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Background
The human leukocyte antigen (HLA) complex, located on chromosome 6p21, is a hot-
spot for immune-system related genes [1]. The HLA loci contain, among others, the 
loci that encode for the classical HLA class I proteins, HLA-A, HLA-B and HLA-C and 
the classical HLA class II proteins, HLA-DR, HLA-DP and HLA-DQ [2]. HLA-I pro-
teins present mainly peptides derived from the proteasome-digested proteins to CD8+ 
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T-cells while HLA-II proteins present lysosome-digested proteins to CD4+ T-cells. From 
a genetic perspective, both HLA class I and class II are highly polymorphic with the 
majority of the allelic variation being located within the region encoding for the peptide-
binding protein domain [3]. Different HLA alleles have been associated not only with a 
wide spectrum of autoimmune and inflammatory diseases, for example, inflammatory 
bowel disease [4, 5], multiple sclerosis [6] and systemic lupus erythematosus (SLE) [7], 
but have also been implicated in pharmacogenomics and precision medicine. It has been 
recently shown by Sazonovs et  al. [8] that carriers of HLA-DQA1*05 alleles are more 
likely to develop anti-drug antibodies towards Infliximab and Adalimumab.

Hence, characterizing and identifying peptides presented by HLA proteins is of 
paramount importance. For example, it can be utilized in rational vaccine design and 
development [9], neoantigen identification and tumor immunotherapy [10, 11], and to 
provide a mechanistic understanding of HLA-disease association [2, 12]. To this end, 
different in silico tools and experimental methods have been developed for character-
izing and identifying peptides presented by HLA proteins. However, within the last 
decade, mass-spectrometry (MS)-based methods have become the default method for 
characterizing the peptides presented by HLA proteins in vivo, referred to as the immu-
nopeptidome [13–15].

The workflow of an immunopeptidomics pipeline starts with the immunoprecipita-
tion of the HLA-peptide complex using HLA-specific antibodies, for example, L243 for 
HLA-DR [16–18] and W632 for HLA-I [18, 19]. Next, the bound peptides are disassoci-
ated from their pulled HLA proteins by acid denaturation, followed by the purification 
of the peptides using chromatographic techniques. Finally, the purified peptides are ana-
lyzed using a wide variety of liquid chromatography tandem mass spectrometry (LC–
MS/MS) protocols and techniques [18].

Computationally, the first step in the analysis is the processing of the generated spec-
tra followed by the derivation of peptide sequences, using preexisting proteomics tools, 
for example, MaxQuant [20], Mascot [21], x!!Tandem [22], and OMSSA [23]. However, 
given the differences between standard proteomics and immunopeptidomics, e.g., the 
lack of trypsin digestion in the latter, a wide range of immunopeptidome-tailored iden-
tification pipelines and tools have been developed. For example, MHCQuant [24] and 
NeoFlow [25] which are tailored for neo-epitopes discovery, and NewAnce [26], which 
is tailored for handling non-canonical tumor immunopeptidomes. Nevertheless, to the 
best of our knowledge, there are no specific tools for the downstream analysis of immu-
nopeptidomes identification pipelines.

Hence, to facilitate the analysis of the fast-growing number of immunopeptidomics 
datasets, we here present the immunopeptidomics tool kit library, IPTK. The library is 
implemented in Python and utilizes its rich collection of data-science tools and libraries 
to provide a large number of modular units that can be used for analyzing, comparing, 
and visualizing the results of identification pipelines. It can also be used for integrating 
different omics layers, for example, the transcriptome, with the list of identified peptides 
to deliver a richer biological meaning of the results. The modular units of the library can 
be combined variably to fit the unique requirement of each experiment, or they can act 
as building blocks for developing other analysis tools and pipelines. The library is exten-
sively documented with online tutorials that cover different use cases.
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Implementation of IPTK
IPTK design and structural components

The immunopeptidomics toolkit, IPTK, library is a python-based library that provides a 
framework for analyzing immunopeptidomics data and integrating different omics lay-
ers, for example, transcriptomics, sub-cellular compartment, and 3D structure data with 
the list of identified peptides for a rich downstream analysis of the results. IPTK depends 
on Matplotlib [27] and Plotly [28] for visualization, NumPy [29] for computation, Pan-
das [30] for handling and storing data and Biopython [31] for loading and parsing biolog-
ical data. Structurally, IPTK is composed of five main modules as shown in Fig. 1A, the 
Input–Output (IO) module, the Classes module, the Analysis module, the Visualization 
module and the Utilis module.

