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Pgrmc1 (progesterone receptor membrane component 1) is a multifunctional 22 kDa
protein with heme-binding and P450-activating capacity which was recognized under
different names for roles in cell motility during neural development and in cancer, and
apoptosis. Pgrmc1 expression in microglia was recently shown by the present authors
to mediate estrogen-progesterone interactions during axonal sprouting and to mediate
microglial activation itself. We also discuss other functions of Pgramc1 in the nervous
system and its possible relationship to the 18 kDa sigma-2 receptor (S2R).
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INTRODUCTION
Progesterone receptor membrane component 1 (Pgrmc1) is rec-
ognized for roles in many organs from independent discoveries; in
neuroscience, its names include 25-Dx and VEMA (Cahill, 2007;
Kimura et al., 2012). Other family members include Pgrmc2,
neudesin, and neuferricin, which are distinct from the classi-
cal progesterone receptor (PR) transcription factors and from
the large family of progestin/adipoQ membrane receptors that
include mPRα, mPRβ, and mPRγ. We recently discovered two
new roles of Pgrmc1 in microglial activation and in the microglial
mediation of ovarian steroid effects on neurite sprouting (Bali
et al., 2013).

Interactions of estradiol (E2) and progesterone (P4) are fun-
damental to reproductive cycles. In the uterus during the ovar-
ian follicular phase, endometrial tissue growth is stimulated by
plasma E2 elevations, while in the ovary, P4 regulates apopto-
sis of follicular granulosa cells via Pgrmc1 (Peluso et al., 2010;
Peluso, 2013). During the ovarian luteal phase, if fertilized ova
did not implant, plasma P4 levels fall, causing regression of
endometrial tissues. A parallel process occurs in synapses of some
neuronal systems. In the rat hippocampus, E2-driven dendritic
spine numbers on CA1 pyramidal neurons increase during the
follicular phase, followed by spine loss during the luteal phase P4
surge (Woolley and McEwen, 1992). Unlike the uterus and ovary,
hippocampal synaptic cycles do not include neuron cell death.

E2-P4 interactions also modulate axonal regeneration during
compensatory neuronal sprouting of the perforant path projec-
tions from the entorhinal cortex to the dentate gyrus molecular
layer of the hippocampus. In ovariectomized (OVX) rats given
entorhinal cortex lesions (ECL) to axotomize the perforant path,
we found that P4 antagonized E2-dependent axonal outgrowth
into the dentate gyrus molecular layer (Wong et al., 2009). Glial

activation in the DG molecular layer peaks at days 3–4 post-ECL.
By immunocytochemistry E2 implants decreased astrocyte (glial
fibrillary acidic protein, GFAP) and microglial (isolectin B4) acti-
vation, whereas P4 antagonized E2-mediated decrease in glial
activation, similar to its effects on neurite sprouting. This model
may be used to optimize hormone therapy for axonal mainte-
nance during the perforant path degeneration of early Alzheimer
disease (Braak et al., 2006) and for neuroprotective effects of P4
in traumatic brain injury (TBI) (Stein, 2011).

These complex neuron-glial interactions were analyzed further
with the “wounding-in-a-dish” model, in which embryonic rat
E18 cortical neurons are grown on confluent glia (Wong et al.,
2009). Axotomy by scratch-wounding induces neurite outgrowth,
which was enhanced by E2 and antagonized by E2+P4 as in vivo
with ECL. To our surprise, the E2-P4 antagonism of neurite out-
growth occurred with mixed glia (astrocytes:microglia, 3:1), but
not with enriched astrocytes (>95%). This finding was unex-
pected because microglia reportedly lacked expression of Pgr,
the classical PR (Sierra et al., 2008). Yet, P4 antagonism of E2-
dependent sprouting was blocked in mixed glia by two classical
PR antagonists (ORG-31710 and RU-486) (Wong et al., 2009).
Analysis of PRs of both astrocytes and microglia revealed new
roles of Pgrmc1.

PROGESTERONE RECEPTORS IN BRAIN CELLS
Brain P4 actions are mediated by at least eight different proteins
with differential expression in neurons and glia (Brinton et al.,
2008). The two classic nuclear gene transcription factors PR-A
and PR-B are alternate transcripts of Pgr, are widely expressed in
neurons throughout the adult rat brain including cerebral cor-
tex, hippocampus, and hypothalamus (Intlekofer and Petersen,
2011; Bali et al., 2012). We detected PRs in astrocytes, but not
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in microglia of adult rat hippocampus (in situ hybridization
and immunocytochemistry), and in primary glial cultures from
neonatal cortex by rtPCR and Western blots (Figure 1) (Bali
et al., 2013). These findings confirm observations of the absence
of Pgr in ex vivo fluorescence-sorted (FACS) adult mouse brain
microglia (Sierra et al., 2008). Pgr expression in astrocytes is

also shown from antagonism of the P4:E2 interactions in neurite
sprouting by ORG-31710 and RU-486, classical PR antagonists
(Wong et al., 2009).

