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Abstract: Most in vivo 31P MR studies are realized on 3T MR systems that provide sufficient signal
intensity for prominent phosphorus metabolites. The identification of these metabolites in the in vivo
spectra is performed by comparing their chemical shifts with the chemical shifts measured in vitro
on high-field NMR spectrometers. To approach in vivo conditions at 3T, a set of phantoms with
defined metabolite solutions were measured in a 3T whole-body MR system at 7.0 and 7.5 pH, at
37 ◦C. A free induction decay (FID) sequence with and without 1H decoupling was used. Chemical
shifts were obtained of phosphoenolpyruvate (PEP), phosphatidylcholine (PtdC), phosphocholine
(PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), glycerophosphoetanolamine (GPE),
uridine diphosphoglucose (UDPG), glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), 2,3-
diphosphoglycerate (2,3-DPG), nicotinamide adenine dinucleotide (NADH and NAD+), phosphocre-
atine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate
(Pi). The measured chemical shifts were used to construct a basis set of 31P MR spectra for the
evaluation of 31P in vivo spectra of muscle and the liver using LCModel software (linear combina-
tion model). Prior knowledge was successfully employed in the analysis of previously acquired
in vivo data.

Keywords: in vivo MR spectroscopy; 31P MRS; LCModel; liver; muscle

1. Introduction

Magnetic resonance spectroscopy (MRS) equipment and protocols have become a
standard part of clinical MR systems; however, the interest is mostly focused on proton
(1H) in vivo MR spectroscopy, which is used in many research and clinical applications.

Another spectroscopy technique is phosphorous (31P) MRS, which has an even longer
history of in vivo applications [1]. Despite lower sensitivity, there is no overwhelming
prominent signal in 31P MR spectra that would require a special suppression technique
(as does the signal of water in 1H MR spectroscopy). In addition, 31P MR signals of
three important compounds of energy metabolism—phosphocreatine (PCr), adenosine
triphosphate (ATP), and inorganic phosphate (Pi)—show relatively high concentrations and
are well-resolved in in vivo 31P MR spectra. Moreover, 31P MR spectra can be measured
repeatedly with rapid succession during a physical challenge and reveal rapid changes in
energy metabolites (and, e.g., pH) over time. This is dynamic 31P MRS [2]. This technique
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thus significantly contributes to the understanding of energy metabolism of muscles and
other tissues [3].

Most of the 31P MR studies have been performed at 1.5 and 3 T systems, which provide
sufficient signal for dynamic studies and are available for routine clinical examinations and
research. In addition to well-resolved signals, such as PCr, Pi, and ATP in muscles, there
are a number of metabolites that resonate in the narrow range between 2–8 ppm and that
overlap each other and arise primarily from inorganic phosphate (Pi), phosphomonoesters
(PME), and phosphodiesters (PDE) (see Figure 1). The identification of these metabolites
in in vivo spectra is performed by comparing their respective chemical shifts with the
chemical shifts of individual solutions of chemical compounds measured in vitro.
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Figure 1. Examples of in vivo 31P spectra of the liver (a) and calf muscles (b). Black lines represent measured spectra, red
lines show spectra calculated by LCModel with the application of the BASISp data set, and the green line represents the calcu-
lated baseline. In the upper panels of the picture, individual contributions of metabolites to the calculated spectra are shown:
UDPG—uridine-diphosphoglucose; NADH/NAD+—nicotinamide adenine dinucleotide; 2,3-DPG—2,3 diphosphoglycer-
ate; G6P—glucose-6-phosphate; G1P—glucose-1-phosphate; MP—membrane phospholipids; PEP—phosphoenolpyruvate;
PC—phosphocholine; PE—phosphoethanolamine; GPE—glycerophosphoethanolamine; GPC—glycerophosphocholine;
PtdC—phosphatidylcholine (overlapped with PEP); ATP—adenosine triphosphate; ADP—adenosine diphosphate;
Pi—inorganic phosphate; PCr—phosphocreatine (in the case of the liver spectrum, this signal is the contamination;
it can serve as the standard for chemical shift measurement); PME—phosphomonoesters region; PDE—phosphodiesters
region. (In vivo spectra of the liver and calf muscles of a young, healthy volunteer were taken from the database of the
MR group IKEM. The liver spectrum was measured at 3 T TRIO MR system, 1 D ISIS, TR = 2 s, acq = 196, TE = 0.2 ms,
bandwidth 3000 Hz; muscle spectrum was obtained at VIDA 3 T MR system, FID sequence, TR = 15 s, bandwidth 2000 Hz;
unpublished results.
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Recently, a few ideas have been suggested that have sparked new research and
different interpretations. First, in the liver, the potential signals of phosphoenolpyruvate
(PEP), a key component of glycolysis and gluconeogenesis, and phosphatidylcholine (PtdC)
both resonate at a similar position around 2 ppm [4–6]. Even though PtdC is a major bile
component, it could also contribute to the signal from the hepatic parenchyma, and its
contribution cannot be neglected [4].

