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ABSTRACT: With the prospect of resolving whole protein molecules into their myriad proteoforms on a proteomic scale, the
question of their quantitative analysis in discovery mode comes to the fore. Here, we demonstrate a robust pipeline for the
identification and stringent scoring of abundance changes of whole protein forms <30 kDa in a complex system. The input is
∼100−400 μg of total protein for each biological replicate, and the outputs are graphical displays depicting statistical confidence
metrics for each proteoform (i.e., a volcano plot and representations of the technical and biological variation). A key part of the
pipeline is the hierarchical linear model that is tailored to the original design of the study. Here, we apply this new pipeline to
measure the proteoform-level effects of deleting a histone deacetylase (rpd3) in S. cerevisiae. Over 100 proteoform changes were
detected above a 5% false positive threshold in WT vs the Δrpd3 mutant, including the validating observation of hyperacetylation
of histone H4 and both H2B isoforms. Ultimately, this approach to label-free top down proteomics in discovery mode is a critical
technical advance for testing the hypothesis that whole proteoforms can link more tightly to complex phenotypes in cell and
disease biology than do peptides created in shotgun proteomics.

Since the development of soft ionization techniques over 20
years ago, mass spectrometry (MS) has become the

method of choice for untargeted protein analysis. However,
owing to the difficulty of intact protein analysis by MS (arising
from both hardware and software challenges1), the vast
majority of proteomics research has been developed and
conducted using a “bottom-up” approach, where proteins are
first digested into constituent peptides prior to MS analysis.2

Top down proteomics describes the process for identification
and characterization of intact protein forms (i.e., proteoforms3)
by mass spectrometry without the preanalytical variables
introduced by the digestion step itself.4−7 While the field of
quantitative bottom-up proteomics has undergone multiple
advances in both labeled and label-free quantitation,8−10 similar
advances in the field of top down proteomics to analyze
hundreds or thousands of proteoforms in quantitative fashion
are not available at present.
A major milestone in top down proteomics has been the

publication of several studies showing the high-throughput
identification of thousands of distinct proteoforms within

bacterial and mammalian cell lysates using modern high
resolution MS instrumentation coupled to nanocapillary liquid
chromatography (nLC).11−14 In studies from our group, a top
down proteomics pipeline was established to reduce sample
complexity using an off-line size-based separation (gel elution
liquid fractionation entrapment electrophoresis or “GELFrEE”)
followed by capillary LC-MS/MS of intact proteins to be
detected in high resolution Orbitrap (or FT-ICR) MS
instrumentation. While these studies afforded a rich look into
the mammalian cell proteome at the intact proteoform level, a
similar pipeline for quantitative label free top down proteomics
has not yet been developed.
Several laboratories have established approaches for the

targeted quantitation of whole proteins within a mixture of
limited complexity. One straightforward approach uses the
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measurement of intensity ratios for multiple, coeluting
proteoforms to establish relative quantitation within a single
sample.15 Since this intraspectrum quantitation holds all of the
information necessary within one instrument data file, it is
somewhat immune to the variability inherent within large
multisample quantitative studies. Examples of this technique
include the work of Dong et al. on the quantitation of cardiac
troponin I proteoforms in heart tissue in patients with
congestive heart failure16 and the work of Chamot-Rooke et
al. in the quantitation of N. meningitides type IV pili
proteoforms.17

To perform proteome-wide quantitation, several groups have
taken both in vivo and in vitro labeling approaches with varying
success.18−21 While both approaches are well established for
comparative proteomics as they minimize technical variation by
mixing samples prior to analysis, there are a number of
challenges hindering their development and implementation on
a wide-scale basis.9,10 Du et al. used an in vitro differential
cysteine labeling strategy to quantify intact proteins from yeast
grown under aerobic and anaerobic conditions. Although, in
theory, this strategy allows MS1-based quantitation of protein
pairs, they found that the differential tags altered chromato-
graphic retention time, thus interfering with intraspectrum
quantitation.19 More recently, Hung et al. used in vitro tandem
mass tag (TMT) labeling with isobaric tags to perform MS2-
based intrascan quantitation.21 An advantage of isobaric tags is
that labeled protein pairs should have identical chromato-
graphic profiles. However, because this approach uses MS2
fragmentation data for quantitation, its accurate implementa-
tion requires only one precursor ion be selected for
fragmentation, which is often not the case in top down
proteomics of complex samples.14 In vivo labeling with stable
isotopes shares the chromatography advantage of in vitro
isobaric labeling but circumvents the requirement for single
precursor ion isolation. In a past study, our group implemented
14N/15N labeling and quantified over 200 protein pairs from
yeast grown in the presence or absence of oxygen at the intact
protein level.18 More recently, Collier et al. applied this strategy
to human embryonic stem cells grown in culture.20 In all cases,
implementation of this strategy required the ability to label cells
in vivo, thus limiting the technique to applications where feed-