Pgrmc1 was also found in microglia, astrocytes, and neu-
rons, both in vivo and in vitro by immunocytochemistry, rtPCR,
and Western blots (Figure 1). Unlike Pgr, Pgrmc1 is uniformly

FIGURE 1 | Pgrmc1 and Pgr (PR) expression in rat brain glia and

neurons by immunocytochemistry. (A) Neuronal Pgrmc1 and Pgr
expression in adult rat hippocampus was equivalent in the
hippocampus CA1, CA3, and dentate gyrus (DG) layers. In contrast,
neuronal Pgr expression was lower DG vs. CA1 and CA3 layers. (B)

Astrocyte Pgrmc1 in DG molecular layer co-stained with GFAP.

Arrowheads point to co-labeled astrocytes. (C) Microglial Pgrmc1 in DG
molecular layer co-stained with IBA1. Arrowheads point to co-labeled
microglia. (D) Astrocyte Pgrmc1 in primary cultures from cerebral
cortex co-stained with GFAP. (E) Microglial Pgrmc1 in primary cultures
co-stained with CD11b. Scale bars, 20 μm. Modified from Bali et al.
(2012) and Bali et al. (2013).
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expressed by all hippocampal neurons (Bali et al., 2012).
Although initially characterized as a membrane receptor, Pgrmc1
can reside in the cell nucleus (Peluso et al., 2010; Bali et al., 2013).
We also detected other membrane-associated PRs, mPRα, mPRβ,
and mPRγ, in astrocytes and microglia (rtPCR, DNA sequence
confirmed; unpublished data). Meffre et al. (2013) also reported
mPRα in astrocytes and microglia, but only after TBI. In spinal
cord, mPRα was found in glia, but not mPRβ (Labombarda et al.,
2010). We conclude that P4 actions in microglia are mediated by
membrane PRs because they lack expression of the classical PRs.
A specific role of Pgrmc1 in microglial activation is described
below.

The neuronal side of Pgrmc1 began in 1999, under the name
of VEMA, a protein that proved to regulate neuron outgrowth
in mouse and nematode (Runko et al., 1999; Cahill, 2007). Its
first brain steroidal association was “25-Dx,” from a cDNA encod-
ing a 25-kDa protein that responded to E2 and P4 (Krebs et al.,
2000). In hypothalamic neurons, 25-Dx induction by E2 was

blocked by P4. However, in hippocampal neurons of OVX rats,
P4 did not antagonize E2-induced Pgrmc1 expression; more-
over, P4 was as strong an inducer of Pgrmc1 as E2 alone (Bali
et al., 2012). Its hypothesized role in reproductive functions was
shown in GnRH neurons, where the inhibition of [Ca+2]i oscilla-
tions by P4 was blocked by AG-205, a Pgrmc1 ligand inhibitor,
but not by RU486, the classic PR antagonist (Bashour and
Wray, 2012). In neural progenitor cells, P4 was pro-proliferative
via Pgrmc1 (Liu et al., 2009). On the glial side, Pgrmc1 was
detected in both astrocytes and microglia, noted above. TBI also
induced Pgrmc1 in adjacent astrocytes and neurons (Meffre et al.,
2005).

Pgrmc1 AND THE ROLE OF MICROGLIAL ACTIVATION IN P4-E2
ANTAGONISM
As noted above, P4 antagonized E2-induced neurite sprout-
ing in mixed glia containing 3:1 astrocytes:microglia, but
the antagonism was absent from enriched astrocytes from

FIGURE 2 | Microglial activation via scratch wounding and LPS. (A)

Microglial CD11b in 3 zones (1 mm wide) progressively decreased distal to
the wound. Pgrmc1 protein was also induced by scratch wounding.
∗∗∗p < 0.0001; ∗∗p < 0.03; ∗p < 0.05 vs non-wounded. (B) CD11b and
Pgrmc1 protein were both induced by by LPS. ∗∗∗p < 0.0001; ∗∗p < 0.001
vs vehicle. (C) Model to show targets of the undefined soluble activity
(SA) from activated microglia and microglial Pgrmc1 that mediate the
antagonism of P4 on E2-dependent neurite outgrowth. Microglial activation

by LPS is assumed to be mediated by toll-like receptor-4 (TLR4); activation
by scratch wounding has undefined pathways. The schema shows two
possible SA actions on neurites: direct effects (solid red lines) on neurite
outgrowth at the neurite growth cone (arrowhead) and/or involving the
neuronal nucleus; indirect effects (dashed green lines) via astrocyte
secretions on neurite or neuronal nucleus. Glial activation by injury or LPS
and the SA effects were blocked by Pgrmc1 knockdown. Modified from
Bali et al. (2013).
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which microglia had been removed (>95% astrocytes)
(Wong et al., 2009). A caveat is that the 4 h mechani-
cal shaking process to remove microglia could alter glial
responses, e.g., hydrodynamic forces induce astrocyte aro-
matase (Gatson et al., 2011). The role of microglia was shown
in a new protocol to add-back microglia, which restored
the P4-E2 antagonism of neurite outgrowth (Bali et al.,
2013).