The IO module provides functions to parse and read a wide variety of data for-
mats used by the proteomics community for peptide identification, for example, pep-
XML, mzIdentML and idXML through the utilization of the Pytomics library [32]. 
The Classes module is the core engine of the library. It encapsulates and provides 
high-level abstractions for processing, integrating, and analyzing the data. It can be 
subdivided into different submodules that abstract different parts of the immun-
opeptidomics experiments. The Experiment class provides an abstraction for differ-
ent mass-spectrometry runs, same experiment but different database search engines, 

Fig. 1  An overview of the IPTK library structure and design. A A high-level view of its different modules and 
how they interact with each other. B An overview of the Classes module and its hierarchy. ExperimentSet 
represents the highest level of abstraction in the module, each ExperimentSet is a collection of experiments, 
donated by Exp.1 to Exp. n, each of which composites mainly of; Proband, HLASet, Tissue and Peptides. C The 
API of the Tissue class where EP is the expression profile, CL is cellular location and Aux. is the auxiliary gene 
expression and protein localization, respectively. D The IPTK abstraction of the mapping between peptides 
and proteins as acyclic unidirectional graph
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for example, Comet [33] or MS-GF + [34], or completely different experiments. It 
also acts as the anchor point for linking different components of an experiment, for 
example, it links HLA types with gene expression, peptide identification, cellular 
component, and sample metadata. The ExperimentSet, provides an abstraction for a 
collection of experiments and provides different analysis tools: i.e. methods to com-
pare chosen entities, e.g. comparing protein coverages among different experiments, 
methods to combine chosen entities, e.g. combine peptides and proteins of different 
experiments; methods to filter chosen entities: e.g. extract only peptides and proteins 
identified in all experiments, and methods to group chosen entities, e.g. group experi-
ments obtained from the same tissue or the same sample together (Fig. 1B). Similarly, 
the classes MzMLExperiment, and MzMLExperimentSet can be used to abstract the 
parsing and analysis of the raw MzML files by acting as a wrapper for the PyOpenMS 
library [35]. Thus, enabling the integration of spectral information with the identified 
peptides and other omics layers.

The Tissue class provides abstraction for the source of the tissue or cell-culture. It 
abstracts a tissue into three major components, the first is the name of the tissue, the 
second is the Expression Profile, EP, which summarizes information about the gene 
expression in the provided tissue and the third is the Cellular Location, CL, which 
summarizes information about the subcellular compartment of the tissues’ proteins. 
Both EP and CL distinguish between core proteins which are the major components 
of the tissue and auxiliary proteins which might be added to the tissue as media pro-
teins or non-host related proteins (Fig. 1C). The classes Peptide and Protein provide 
abstraction for the identified peptides and inferred proteins, respectively, along with 
a mapping between them (Fig. 1D). Finally, the Classes module additionally contains 
other classes that are used throughout the library, for example, the Database stores 
and defines different data containers while the Features class provides an easy-to-use 
and easy-to-program interface for extracting and manipulating all known informa-
tion about the proteins in UniProt [36]. Finally, the GOEngine acts as a wrapper for 
GOATOOLS [37] enabling gene ontology enrichment analysis (GOEA) to be seam-
lessly conducted on the identified proteins.

The Analysis module contains all the functions used by the Classes and Visualization 
modules, while the Utility module contains utility and helper functions used through-
out the library. Finally, the Visualization module contains functions that can be used for 
visualizing the results generated by the library. The visualization functions are imple-
mented using Matplotlib [27], Seaborn [38] and Plotly [28] to address different use cases. 
For example, Plotly-based functions can be seamlessly integrated with Dash framework 
to build powerful interactive dashboards. While, Seaborn and Matplotlib can be easily 
integrated with Juypter Notebook [39]. Thus, the library can easily blend with the two 
most widely used data analysis and visualization frameworks in Python.