Second, applying proton decoupling at 3 T, or using ultra-high-field systems (≥7 T),
the resonances of PME and PDE can easily be split into individual components of phospho-
choline (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophos-
phoethanolamine (GPE). Total PDEs and/or PMEs are linked to glucose homeostasis [7],
overall skeletal muscle health [8], and liver cirrhosis [9]. Lately, specific levels of skeletal
muscle GPC have been suggested as a biomarker for tissue-specific thyroid action [10].

Furthermore, the role of nicotinamide adenine dinucleotide (NADH) and uridine
diphosphoglucose (UDPG) in energy metabolism is undisputed, and both are accessible to
31P MRS. Although their resonances are often unresolved (due to bad shim) or partially
overlapped by the dominant αATP signal, the application of 1H-31P broadband decoupling
can significantly improve their resolution even at 3 or 4 T magnetic fields (for details see
Discussion, Sections 3.4 and 3.5).

Another interesting task is the assignment of the second Pi skeletal muscle signal in
several pathophysiological conditions [8,11–13]. Not only was there a significant increase
observed in athletes [13] and a decrease in an obese sedentary population [11] but changes
in patients with severe diabetes-related ischemia were also observed [8]. It was suggested
that this signal arises from interstitia, but mitochondrial phosphate cannot be excluded.
Even at 3 T, magnetic field signals in the range of 2 to 8 ppm are not well-resolved, and
identification of metabolites in this range is based only on the comparison of signal maxima
with in vitro data.

In this report, 31P chemical shifts and coupling constants are presented for fifteen
metabolites that can be observed in living tissue using 31P MR spectroscopy. These MR
chemical shifts were determined from the measurement of individual phantom solutions in
a whole-body 3 T MR system, which mimicked standard in vivo conditions (temperature
37 ◦C and pH~7), thus enabling a comparison of these data to the results of high-field NMR
spectroscopy and other literature data. Furthermore, we used these spectra acquired in
phantoms to create a 3 T spectral basis, and we included some additional literature data
that can be used for deconvolution of in vivo 31P MR liver and skeletal muscle spectra by
LCModel software [14] (linear combination of individual components in the frequency
domain). Creating this prior knowledge allowed an approach to the analysis of previously
acquired in vivo spectra.

2. Results

All metabolites were measured in a solution of pH 7.0 and 7.5, which covered a
range of cytosolic, interstitial, vascular, and mitochondrial pH values. Table 1 summarizes
the concentrations, multiplicity, chemical shifts, and interaction constants (J-coupling
constant) of all 15 compounds in phantoms as prepared and measured in this study.
PCr was used as an internal standard with a chemical shift of 0.0 ppm. See spectra in
Supplementary Material.

Solutions of metabolites were prepared in K2HPO4 and NaH2PO4 buffers, which guar-
anteed sufficient stability of the compounds for 31P MRS experiments within a few days.
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Table 1. Concentration of 31P MR phantoms, their chemical shifts (ppm) and coupling constants.