stocks can be manipulated, such as cell and tissue culture. As
one of the most pressing goals of comparative top down
proteomics is the discovery of biomarkers in clinical research
(which precludes metabolic labeling of proteins),22 it is
necessary to develop a statistically valid label-free approach.
Several groups have applied label-free quantitation to

comparative top down experiments on a few, targeted
proteoforms. Yates’ group has pioneered “differential mass
spectrometry” (dMS) to perform relative quantitation of
proteoforms of apolipoprotein C−III within high-density
lipoprotein particles.23−25 In another example, Taylor et al.
utilized charge-state abundances from MS1 spectra and
DeCyder software to calculate the relative abundances of
large, secreted peptides (up to 60 amino acids) from cell
culture in stimulated and unstimulated cells.26 In both cases,
analysis was limited to a few proteoforms and statistical
assessment was performed using a traditional Student’s t test.
While acceptable for comparing two biological conditions
across a set of technical replicates, Student’s t test is insufficient
to address the many sources of technical variation inherent in
complex, multilevel comparative proteomic studies; ANOVA is
required to correctly handle multiple levels of variation for
quantitative proteomics run in discovery mode.
S. cerevisiae is often the model system to benchmark new

proteomics technology; it is readily grown to large quantities
and well characterized at the protein level.27−29 Additionally,
there are a number of knockout strains available enabling the
global proteomic profiling resulting from the loss of a single
gene.30 One such genetic mutant is the rpd3Δ::KANMX strain.
The rpd3 gene encodes a histone deacetylase; its deletion has
been shown to increase the acetylation levels of all core
histones.31 Additionally, rpd3 deletion has been shown to
increase yeast doubling times by nearly 2-fold32 and have other
global effects owing to a lack of epigenetic regulation.33

Here, we have expanded a top down proteomics plat-
form12,14 to include label-free quantitation of proteoforms <30
kDa for discovery mode research (Figure 1). We developed the
platform using a hierarchical linear statistical model capable of
handling multiple levels of variation inherent to comparative
proteomics experiments. First, we present proof of principle for
this analysis through the standard addition of protein standards

Figure 1. Overall workflow for label free quantitation of whole proteoforms using top down proteomics. With prescribed numbers of biological and
technical replicates, a size-based fractionation of whole proteins from a complex proteome is performed (A), followed by randomized LC-MS/MS
runs (B) and integrated application of a standard linear model for statistical evaluation of results such as the volcano plot (panel C, top) where each
dot represents a proteoform that can be identified and characterized (panel C, bottom).
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to a complex yeast proteome background. We then applied this
top down quantitative platform to wild type vs Δrpd3 S.
cerevisiae and quantified 120 proteoform differences (54 from
the nucleus, 66 from the cytosol) with false discovery rates
(FDRs) for the quantitation ranging from 5% to better than
0.0001%. A similar SILAC study was performed by Henriksen
et al. in 2012. While the main focus of the paper was differential
acetylation profiling by bottom-up proteomics, our results are
concordant with those (vide inf ra).34 To our knowledge, this
work reports the first analytical platform for the large-scale
label-free quantitation of whole proteins in complex mixtures
using top down proteomics.

■ MATERIALS AND METHODS
Yeast Growth and Sample Preparation. Single colonies

of wild type Saccharomyces cerevisiae S288c BY4742 and the
rpd3(YNL330C) deletion mutant (rpd3Δ::KANMX) were
picked and were inoculated into 5 mL each of liquid YPD
media without and with 0.2 g/L G-418, respectively. After
overnight incubation (250 rpm @ 30 °C) and centrifugation at
3000 rpm for 10 min, each pellet was gently resuspended with 1
mL of liquid YPD and was inoculated into 250 mL of YPD and
YPD+G-418. Cells were harvested at OD600 = 0.7 by
centrifugation at 3000 rpm for 20 min. Supernatants were
discarded, and each cell pellet was washed with distilled water.
The mass of each cell pellet was measured before storage at
−80 °C.
Lysis and extraction of S. cerevisiae was performed using