IPTK also, introduces some novel methods to visualize the results computed by 
the analysis functions. For example, paired coverage representation which compare 
the coverage of the same protein in two different conditions or its generalization the 
n-coverage representation, which visualizes the coverage among arbitrary number of 
conditions. A second example is the coverage-and-annotation plot which combines 
protein coverage with pre-existing knowledge available on UniProt [36].
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Finally, to link peptide presentation with the protein 3D structure, the library uses 
imposed representation where a cartoon representation of the protein is used to cap-
ture the 3D structure and the coverage array (Immunopeptidomic-coverage as a distance 
metric) is used to construct a color gradient to color each amino acid in the protein 
according to its coverage. The imposed representation depends on NGLViewer [40] and 
Jupyter Notebook [39] to provide an interactive analysis of the generated representation 
on web-browsers.

Immunopeptidomic‑coverage as a distance metric

Immunopeptidomic-coverage is a concept similar to the depth used with DNA and RNA 
sequencing. IPTK defines the coverage as the number of unique immunopeptides that 
cover a specific position, i.e., a single amino acid position, in the parent protein. Inter-
nally, IPTK represents the coverage of each parent protein as an array that has the same 
length as the parent protein with each element of the array representing the coverage at 
the corresponding position in the parent protein. Hence, the difference in coverage for 
the same protein among different conditions can be computed as the sum of the absolute 
difference between the corresponding coverage arrays in these conditions. Thus, pro-
teins with similar coverage will have lower scores while proteins with dissimilar coverage 
will have a large score. Finally, the library generalizes this concept to compute the dis-
tance among experiments, by averaging the scores over all proteins.

Integrating immunopeptidomics and transcriptomic data

As stated above, the Tissue class is used as an abstraction for the source tissue, i.e., the 
tissue from which peptides have been eluted. A core component of the tissue class is the 
gene expression profile of the abstracted tissue which is a table that contains the expres-
sion value for each gene in the specified tissue. IPTK allows users to provide their own 
gene expression table, otherwise it uses a default table obtained from the Human Protein 
Atlas [41].

Once the transcriptomics layer has been linked with the immunopeptidomics layer, 
a wide range of functions can be used to extract biological insights about the mapping 
between the two layers. For example, comparing the gene expression of the proteins that 
were inferred from the immunopeptidome and the non-presented proteins which can 
provide more insights about the impact of gene expression on the composition of the 
immunopeptidome in the tissue and condition under-investigation. Alternatively, this 
information can be exported and used to construct predictive HLA-peptide binding 
models that combine both layers to extrapolate this knowledge to new HLA alleles, or 
un-studied tissues [42].

Integrating immunopeptidomics and sub‑cellular compartment data

On the contrary to proteomics, where all the proteins in a sample are digested and ana-
lyzed, immunopeptidomics solely focuses on the set of pre-selected and pre-digested 
peptides by the HLA processing machinery. Hence, factors governing the selection of 
these proteins are of paramount importance to understand the immunopeptidome for-
mation. One of these factors might be the sub-cellular compartment which can con-
trol the accessibility of the HLA-processing machinery to the protein. This is especially 
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prominent for the case of HLA-II where availability at the lysosomal compartment is 
a prerequisite. Hence, IPTK provides support to link the protein sub-cellular compart-
ment with the immunopeptidome and other omics layers. This is achieved through the 
abstraction provided by the Tissue class, which operates in the same manner as the tran-
scriptome layer, defined above. Once this layer has been linked, the number of peptides 
and inferred proteins observed from each compartment can be calculated and compared 
among different experiments. Data on sub-cellular compartments are either derived 
from the Human Protein Atlas [41] or can be provided by the user. Thus, the Tissue class 
provides methods for obtaining the subcellular compartment of each protein, while the 
class GOEngine (IPTK design and structural components), provides methods to agglom-
erate cellular component information and provides an overview about the enrichment of 
each component in the immunopeptidome.

Integrating immunopeptidomics and protein structure

As discussed above, usually proteolytic digestion is an essential step in bottom-up pro-
teomics. This step is omitted in immunopeptidomics. Indeed, the factors governing the 
cleavage of proteins are of paramount importance for understanding antigen processing 
and presentation. Different factors might contribute to processing and presentation, for 
example, the cell type and the processing machinery as explained above but also protein 
specific factors, for example, the 3D structure of the protein and its post-translational 
modification (PTM).

