasticity response (Tang
et al., 2014). Remarkably, MGE cell transplantation either
before (Southwell et al., 2010) or after (Davis et al., 2015)
the endogenous critical period induced ocular dominance
plasticity and reactivated a new critical period that reversed
visual impairments in amblyopic mice. Importantly both PV
and SST neuronal populations were shown to be sufficient to
drive ocular dominance plasticity but grafts depleted of both PV
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and SST populations were not (Tang et al., 2014). Intriguingly,
maturing GABA neurons formed numerous but individually
weak synaptic connections with host neurons suggesting a
potential reorganization of local cortical circuitry. Sufficiency of
both PV and SST interneuron populations to induce plasticity in
the visual cortex raises an interesting question as to whether the
same also holds true for other brain regions and the spinal cord,
as it may have implications for developing refined cell based
therapies.

ALZHEIMER’S DISEASE

GABAergic control of synaptic plasticity is a key aspect of
hippocampus dependent learning as it relates to encoding
and retrieval of memories (Paulsen and Moser, 1998). AD
patients have been shown to have decreased GABA and SST
immunoreactivity in the cerebral cortex (Davies et al., 1980;
Grouselle et al., 1998), and in late-onset familial and sporadic
AD, the risk gene apolipoprotein (apo) E4 polymorphism
exacerbates SST dysfunction (Grouselle et al., 1998). In addition,
misfolded proteins such as amyloid-β that are seen in early-
onset autosomal dominant AD cause inhibitory interneuron
impairments resulting in excitation-inhibition imbalances and
network hyperexcitability that is in turn associated with learning
and memory deficits (Palop et al., 2007; Andrews-Zwilling et al.,
2010; Verret et al., 2012). In particular, PV cell dysfunction
has been causally linked to disturbances in cortical network
oscillations and cognitive impairments in mice expressing human
amyloid precursor protein (Verret et al., 2012). Indeed, AD
patients are known to have increased incidence of epileptic events
(Amatniek et al., 2006).

In septo-hippocampal lesioned mice, intrahippocampal
transplantation of subventricular zone-expanded neural stem
cells (Hattiangady and Shetty, 2012) or human embryonic stem
cell induced MGE cells (Liu et al., 2013) were shown to reverse
learning and memory deficits. Importantly, control experiments
involving transplants of spinal progenitors failed to correct
these deficits, highlighting the requirement of specific neuronal
progenitors in a given target region to achieve functional
replacement (Liu et al., 2013). These findings were later extended
in two genetic mouse models of AD: apoE4 knock-in mice with
or without amyloid-β protein accumulation. Importantly, MGE
derived cells showed functional integration in the presence
of amyloid aggregation and restored cognitive function thus
demonstrating interneuron progenitors’ ability to integrate and
modify diseased circuits in toxic environments (Tong et al.,
2014). Given the strong evidence of impaired synaptic inhibition
(Busche et al., 2008) and network oscillatory activity (Amatniek
et al., 2006) in AD, GABA cell replacement strategies especially
those employing fast spiking PV neurons could be a promising
therapeutic avenue.

PARKINSON’S DISEASE

Grafts of dopaminergic cell suspensions into 6-hydroxydopamine
(6-OHDA) lesioned striatum are known to restore motor deficits

(Gage et al., 1983). However, a critical limitation of dopaminergic
cell grafts is the inability of transplanted cells to disperse in host
tissue, limiting the functional recovery to graft site. Intriguingly,
local striatal GABAergic interneuron population activity has
been shown to sculpt basal ganglia output (Tepper and Bolam,
2004) and abnormalities in inhibitory neurons underlie striatal
output imbalances in the dopamine depleted striatum (Mallet
et al., 2006). Striatal interneurons may also regulate basal ganglia
plasticity (Cazorla et al., 2014) by modulating striatal extrinsic
and intrinsic signals and thus may serve as a potential non-
dopamine locus to lower striatal activity characteristic of PD.

Neurons derived from transplants of MGE tissue in striatum
of the 6-OHDA lesioned mice migrate, functionally integrate and
improve motor deficits (Martínez-Cerdeño et al., 2010). Under
dopamine depleted conditions, striatopallidal neuronal activity
is increased while the opposite is true for striatonigral neurons
(Shen et al., 2008). Moreover, selective increase in feed-forward
inhibition from local PV interneurons onto striatopallidal
neurons enhances neural synchrony (Gittis et al., 2011) which
may lead to aberrant β-oscillatory activity characteristic of PD.
Overall, GABA tone is increased in the basal ganglia (Borgkvist
et al., 2015) leading to persistent suppression of action. Since
the transplanted cells show synaptic integration, one possible
mechanism of action underlying therapeutic efficacy of MGE cells
is the restoration of the balance between the direct and indirect
pathways. However, it is notable that a large proportion of
donor cells differentiate into oligodendrocytes, implicating non-
neuronal support functions provided by the grafts (Figure 2).
Intriguingly, MGE transplants made in the subthalamus fail to
migrate from the injection site and instead differentiate into glial
cells that show long term survival, highlighting the critical role
donor-host environmental interactions may play in governing
fate of transplanted progenitor cells.