YPER (ThermoPierce, Rockford, IL) supplemented with 5 nM
microcystin, 500 μM 4-(2-aminoethyl)benzenesulfonyl fluoride
(AEBSF), 100 mM sodium butyrate, and 100 mM
dithiothreitol (DTT) at 2.5 mL/g wet cell weight according
to the manufacturer’s protocol. After each centrifugation step,
the supernatant was saved as the cytosolic fraction, and the
protein concentration was determined. To isolate nuclear
proteins, each pellet was resuspended using 30 mL of 100 mM
of sodium butyrate and centrifuged at 18 000g for 10 min at 4
°C to remove the YPER. Next, an acid/urea extraction of the
histone fraction was performed by adding 2.5 volumes of 8 M
deionized urea with 0.4 N of sulfuric acid and vortexing for 5
min and extraction on ice for 30 min. C4 solid phase extraction
(Bakerbond C4, J.T Baker) was performed, and after washing
the column with 30 mL of 0.1% trifluoroacetic acid (TFA) in
water, the sample was eluted with 3 mL of 0.1% TFA in 60%
acetonitrile. Each eluted fraction was dried and reconstituted
with 1.0% sodium dodecyl sulfate (SDS) solution to quantify
the amount of proteins using bicinchoninic acid (BCA) assay
(Pierce, Rockford, IL).
Four hundred micrograms of total protein was prepared for

each lane of GELFrEE per manufacturer’s instructions
(Expedeon, Cambridgeshire, UK, GELFREE 8100). Each
biological replicate was separated on a single lane of an 8%T

GELFrEE cartridge (6 lanes total). Fraction 1 was collected for
LC-MS/MS analysis. Ten microliters of the 150 μL fractions
was used for conventional SDS-PAGE analysis and silver stain
visualization (Figure 1). SDS was removed by methanol/
chloroform/water extraction.35 Proteins were resuspended in
40 μL of Buffer A (95% H2O, 5% AcN, 0.2% FA). Samples
were centrifuged for 10 min at 21 000g at 4 °C prior to
injection.

Standard Spike Experiment. Known amounts of a “Top
Down Standard” containing ubiquitin (Sigma-Aldrich, U6253),
trypsinogen (Sigma-Aldrich, T1143), myoglobin (Sigma-
Aldrich, M5696), and carbonic anhydrase (Sigma-Aldrich,
C2522) were added to a fixed background of yeast wild-type
nuclear lysate (Table 1). Data analyses were performed as
described below but adjusted to analyze a simpler experiment.
Samples were each injected four times to observe technical
variance.

LC-MS/MS Parameters. Resuspended protein fractions (5
μL) were injected onto a trap column (150 μm ID × 2 cm)
using an autosampler (Dionex). A nanobore analytical column
(75 μm ID × 15 cm) was coupled to the trap in a vented tee
setup. The trap and analytical columns were packed in-house
with polymeric reverse phase (PLRP-S, Phenomenex) media (5
μm, 1000 Å pore size)36 and connected to 15 μm nano-
electrospray tips (New Objective, Waltham, MA). A Dionex
Ultimate 3000 RSLCnano system was operated at a flow rate of
2.5 μL/min for loading onto the trap. Proteins were separated
on the analytical column and eluted into the mass spectrometer
using a flow rate of 300 nL/min and the following gradient: 5%
B at 0 min, 15% B at 5 min, 55% B at 55 min, 95% B from 58 to
61 min, 5% B from 64 to 80 min. Solvent A consisted of 95%
water, 5% acetonitrile, and 0.2% formic acid, and solvent B
consisted of 5% water, 95% acetonitrile, and 0.2% formic acid.
Mass spectrometry data were obtained on an Orbitrap Elite

mass spectrometer fitted with a custom nanospray ionization
source. The MS method included the following events: (1) FT
scan, four microscans, m/z 500−2,000, and resolution 100 000
and (2) data-dependent MS/MS on the top two peaks in each
spectrum from scan event 1 using higher-energy collisional
dissociation (HCD) with normalized collision energy of 25,
isolation width 50 m/z, four microscans, and detection of ions
with resolving power of 60 000. Dynamic exclusion was enabled
with a repeat count of 2, a repeat duration of 120 s, and an
exclusion duration of 5000 s. Automatic gain control (AGC)
was set to 1E6 ions, and maximum injection time was set to 1 s
for both MS1 and MS2. Advanced signal processing was turned
on, and data were collected in reduced profile mode. A 15 V
offset in the source was used over the entire experiment. The
capillary temperature was 320 °C and a spray voltage of 1.8 kV.