To enable the integration of the 3D structure with the immunopeptidome, IPTK has 
a built-in support to download and extract 3D structure information available on Pro-
tein Data Bank (PDB) [43]. This is achieved by first querying the mapping services of 
UniProt to map UniProt IDs to the PDB IDs. In case of multiple mapping, i.e., more 
than one PDB ID per UniProt ID, the first PDB ID is selected. Alternatively, the user 
can choose which ID to use or to skip the mapping step and provide the PDB identifier 
directly. Once the IDs have been obtained, Biopython is used to download and parse the 
3D structure data. Finally, IPTK toolbox is used to analyze the results and integrate it 
with other omics layers defined above.

Integrating immunopeptidomics and taxonomic data

As stated above, immunopeptidomics provides a powerful technology to capture the 
presented peptidome in vivo, which makes it an ideal technology to study host–patho-
gen interactions. This implies that in some experimental settings, annotating the immu-
nopeptidome with an organism’s taxonomic information might provide insights about 
the pathogen or, generally, the non-host components of the immunopeptidome. To this 
end, IPTK provides a built-in support to annotate each inferred protein with its origin. 
This can be done using the OrganismDB class, which acts as a map to link each UniProt 
ID with an organism of origin. The constructor of the class can either be fed with a table 
containing the mapping or with the path to a FASTA file containing the sequences in a 
UniProt FASTA format, it then parses the file and construct a mapping table that can 
be used to annotate the inferred proteins. Once the proteins have been annotated, the 
library has a large collection of functions that can be used to subset, group, remove and 
count peptides and inferred proteins based on taxonomic information.
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Results
IPTK workflow

Figure  2 shows a typical analysis workflow using IPTK starting by parsing a list of 
peptide hits identified using the database search engine along with the sequences 
database. Followed by the construction of an Experiment and/or ExperimentSet 
object through the integration of the peptide hits with the tissue’s gene expression 
and/or cellular location, HLA alleles, meta information, et cetera. Once these objects 

Fig. 2  A typical workflow using the IPTK library. A The execution starts by providing a file containing the 
list of peptide identification hits, for example, in a pepXML or an idXML format, along with the sequences 
database used during the database search, these inputs are then processed and parsed by the IO module to 
generate a uniform internal representation of the input referred to as the identification table. B The generated 
identification table is combined with other information about the samples, for example, meta-information 
about the donors where the tissue(s) has/have been eluted to construct the Experiment object, and different 
Experiment objects can be combined to generate an ExperimentSet object. C The abstract objects constructed 
in (B) are then analyzed either using the built-in methods or through the functions defined in the analysis 
modules, each experiment can be analyzed individually, or they can be combined and compared through 
the ExperimentSet API as discussed above. D The results of the analysis executed on (C) can be exported 
graphically using either Plotly or Matplotlib libraries or can be written to a file using the IO module for further 
downstream analysis and integration
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have been constructed, all the analysis and visualization functions defined above can 
be applied.

Use case 1: analyzing HLA‑ligand atlas database

As a first case study, we started by analyzing data from the HLA-ligand atlas [44] data-
base using the library. Given that different tissues have different processing capabilities, 
for example, by expressing different sets of digestive enzymes, we started first by look-
ing at the sequences located upstream and downstream of the identified peptides in 
their inferred parent proteins. After the n-mers were extracted from the proteins, IPTKs 
interface to MEME software [45] was deployed to compute the motifs of the adjoined 
regions shown in Additional file 1: Fig. S1 and Fig. S2.

The observed difference in the motifs among tissues can be a consequence of different 
proteins being expressed or available, for example, present in the extra-cellular matrix, 
of different tissues. A second contributing factor might be the differential expression of 
digestive and processing enzymes. Interestingly, comparing the motif of the same tissue 
among different individuals (Additional file 1: Fig. S2) revealed considerable differences. 
This might be the result of HLA-variability, where different alleles bind to different sub-
sets of the available peptide pool and hence different proteins or different parts of the 
protein are presented, leading to differences in the computed motif among individuals.