The add-back protocol also allowed us to separately manip-
ulate PRs in astrocytes and microglia before the mixed
glia reconstitution. An astrocyte role was anticipated by
the Pgrmc1 dependence of BDNF secretion (Su et al.,
2012). Using siRNA, we showed that Pgrmc1 knockdown in
microglia, but not in astrocytes abolished the P4-E2 antago-
nism of neurite outgrowth. We then found that conditioned
media from scratch-wounded cultures of microglia alone suf-
ficed to restore the P4-E2 antagonism. To identify the sim-
plest conditions that restored P4-E2 antagonism, we used
charcoal-stripped FBS containing minimal steroids. However,
the soluble activity was absent from unwounded microglia,
implying a role of microglial activation. The requirement for
microglial activation also explained why P4 did not antag-
onize E2-dependent outgrowth in non-wounded cultures. A
candidate for the soluble factor was TNFα, which is released
by microglia and which can inhibit neurite outgrowth; how-
ever TNFα levels did not differ with scratch wounding in our
model (unpublished).

Because scratch-wounding is an unconventional mode
of microglial activation (we did not find other reports),
we examined the classical microglial activator, LPS, which
restored the soluble activity. Pgrmc1 protein was also
induced in microglia by scratch-wounding or by LPS
(Figures 2A,B), consistent with its induction in astrocytes
by TBI, noted above. Moreover, Pgrmc1 knockdown by
siRNA abolished LPS microglial activation by the standard
CD11b marker. The expression of Pgrmc1 in DG microglia
(Figure 1E) could thus mediate in vivo effects of P4 on
neurite outgrowth.

Thus, Pgrmc1 is not only a new marker of microglial
activation, but has a fundamental role in microglial activa-
tion itself. Therefore, Pgrmc1 may regulate microglial-mediated
neurotoxic, and perhaps, neuroprotective activities, as well
as synaptic pruning (Aguzzi et al., 2013). The responses to
LPS imply a link to toll-like receptor pathways, e.g., TLR4,
which mediates microglial activation by LPS (Chen et al.,
2012) (Figure 2C). Its role in the activation of other mono-
cytes is unknown. There may also be interactions of P4 and
its metabolites with other receptors throughout the body, e.g.,
GABA receptors.

POSSIBLE RELATIONSHIP OF Pgrmc1 TO THE SIGMA-2
RECEPTOR (S2R)
The S2R was reportedly identified as Pgrmc1 and 25-Dx by mass
spectrometry on the basis of 29 shared residues (Xu et al., 2011).
Both are also heme binding proteins with high affinity for P4
(Cahill, 2007; Johannessen et al., 2011; Peluso, 2013). The S2R
is of increasing interest in various research areas which do not
consistently cross-reference Pgrmc1, including apoptosis, cancer
metastasis, cocaine addiction, and ion channels. Of relevance to
our findings, S2R mediates microglial migration up gradients
of ATP in vitro, with pharmacological specificities that appear
distinct from P4-like ligands (Cuevas et al., 2011). However, its
18 kDa size is distinctly smaller than 25 kDa Pgrmc1 (Ruoho et al.,
2013), and could be an alternatively spliced form.

Whatever the case, S2R and Pgrmc1 both mediate cell migra-
tion in diverse contexts. Recall that Pgrmc1/VEMA influenced
axonal outgrowth in mice and nematodes at developmental stages
(Runko et al., 1999) which are not known for P4-dependence.
The activation of microglia and induction of Pgrmc1 in vitro in
the absence of exogenous P4 (see above) may be another P4-
independent effect (Mir et al., 2012). However, local P4 could
have a role via the cytochrome b5-like heme/steroid-binding
function of Pgrmc1 which interacts with diverse binding part-
ners, including P450 enzymes (Cahill, 2007; Ahmed et al., 2010;
Kimura et al., 2012).

CONCLUSIONS AND OPEN QUESTIONS
The diverse functions of Pgrmc1 continue to expand in many
fields that have little cross-talk. Further progress may depend
as much on biochemistry as further elegant molecular genetics.
Pgrmc1 knockout mice may become available. The connections
with innate immunity through the toll-like receptors are an
attractive target. The identification of proteins or other molecules
in the soluble activity from conditioned media could be done effi-
ciently. The requirement for microglial activation in the P4-E2
antagonism of neurite outgrowth further suggests that microglial
activation, such as arises during aging and Alzheimer disease,
might alter the absence of P4-E2 antagonism in regulation of
hippocampal neuron Pgrmc1 in vivo (Bali et al., 2012). Given
the role of Pgrmc1 in these experiments and the finding that
Pgrmc1 expression influences astrocyte BDNF (Su et al., 2012),
we anticipate further roles of Pgrmc1 in the complex biology of
glia-neuron interactions.
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