Data Processing. All data files in the quantitation portion
of the platform were processed using a collection of in-house
tools to automate data analysis. Files were analyzed for

Table 1. Experimental Description and Coefficients of Variation for Spiking Standards into a Yeast Lysate at Three Defined
Levels (See Figure S1 for Additional Results)

levels (pmol/10 μL injection) CV uncorrected CV normalized

standard 1X 3X 12X 1X 3X 12X 1X 3X 12X

ubiquitin, bovine 0.14 0.41 1.6 46% 21% 43% 15% 14% 9%
myoglobin, equine 1.1 3.3 13 24% 19% 49% 12% 8% 11%
trypsinogen, bovine 0.48 1.5 5.8 44% 21% 45% 12% 15% 20%
carbonic anhydrase II, bovine 0.64 1.9 7.7 N/Qa N/Q N/Q N/Q N/Q N/Q

aNot quantitated.
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Quantitation Mass Targets (QMTs) using a moving spectral
average and deisotoped with Thermo Fisher’s Xtract algorithm
at a signal-to-noise value of 6. All QMTs were then binned by
mass (8 ppm) and retention time (8 min) to reduce data
redundancy. Intensities were normalized using the average total
ion chromatogram intensity for each technical replicate. Finally,
the QMTs were grouped and artifactual ±1 Da deisotoping
errors were removed. Final QMTs were stored within a SQLite
reporting database.
Once a set of QMTs was determined, a quantitative

algorithm was applied to determine an appropriate intensity
value for each QMT across each data file. First, the isotopic
distributions of all theoretical charge states of that QMT were
generated. These distributions were then used to match against
observed spectral data and return intensity estimates for each
scan. Finally, the intensity estimates were aggregated across all
scans and charge states to report one intensity value for each
data file and QMT. These data were provided as a text file for
further statistical processing (vide inf ra). At this point, QMTs
represent individual, yet uncharacterized, proteoforms.
For proteoform identification and characterization, our

conventional top down proteomics pipeline was used as
previously described.12,14,37 Briefly, m/z data for each
precursor/fragmentation scan pair were converted to mono-
isotopic neutral mass values using ProSightHT within
ProSightPC 3.0.38 Data were used to search an annotated S.
cerevisiae database (stored as a.pwf file called “server_-
yeast_complex_Apr3_2013”) which was built against UniProt
release 2013_04. Mass tolerances for precursor ions were set to
10 ppm. A 10 ppm mass tolerance was also used for the
fragment ions. Low confidence proteoform identifications were
excluded by requiring those hits arising from an absolute mass
search to have an E-value below 1 × 10−4.14 A more stringent
E-value cutoff of 6 × 10−5 (corresponding to a P-value cutoff of
9 × 10−8) was applied to hits derived from a biomarker search
as previously reported.39

Statistical Analysis. Proteoforms may not be observed in
all samples; this creates the “missing values” problem in label-
free methods. To address this, intensity data on the occurrence
of putative proteoforms (QMTs) were tabulated, and those not
occurring in at least 50% of all data files were excluded from
further analysis. This removed 67% and 83% of potential
QMTs in the nucleus and cytosol, respectively. Intensity values
for the remaining QMTs were log2-transformed so that
differences in estimated treatment-level intensities could be
interpreted on a fold-change scale. Two separate ANOVA
analyses were performed: ANOVA-1 and -2. For the first
analysis, ANOVA-1, intensity levels for each QMT were
standardized to Z-scores across all samples. ANOVA-2 used
unstandardized intensity values. ANOVA-1 was used to test the
statistical significance of QMT intensity changes between the
wild type and Δrpd3 mutant strains, while ANOVA-2 was used
to estimate the size of the effect (expressed as fold-change). In
both analyses, a hierarchical linear model was employed as the
general statistical approach. The fixed effect hierarchical linear
model allows for nested effects and can be expressed as Iijk = μ
+ Ai + Bj(ik) + Ck(ij) + εijk. In ANOVA-1, “I” represents the QMT
intensity Z-score, while in ANOVA-2, this represents the log2-
transformed intensity. In both models, μ is the true mean, A is
the treatment factor levels (wild type and Δrpd3), B is the
biological replicates, C is the technical replicates, and ε is the
residual variance. QMTs showing significant treatment*bio-
logical replicate effects were excluded from further analysis. In

ANOVA-1, all p-values were corrected for multiple testing at a
false discovery rate of α = 0.05.40 All statistical analyses were
performed within SAS 9.4, (SAS Institute, Cary NC).