Metabolite Product
Number

Concentration
in Phantoms

(mM)
Multiplicity

Chemical
Shift at
pH = 7.0

Chemical Shift
at pH = 7.5

Chemical Shift
In Vivo

J-Coupling
(Hz)

Basis Set
Deelchand

BASISp Set
Present Study

Phosphocreatine P7936-5G 1 PCr 5 s 0 0 0 - 0 0
Inorganic phosphate Pi 40 s 4.78 5.27 ~5 - 4.84 4.78

Adenosine triphosphate A2383-1G αATP 10 d −7.98 −7.94 ~7–8 19.5 −7.56 −7.53
βATP 10 t −18.80 −18.58 ~16 20.0 −16.18 −16.18
γATP 10 d −4.18 −3.37 ~3–4 19.0 −2.53 −2.7

Adenosine diphosphate 29349990900 αADP 10 d −7.28 −7.32 - 19.0 - -
βADP 10 d −3.50 −3.20 - 19.5 - -

Phosphoethanolamine P0503-1G PE (PME) 10 t 6.74 6.85 6.78 7.0 6.77 6.77
Phospholcholine P0378G PC (PME) 10 t 6.19 6.35 5.9 6.0 6.23 6.23

Glucose 1-phosphate G1259-1G G1P 10 d 4.99 overlay with
Pi (5.20)

overlay
with PME 7.5 - 4.99

Glucose 6-phosphate G7879-1G G6P 10 t 7.03 7.30 7.1–7.2 6.1 - 7.03
Phosphoenolpyruvate P7127-500MG PEP (PME) 10 s 2.00 2.27 2.06 - 2
Phosphatidylcholine PtdC 3 10 t 2.14 2.13 2.06 - 2.14

Glycerol-3-phosphoryl choline G5291-100MG GPC (PDE) 10 t 2.97 2.96 2.76 5.5 2.94 2.97
2.3-diphosphoglycerate D9134-100MG 2,3-DPG(PDE) 2 2 2- d 4.09 4.6 5.5 6.0 5.23 4.05

3- t 5.338 5.84 6.3 9.5 5.71 5.32
Nicotinamide adenine

dinucleotide (reduced form) N8129-1G NADH 10 s −8.16 −8.16 ~8.1 −8.13 −8.13

Nicotinamide adenine
dinucleotide (oxygenated form) 10127981001 NAD+ 10 s −8.32 −8.32 ~8.3 6.0 −8.31 −8.31

Uridine diphosphoglucose U4625-500MG UDPG 2 2 d −8.11 −8.11 −8.1 10.0 - −7.98
UDPG 2 2 d −9.78 −9.78 −9.8 10.0 - −9.78

4Membrane phospholipids MP 2.3 2.3
4Glycerophosphoethanolamine GPE 3.49 3.49

1 PCr was used as an internal standard; 2 K2HPO4/NaH2PO4 to c = 10 mM; 3 40% ethanol with the addition of Triton 100 as a surfactant; 4 taken from [15]. s—singlet; d—doublet; t—triplet.



Molecules 2021, 26, 7571 5 of 15

Measured 31P chemical shifts of all compounds were used for the construction of a
basis set for the evaluation of skeletal muscles and liver spectra, which is necessary for
LCModel application. Figure 1 shows representative spectra of calf muscles and liver
calculated with the newly constructed BASISp. In addition to the basis set proposed by
Deelchand [15], signals of UDPG, G1P, G6P, PEP, and PtdC were appended. Some chemical
shifts were optimized during testing to better suit in vivo conditions. Additionally, signals
of macromolecule membrane phospholipids (MP) and glycerophosphoethanolamine were
included based on the literature data [15,16]. Finally, BASISp used for the analyses con-
tained 19 signals of 17 model spectra summarized in Table 1. It was generated internally
during analysis based on the specified input parameters. ADP was omitted intentionally
as the α- and β-ADP resonances are overlapped by stronger α and γ-ATP resonances.
The signals of the three ATP phosphorus signals covering a significant part of the spectral
range (from −2 to −17 ppm) were described by three separate data sets to accommodate
different linewidths (Lorentzian signals). The chemical shifts of α, β, and γ phosphorus
atoms of ATP were also modified to better suit in vivo conditions.

In addition to the representative spectra of the liver and calf muscles (Figure 1), a
pilot comparison of LCModel and jMRUI calculation of signal intensities of five randomly
chosen liver spectra and five muscle spectra from our database was used. Coefficients of
variation were used for the comparison, and results are summarized in Table 2.