Previously, Chen et al. [42] have identified gene expression as a major contributing fac-
tor in shaping HLA-II immunopeptidome. To this end, we used IPTK to integrate the 
immunopeptidomes of different tissues available on the HLA-ligand atlas [44] with the 
transcriptome of these tissues using the Human protein Atlas [41] to analyze the impact 
of gene expression on shaping HLA-II peptidomes. As shown in Additional file 1: Fig. S3, 
there was a significant difference in the gene expression of the presented proteins and 
the non-presented proteins, confirming the previous finding of Chen and colleagues.

Next, we used IPTK library to compare the HLA-II immunopeptidomes among dif-
ferent tissues. Five different methods implemented in the library were used: (1) pairwise 
peptide-overlap (Additional file  1: Fig. S4), (2) peptide-level Jaccard index (Additional 
file 1: Fig. S5), (3) pairwise protein-overlap (Additional file 1: Fig. S6), (4) protein-level 
Jaccard index (Additional file 1: Fig. S7), and (5) pairwise immunopeptidomics coverage 
(Immunopeptidomics-coverage as a distance metric) (Additional file  1: Fig. S8). In the 
pairwise peptide overlap the number of peptides with exact match between each pair of 
tissues is used as a similarity metric, while in the pairwise protein-overlap, protein level 
overlap is used as the similarity metric. As the pair-wise based methods might be biased 
by the number of peptides or proteins identified in each experiment, IPTK supports 
Jaccard-based normalization to account for differences in the size of the immunopepti-
dome of different tissues. In IPTK, Jaccard-index is computed as the number of peptides 
or proteins identified in a pair of experiments, i.e. detected in both experiments, divided 
by the total number of unique peptides or proteins identified in the two experiments. As 
discussed above and shown here, these differences among tissues reflect the complexity 
of HLA-II processing machinery, which is sensitive to a wide range of factors, for exam-
ple, protein expression level, protein trafficking to the endo-lysosomal compartment, the 
differential expression of processing enzymes and HLA-allelic variability.



Page 9 of 18ElAbd et al. BMC Bioinformatics          (2021) 22:405 	

Given the considerable differences in the peptidome of different tissues we were inter-
ested in quantifying the presentation of the same protein among different tissues. To 
this end, we used the n-coverage representation function (IPTK design and structural 
components) to plot the coverage array of the extra cellular protein Vitamin D-binding 
protein across 12 different tissues (Fig. 3). As shown in the figure, the presented part of 
the protein is ubiquitously presented among all tissues while other regions show a more 
tissue specific pattern. On one hand, this might be a reflection of the underlining pro-
cessing machinery where some digestion enzymes are ubiquitously expressed while oth-
ers show a more restrictive and tissue specific expression. On the other hand, this might 
reflect the homology and redundancy, where in some tissues a homologues protein is 
presented and due to homology or a shared protein-family with the protein under inves-
tigation, different parts of the protein is assumed to be presented.

Use case 2: characterizing the impact of initial cell count on the identified 

immunopeptidome

As a second case study, we used IPTK to study the impact of the initial cell count on the 
HLA-DR immunopeptidome. To this end, we captured the HLA-DR immunopeptidome 
of total peripheral blood mononuclear cells (PBMCs) starting from two initial cell counts, 
5 × 107 and 1 × 108 cells (Data Generation). First, we started by analyzing, the number of 
peptides identified for each run (Fig. 4A). Second, we looked at the overlap among the 
four samples using pairwise peptide-overlap (Fig. 4B), pairwise protein-overlap (Fig. 4C) 

Fig. 3  An n-coverage representation figure for the extra cellular protein Vitamin D-binding protein, UniProt 
ID P02774, across 12 different tissues for the donor AUT01-DN08. The immunopeptidome data were obtained 
from HLA-Ligand Atlas release 2020.6
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and pairwise immunopeptidomics coverage (Fig. 4D). As shown in Fig. 4A, increasing 
the initial number of cells is associated with increasing the number of peptides identi-
fied. Interestingly, the variation in the absolute number of identified peptides between 
replicates was higher at the higher cell number, i.e., 1 × 108 cells. This might be the result 
of antibody saturation; however, more replicates are needed to test this hypothesis.