NEUROPATHIC PAIN

In contrast to cortex, inhibitory interneurons form about 30–
40% of the total neuronal population in the dorsal horn of the
spinal cord. By regulating activity of primary afferents, excitatory
interneurons, spinal projection neurons and descending fiber
tracts, inhibitory interneurons play a crucial role in maintaining
a physiological level of pain sensitivity. Disinhibition within
the spinal dorsal horn has long been attributed to the
symptoms of NP, e.g., GABA neurotransmission is significantly
reduced following nerve injury (Moore et al., 2002; Drew
et al., 2004) and GABA agonists can ameliorate allodynia and
hyperalgesia (Munro et al., 2009). Impaired inhibition, however,
results in multiple cellular, molecular and synaptic changes
and therapeutic efficacy of currently available anticonvulsant-
and antidepressant-based pharmacological agents is at best
symptomatic and constrained by the drugs’ broad mechanisms
of actions. Given the ability of interneuron progenitors to
functionally integrate in neural tissue and modify inhibitory
signaling, interneuron transplantation could serve as a potential
disease modifying strategy in NP that is without the adverse side
effects associated with systemic medications.
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Surprisingly, transplanted MGE cells into adult spinal cord
differentiate into GABA interneuron populations that integrate
with the host spinal cord circuitry (Bráz et al., 2012). Contrary
to subthalamic MGE grafts that differentiate into glial cells
(Martínez-Cerdeño et al., 2010), MGE derived cells in the spinal
cord retain their cortical neurochemical profiles suggesting that
the latter does not affect MGE differentiation. More importantly,
MGE transplantation reversed mechanical hypersensitivity in a
mouse model of peripheral nerve injury (Bráz et al., 2012) and
mechanical and heat hyperalgesia in a chemotherapy-induced
model of NP (Bráz et al., 2015). Notably, transplantation of cells
lacking vesicular GABA transporter failed to rescue paclitaxel-
induced pain behavior highlighting the critical role of GABA-
mediated modulation of spinal circuits in transplant efficacy
in this pain model (Bráz et al., 2015). Given the problems
with tolerance and the sedative and addictive properties of
traditional pharmacotherapies, interneuron based therapy may
be a promising alternative disease modifying therapeutic option.

CHALLENGES AND PITFALLS IN USING
MGE PROGENITOR CELL BASED
THERAPY

While pre-clinical studies have demonstrated promise for
interneuron based therapy, cell based approaches have
inherent limitations, including but not limited to unpredictable
proliferation, differentiation, and migration, leading to
pathological ectopia, including tumors. Addressing these
limitations will require greater understanding of the mechanisms
governing the development and function of the transplants in
different brain regions and at different points in the lifespan of
the host (Figure 2). Combined with these challenges, incomplete
knowledge of the pathophysiology of vast majority of CNS
diseases hinders progress to clinical translation. While excitement
surrounds generation of GABAergic interneurons from human
pluripotent stem cells (Maroof et al., 2013; Wall et al., 2013),
current techniques have yet to achieve sufficient efficiency and
specificity. Technological innovations are leading to introduction

of genetic material into transplanted cells to increase specificity,
improvement in production methods allowing more rapid
amplification, differentiation of stem cells, and use of cell sorting
techniques to select cells on the basis of what will comprise a safe
transplant designed specifically to improve function in a given
brain region. Identifying host characteristics that can aid survival
and guide maturation of the grafted cells in vivo will also address
these challenges.

CONCLUSION

The remarkable capacities of interneuron progenitors to migrate
long distances, differentiate into mature interneurons and
modify diseased circuits following transplantation have made
interneuron based transplantation a viable potential therapeutic
approach for CNS diseases. However, further studies in the
primate, a refined knowledge of interneuron ontogenesis
and development of methods for reliable, high-throughput
production of specific GABAergic cell types and safe cell
composition of transplants need to be pursued before this
approach is realized in the clinical setting. There is reason to
be optimistic, given rich and growing literature on interneuron
development and rapid growth of technologies that will allow the
production of safe and specific transplants.
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