Table 2. Pilot comparison of the LCModel and jMRUI method calculation of means of relative signal
intensities (%) and relative Cramér Rao Lower Bounds (CRLB, %) of five liver and muscle spectra
and means of their coefficients of variance CV (%) for the comparison. The BASISp set was applied.

Liver γ-ATP α-ATP β-ATP GPC PCr Pi

jMRUI Relative signal intensity 23.3 26.9 13.4 21.6 2.5 12.3
Relative CRLB 2.0 1.9 4.0 3.9 19.6 3.9

LCModel
Relative signal intensity 26.0 34.1 11.3 15.6 3.3 9.7

Relative CRLB 3.3 2.7 4.7 6.0 11.0 5.0
mean CV 11 23 16 37 33 23

Muscle γ-ATP α-ATP β-ATP GPC PCr Pi

jMRUI Relative signal intensity 12.4 10.3 10.0 2.6 60.2 4.4
Relative CRLB 1.2 1.5 2.0 8.8 <1 1.9

LCModel
Relative signal intensity 14.6 12.2 10.5 3.4 53.6 5.7

Relative CRLB 1.7 2.0 2.3 8.7 <1 2.0
mean CV 16 17 5 24 12 25

The characterization of CV was used: CV < 10 is very good agreement, 10–20 is good agreement, 20–30 is
acceptable agreement, and CV > 30 is not acceptable.

3. Discussion

The availability of ultra-high field imagers (≥3 T) also enables the study of less promi-
nent 31P metabolites in muscles [8,11,17,18], liver [4,9,19], and brain tissue [16,20,21]. These
less frequently assessed metabolites may be divided into phosphomonoester (PME) and
phosphodiester (PDE) groups according to their chemical shifts ranging from approx. 5–7
and 1–5 ppm, respectively. In the PME area, signals of chemical components, such as
phosphoethanolamine (PE), phosphocholine (PC), glucose-1-phosphate (G1P), and glucose-
6-phosphate (G6P), can be found. In the PDE area, signals of glycerophosphoethanolamine
(GPE), glycerophosphocholine (GPC), phosphatidylcholine (PtdC), and phosphoenolpyru-
vate (PEP) can be recognized. Another area of interest is the chemical shifts from −7 to
−8.5 ppm where, e.g., signals of αATP, adenosine diphosphate (αADP), nicotinamide ade-
nine dinucleotide (NADH/NAD+), and uridine-diphosphoglucose (UDPG) can be found.
The contribution of membrane phospholipids should also be taken into consideration [16].

The exact in vivo chemical shift position of 31P metabolites may be influenced by a
number of parameters. One of the most important is pH, which differs in different com-
partments of cells and tissues or may change under pathologic conditions. Physiological
pH of body tissues usually ranges from 7.0 to 7.5. Intracellular cytosolic pH 7.0 is the same
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as the pH of the endoplasmic reticulum [22–24] (hepatocytes); the interstitial pH of the
brain cortex is 7.2 [25]; and the mitochondrial matrix ranges between pH 7.5 and 8.2 in
various cells and their metabolic state [26,27]. Arterial and venous pH is about 7.3–7.45,
and the pH inside red cells is slightly lower, about 7.2–7.3 [28,29]. However, tissue pH may
reach lower values in ischemia or after anaerobic exercise in muscle. In the brain cortex,
one hour of ischemia decreases interstitial and intracellular pH from 7.24 and 7.01 to 6.43
and 6.86, respectively [25]. The pH of a resting myocyte is about 7.0, which can increase
slightly during exercise (about 0.1); however, during intensive (anaerobic) exertion, the pH
drops from 7.0 to 6.5 or less [17].

Most of the molecules relevant to 31P MRS evaluation are located in the cell cytosol;
therefore, at a pH of 7 under physiological conditions. NAD+/NADH, ADP, and ATP
are also present in the mitochondrial matrix (pH 7.5–8). G6P is transported from the
cytosol to the endoplasmatic reticulum (ER) to be dephosphorylated to glucose only in the
hepatocytes. However, a typical pH of the hepatocyte cytosol and the ER is the same and
equals pH 7 [22–24]. A prominent 31P signal of blood is 2,3-diphosphoglycerate (2,3-DPG),
located in red cells, therefore with a pH of 7.2. However, in red cells, the 2,3-DPG signal is
not only affected by pH but also modified by its binding to hemoglobin.