To get a better understanding of the origin of the identified immunopeptidome we 
used IPTK to integrate the identified immunopeptidomes with sub-cellular compart-
ment data (Integrating immunopeptidomics and sub-cellular compartment data) focus-
ing on the replicate with the highest number of unique peptides. As seen in Fig. 5, the 
majority of proteins have an unknown subcellular location, arguing for the need to bet-
ter characterize protein subcellular compartment and localization. Interestingly, we 
observed proteins to be presented and sampled from different cellular compartments, 
again showing the importance of HLA-II proteins in presenting the protein status of 
the cell. To understand the contribution of different cellular components to the immun-
opeptidome we ran a GOEA on the list of inferred proteins (Fig. 6). As seen in the figure, 
compartment related to extracellular exomes, protein secretions and recycling are highly 

Fig. 4  Analysis of HLA-DR immunopeptidomes using two replicates and two different staring cell counts. 
5e7_R1 is the first replicate with 5 × 107 cells, while 5e7_R2 is the second replicate with the same initial cell 
counts. 1e8_R1 is the first replicate with 1 × 108 cells while 1e8_R2 is the second replicate using the same cell 
count. A is the number of unique peptides observed in each immunopeptidome. B is a Custer map based 
on peptide overlap between each pair of experiments. C is a cluster map based on protein overlap between 
each pair of experiments. D is a multi-dimensional scaling (MDS) plot using immunopeptidomics coverage as 
a distance metric
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Fig. 5  The distribution of proteins inferred from the HLA-DR immunopeptidome of total PBMC among 
different sub-cellular compartments. Data was generated from 1 × 108 cells and using the protocol described 
at (Data Generation)

Fig. 6  A bubble plot of gene ontology enrichment analysis (GOEA) for the HLA-DR immunopeptidome 
of total PBMC inferred proteins focusing on the cellular component. The x-axis shows a logarithmic 
transformation of the FDR corrected p-value, while the size of the bubble reflects the number of proteins 
contributing to each term. Data was generated from 1 × 108 cells and using the protocol described at (Data 
Generation)
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enriched, which is in agreement with previous findings [44] and with the biological rule 
of HLA-II proteins as presenters of endosomal and lysosomal proteins.

Next, we used IPTK to study the distribution of the number of peptides per inferred 
protein (Fig. 7). As shown in Fig. 7A, the majority of proteins have support from only one 
peptide. However, some proteins have support from a large number of peptides (Fig. 7B). 
In order to get a deeper understanding of this subset of highly presented proteins, we 
used IPTK interface to UniProt to leverage preexisting knowledge with the observed 
coverage, focusing on the protein with the highest number of peptide support, P04114. 
A coverage-and-annotation plot for the protein is shown in Fig. 8. As shown in the fig-
ure, the protein is highly glycosylated and has a large number of disulfide bonds which 
might influence its processing and presentation by the HLA-II machinery, adding a next 

Fig. 7  The distribution of number of immunopeptides per protein inferred from the HLA-DR 
immunopeptidome of total PBMC using 1 × 108 cells as a starting material. A Is a density plot showing the 
distribution of the number of peptides per protein among all inferred proteins. B Showing the number of 
peptides observed in the topmost presented 25 proteins
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layer of complexity and control in shaping HLA-II immunopeptidomes. Interestingly, 
the protein appears also to exhibits a high degree of variations. Implying that a more 
personalized sequence database, for example, following a proteogenomic approach, is 
highly desirable to improve immunopeptide identification by capturing peptides that 
would be missed by using reference databases.

Finally, to understand where the observed peptides are located in the 3D structure of 
the protein, we used IPTK interface to the protein databank (Integrating immunopepti-
domics and protein structure) along with the coverage array of the protein to produce 
an imposed representation. However, given that the structure of Apolipoprotein B-100 