■ RESULTS AND DISCUSSION
Quantifying Known Protein Abundances within S.

cerevisiae Lysates. As a proof of principle, we first performed
an experiment in which we spiked a known amount of a set of
intact protein standards into a yeast nuclear protein extract
background at three known levels. To test the fitness of our
approach to perform label-free quantitation, we examined the
precision and accuracy of the method using three standard
proteins (ubiquitin, myoglobin, and trypsinogen; Table 1).
Normalization to the total ion count observed in the LC-MS
run proved valuable for improving the precision and accuracy of
quantitation in the top down proteomics data set. While
uncorrected intensity data showed a coefficient of variation
(CV) range of 19−49%, normalization reduced that to a range
of 8−20% (Table 1, Figure S1). The accuracy of the method
varied. For a 3-fold change (3X vs 1X), we observed a range of
2.2−3.4-fold. For a 4-fold change (12X vs 3X), we observed a
range of 2.2−3.3-fold. For a 12-fold change (12X vs 1X), we
observed a range of 6.8−11.4-fold. Pairwise Student’s t tests for
each of these three comparisons were significant at α = 0.05.

Applying the Method in Comparative Fashion: WT vs
Δrpd3 S. cerevisiae. To evaluate the quantitative platform in
an unknown system, we employed a comparative proteome
analysis of wild type vs Δrpd3 S. cerevisiae (depicted in Figure
1). A 2 × 3 × 7 study design (i.e., two states, three biological
replicates, and seven technical replicates) was established, and
the cytosolic and nuclear fractions were assessed separately.
Proteins in these compartment extracts were first separately
resolved into one simple fraction ranging from 3.5−30 kDa
using GELFrEE followed by LC-MS/MS as described above.
Next, we applied the hierarchical linear model to quantify

intact proteoforms within our yeast experiment. A random
effects model was applied to this experiment, and the results are
shown in Figure S2. The majority of the variance was confined
to the residual term, “ε”, of the hierarchical linear model. The
contributions of the technical variation from LC-MS
procedures was quite small in comparison (Figure S2). To
gain a birds-eye view of proteoform-level changes, we
performed an unsupervised clustering of Z-scores at the
biological replicate level (Figure 2). This data representation
provides a visual depiction of the high reproducibility of the
approach and its ability to striate different sets of proteoforms
by their response to deletion of the rpd3 gene.
Using the method detailed above, we created a volcano plot

which represented each proteoform (i.e., QMT) as a function of
estimated effect size (in log2 fold-change) and the statistical
confidence (the FDR) that there was a difference in normalized
intensity between the two states “wild type” and “Δrpd3”
(Figure 3). As expected, masses fall to each side of the line
indicating “no change,” where to the left are found proteoforms
more highly expressed in wild-type than in the Δrpd3 mutant.
Proteoforms identified to the right were upregulated in Δrpd3
as compared to WT. Of the 838 QMTs detected in total, 120 of
them showed a statistically significant intensity change between
wild type and Δrpd3 at or below the 5% FDR threshold, with
the most confident of these approaching an instantaneous FDR
value of 1 × 10−6 (Figure 3). Overall, the nuclear and cytosolic
compartments showed changes in 54 and 66 proteoforms,
respectively (Figure 3A,B and Tables S1−S4).
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These data demonstrate that the integrated method and
statistical model are capable of detecting significant differences
in proteoform abundance among treatment groups. Of the
QMTs confidently found to change, we used a combination of
tandem MS and intact mass tag (IMT)41 information to map
each QMT to a proteoform. Of the 120 QMTs, 71 were
unambiguously identified as proteoforms using MS/MS
information obtained during the LC-MS runs. An additional
five were less-confidently identified using the IMT approach
with a 10 ppm tolerance to match protein mass tags obtained
from a prior publication reporting >900 yeast proteoforms.39

With these data, 63% of QMTs were confidently identified as
proteoforms while the platform was run in discovery mode.
Within the cytosolic fraction, three of the 66 confidently

changing QMTs were related to the protein ZEO1 (UniProt

Accession Q08245). ZEO1 is a peripheral membrane protein
implicated in the cellular stress response.42 Our qualitative
analysis identified three different proteoforms. Unmodified
ZEO1, N-acetylated ZEO1, and N-acetylated + phosphorylated
ZEO1 (phosphorylation localized between Q12 and T48). Of
the confident QMTs, our quantitation platform detected a
significant change between Δrpd3 and WT for both the N-
acetylated ZEO1 (two QMTs map to one proteoform) and N-
acetylated + phosphorylated ZEO1 (Figure 4A, Tables S2 and
S4). The abundance of the N-acetylated proteoform was 2.3-
fold lower in the Δrpd3 mutant as compared to the wild type
(most confident instantaneous FDR = 1 × 10−6). The doubly
modified proteoform’s abundance was reduced by a factor of
5.0-fold in the Δrpd3 mutant as compared to the wild type
(instantaneous FDR = 5 × 10−4). Most of the proteins seen to
be downregulated in mutant cytosol (Table S2) are involved in
the stress response and glycolysis.43,44

In the nuclear fraction, several of the most confidently
changing proteoforms belong to the core histone family. The
analysis showed a general hyperacetylation of histone H4
(UniProt Accession P02309) within the Δrpd3 mutant as
compared to WT (Figure 4B, Tables S1 and S3). This
hyperacetylation is evidenced by increased QMT abundance of
the triacetylated proteoform in Δrpd3 as compared to WT (8.4-
fold change, instantaneous FDR = 4 × 10−6). Simultaneously,
the diacetylated proteoform was found to be downregulated in
Δrpd3 as compared to WT (0.6-fold change, instantaneous
FDR = 4 × 10−3). ANOVA analyses of the monoacetylated and
tetraacetylated proteoforms were not meaningful because
intensity values were not present in one of the treatment
levels. These “single-state” cases are easily extracted from the
intact proteoform area measurements, displayed as boxplots in
Figure 4. While the data within this figure show only one
technical replicate of each treatment level, similar histone H4
proteoform PTM patterns were seen in all 42 individual
technical replicates as a function of treatment level (Figure S3).
Given Rpd3’s known function as a histone deacetylase and
previous reports in both yeast and human cells, the hyper-
acetylation of histone H4 is not surprising.31,45 Among other
core histones, three proteoforms of histone H2B show
significant quantifiable differences for both of its two distinct
gene products, H2B.1 and H2B.2 (UniProt Accessions P02293
and P02294). Interestingly, histone H2B.1 shows a more
confident degree of hyperacetylation than does histone H2B.2
(Figure 5 and Table S1).
Proteoform-level quantitation offers some advantages over its

peptide-level counterparts. Chief among those is the coverage
of multiple and diverse modifications afforded by measuring the
whole protein. In the cases demonstrated in Figures 4 and 5,
peptide-level measurements would have great difficulty to
simultaneously quantify correlated changes in multiple
modifications in a proteotypic (gene-specific) fashion. For
example, histone H2B.1 and H2B.2 are 97% identical in protein
sequence and contain a large number of lysine residues. Tryptic
digestion would sever the linkage between modifications co-
occurring on the same molecule and would provide an unclear
view of isoform-specific regulatory events (particularly preva-
lent in higher eukaryotes). To compare our results to a recent
SILAC study looking at the effects of global changes upon
deletion of rpd3, over 60% of the proteins quantified in this
study map to differentially expressed peptides in that report.34

Future directions of this platform include its extension to
more complex experimental designs and its packaging within a

Figure 2. Hierarchical clustering of each of 120 proteoforms found to
change significantly (i.e., 5% FDR or better) in the Δrpd3 mutant vs
WT strains separated by nucleus and cytosol. The clustering diagram
used the Z-score approach to score each proteoform across averaged
technical replicates, applied to biological replicates and then clustered
via an unsupervised approach. Notice that although the clustering was
unsupervised, biological replicates from all wild type and Δrpd3 runs
cluster together.