Fig. 8  A coverage and annotation plot for Apolipoprotein B-100, UniProt ID: P04114. The coverage track 
shows the number of peptides obtained from the HLA-DR immunopeptidome of total PBMC using 1 × 108 
cells as a starting material. Protein information was obtained from Uniprot database on 5th of December 
2020. The chain track shows the location of polypeptide chains in the protein. The “Domain track” shows 
the position of known domains in the protein backbone. The “Sequence variants track” shows the position 
of known variants in the protein. The “Glycosylation track” shows the position of the known glycosylation in 
the protein, while the “Modifications track” shows the position of any known post-translational modification 
(PTM) in the protein
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(PO4114) is not currently available, we focused on the second most covered protein 
Ficolin-1 (O00602) (Fig. 9). As shown in the figure, peptide presentation appears to stem 
from specific regions (shown in red) on the protein and gradually decrease (shown in 
green) around this presentation spot until it becomes undetectable, i.e., not presented 
(shown in blue). A plethora of factors can control this behaviour, for example, the pro-
cessing machinery, post-translational modification, competition with other peptides and 
the affinity toward the HLA proteins.

Use case 3: developing an interactive dashboard

As explained above, IPTK is a toolbox that can be used to analyze immunopeptidomes 
using Python scripting, or it can be employed for developing other tools and functions. 
To demonstrate this, we used Dash framework from Plotly [28] to build a dashboard 
that can be used to analyze and inspect immunopeptidomics data without any script-
ing. The graphical user interface (GUI) consists of four main panels. First, the input 
panel which asks the user to upload a table containing the identified peptides in a user 
defined format, the sequence database which is a FASTA file containing the source pro-
tein sequence, the tissue name and, optionally, HLA-alleles, a gene expression table and 
a protein localization table (Additional file 1: Fig. S9). The program uses these data to 
generate an instance of class Experiment which is the working engine for the rest of the 
panels.

The second panel is the visualization panel, which can be used to visualize differ-
ent aspects of the provided data, for example, the number of peptides per-protein, the 

Fig. 9  An imposed representation of Ficolin-1 (UniProt ID: O00602 with the corresponding PDB id: 2D39). The 
color gradients represent the coverage at each position where blue represent low (coverage = 0) while red 
represent the highest coverage (coverage = 27)
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number of peptides per subcellular location, et cetera (Additional file 1: Fig. S10A). The 
third panel is the filter panel which can be used to remove peptides belonging to one 
or more of the organisms inferred from the provided data. Finally, the coverage panel 
which can be used to visualize the peptide-coverage of the inferred proteins (Additional 
file 1: Fig. S10B).

Discussion
As shown here with different use-cases, IPTK library provides a powerful and extend-
able framework for combining the output of immunopeptidomic identification pipelines 
with different omics layers for a rich and in-depth analysis of the identified peptides. 
The library introduces a wide array of utility functions that can be used to analyze the 
data at the peptide, the protein, and the experiment level along with classes and meth-
ods to compare and integrate the results of different experiments. Due to the modular 
nature of the library, further extension can be built on top of it to extend and enhance its 
functionality.

Currently, a potential limitation of the library is the scalability, which might impact the 
performance, especially with regard to integrating and comparing multiple experiments, 
i.e., when hundreds of experiments are analyzed simultaneously. Currently, two meth-
ods are used to enhance IPTK performance, first, just-in-time compilation using Numba 
[46], which is mainly used to enhance numerical computations. Second, multiprocess-
ing which is used to distribute the work, i.e. the computational load, among multiple 
CPU cores enabling multiple datasets to be processed on parallel. Nevertheless, current 
versions of Numba offer support for a subset of python constructs, while multiprocess-
ing can be memory-inefficient and computationally heavy. Thus, future releases of the 
library will aim to improve the performance by reimplementing the computationally 
intensive tasks in Rust language and bind it to the library. Nevertheless, under the cur-
rent scale of experiments, i.e., with tens of experiments, IPTK operates seamlessly on a 
regular desktop computer.

Conclusion
In conclusion, we believe that the library is a valuable tool for studying and comparing 
immunopeptidomes and for enriching the analysis by integrating different omics layers 
using a flexible and modular design that accommodate future extensions. Beside work-
ing to improve speed and efficiency, future work should focus on improving data inte-
gration. This can be achieved within the IPTK framework by implementing interface to 
integrate other omics data, for example, genomics, proteomics and metabolomics. Thus, 
enabling a much deeper understanding of HLA peptide presentation and immunopep-
tidomes formation. Finally, one important future direction will be adding support for 
running protein inference on the identified immunopeptidomes, along with support for 
quantitative immunopeptidomics.
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