Figure 3. Volcano plots generated to compare the WT vs Δrpd3
strains of S. cerevisiae S288c for GELFrEE fractions from the (A)
nuclear and (B) cytosolic cellular compartments having 54 and 66
proteoforms, respectively, below the 5% FDR threshold (dotted red
line). Assignment of analytical variation is shown in Figure S1. In
Figure 4, the quantitation of four of these proteoforms is explored in
greater detail. The corresponding data points are highlighted above
red ■ = diacetylated histone H4, red ▲ = triacetylated histone H4,
green ▲ = N-acetylated ZEO1, green ■ = N-acetylated +
phosphorylated ZEO1 (phosphorylation localized between Q12 and
T48).
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software solution. We conclude that our platform is capable of
label-free quantitation of intact proteins using top down
proteomics and hierarchical linear modeling. We also will
extend this method to more complex samples to determine if
proteoforms can provide insight into complex phenotypes
observed in the human population.

■ CONCLUSION

We forward this approach to demonstrate that quantitative top
down proteomics is possible to do in multitarget discovery
space. In a model yeast system (with peak finding and statistical
approaches implemented with stringency in mind), confidence
values up to one in a million were possible to obtain for
quantitative measurements of whole proteins in the <30 kDa
regime. Extension to primary material from human population

studies will likely reduce this level of confidence relative to the
clonal yeast population used here. The statistical power
generated by the method will improve with better reproduci-
bility of laboratory protocols and fine-tuning of data pipelines.
However, the technology is now ready to employ to test the
hypothesis that whole proteins can correlate tightly to overall
human phenotypes in disease populations. One value
proposition is that proteoform discovery and validation will
provide robust, protein-based biomarkers that can detect
disease early and guide the development of therapeutics in
the future of 21st century biomedicine. Such activities have
commenced using the technology described and validated in
this work.

Figure 4. (A) Quantitation of three proteoforms from the cytosolic protein ZEO1. Box and whisker plots are presented at the biological replicate
level of Z-scores for each of three proteoforms are shown along the right-hand side. The singly acetylated ZEO1 and the acetylated + phosphorylated
ZEO1 show significant changes; the unmodified form was not considered within the analysis because it was observed in fewer than 50% of the
technical replicates. (B) Quantitation of histone H4 proteoforms. Box and whisker plots (panels at right) are presented for the histone H4
proteoforms with 2, 3, and 4 acetylations. Again the monoacetylated and tetraacetylated proteoforms were not considered within our analysis
because they was observed in <50% of the technical replicates. In all cases, mass spectra are the sums of individual scans across its full elution time
within a single technical replicate. The symbol ** indicates significant (p < 0.05) proteoform abundance changes as reported by our platform.
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■ ABBREVIATIONS
AcN acetonitrile
AEBSF 4-(2-aminoethyl)benzenesulfonyl fluoride
AGC automatic gain control
ANOVA analysis of variance
BCA bicinchoninic acid
CV coefficient of variation
dMS differential mass spectrometry
DTT dithiothreitol
FDR false discovery rate
FT-ICR Fourier transform ion cyclotron resonance
G-418 Geneticin, O-2-amino-2,7-didesoxy-D-glycero-α-D-

gluco-heptopyranosyl-(1−4)-O-(3-desoxy-4-C-
methyl-3-(methylamino)-β-L-arabinopyranosyl-(1−
6))-D-streptamine

GELFrEE gel elution liquid fractionation entrapment electro-
phoresis

HCD higher energy collisional dissociation
IMT intact mass tag
MS mass spectrometry
MS1 intact/precursor scan
MS2 (or MS/MS), tandem mass spectrometry scan,

fragmentation
nLC nano liquid chromatography

Figure 5. Quantitation of histone H2B.1 and H2B.2 proteoforms across the WT vs Δrpd3 strains of S. cerevisiae S288c. H2B.1 proteoforms are
shown in dark blue and red respectively between WT and Δrpd3. H2B.2 proteoforms are shown in light blue and orange respectively between WT
and Δrpd3. Box and whisker plots at right show the significant hyperacetylation of histone H2B.1 (decrease in abundance of unacetylated and
increase in abundance of diacetylated) but fail to show a similar trend for histone H2B.2 (although levels of the monoacetylated H2B.2 are decreased
within Δrpd3).
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QMT quantitation mass target
SDS sodium dodecyl sulfate
TMT tandem mass tag
WT wild type
YPD yeast extract peptone dextrose
YPER yeast protein extraction reagent
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