In the sections that follow, further individual metabolites are discussed in detail.

3.1. Energy Metabolites—Phosphocreatine (PCr), Inorganic Phosphate (Pi), Adenosinetriphosphate
(ATP), and Adenosinediphosphate (ADP)

PCr, Pi, and ATP metabolites are closely related to energy turnover and come into
prominence especially in muscle metabolism studies. PCr is a dominant signal in muscles,
whereas, in the liver and kidney, it is not detected. In skeletal muscles, PCr concentration is
about 33 mM and Pi is about 4.5 mM [30]. The PCr signal, with a chemical shift of 0.0 ppm,
is widely used as an internal standard for in vivo 31P MR experiments; in our case, it
was also used as an internal reference for all our phantoms. To verify the stability of PCr
frequency with pH alterations in phantoms, the signal of two phantoms with a pH of 7.0
and 7.5 were acquired in one spectrum. In the resultant spectrum, only one PCr peak was
then present, which implies an identical chemical PCr shift in both conditions. However,
the chemical shift position of PCr is not totally insensitive to pH change if pH changes an
order of several units, as McDowell and Stewart have shown [31]. For more details, see the
literature, e.g., [17,32–34].

Pi, which participates in energy reactions in living tissue, has been present in all
phantoms as a buffering agent. The chemical shift of Pi strongly depends on pH and is
controlled by the equilibrium

HPO2−
4 + H+ � H2PO−

4

Frequently used equation for the calculation of pH in vivo is based on the Henderson–
Hasselbalch equation in the form:

pH = 6.75 + log ((δ − 3.27)/(5.63-δ))

where δ is the chemical shift frequency difference between pH-dependent Pi and pH-
independent reference peak (in ppm). Usually, this reference peak is PCr, but it can also
be, e.g., αATP [34] or some other metabolites [32]. In our phantoms, the δ was used to
control the pH measured by a pH meter. In vivo, Pi is usually visible as a single signal, but
under some pathological conditions or with improved spectral resolution due to the higher
field-strength, an additional Pi signal can be visible [8,11,12].

The 31P MR spectrum of ATP is characterized by three phosphorus signals split
into doublets (α, γ) and a triplet (β) due to JP-H. In vivo chemical shifts of ATP signals
are significantly influenced by pH and the presence of ions, as are Zn, Cu, Mg2+, and
Ca2+, which form ATP complexes with different chemical shifts. Depending on pH, ion
concentration chemical shifts can be changed. The literature data show in vivo chemical
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shifts in the ranges: α~7–8, β~16, and ~3–4 ppm [35,36]. It should be mentioned that only
the β-ATP signal arises from pure ATP, whereas αATP includes small contributions from
NAD+/NADH and αADP, and γATP usually contains a contribution from β-ADP.

In our phantoms, the chemical shifts of α and γ phosphorus are in this in vivo range;
however, β-phosphorus is shifted up to 18.8 ppm. Nevertheless, this is in agreement with
other findings reported in the literature [37–40].

Whereas ATP cellular concentration in muscles is assumed to be constant in young
healthy individuals and is about 5.5 mmol/kg wet weight, which equals 8.3 mM cell water,
ADP concentration is very low. Indeed, in resting muscle, it is only about 13 µmol [30], and
thus impossible to detect by 31P MRS directly. For more information on ATP detection, see
the literature [30,41–43].

3.2. Phosphomonoesters (PME)

Phosphomonoesters mainly represent intermediates on the phospholipid biosynthesis
pathway. The main components of the PME signal are phosphocholine (PC) and phos-
phoethanolamine (PE), and small signal contributions are derived from sugar phosphates.
PME resonate in a rather broad frequency range between 2 to 8 ppm, and thus they partly
overlap with the PDE frequency region.

3.2.1. Phosphocholine (PC) and Phosphoethanolamine (PE)

Both phosphocholine (PC) and phosphoethanolamine (PE) molecules have one phos-
phorous atom that forms a multiple triplet structure between 6 and 7 ppm. 1H decoupling
simplifies the signal shape from a triplet to a singlet. The change of chemical shift is only
0.1–0.2 ppm between pH 7.0 and 7.5. The PE chemical shift of 6.7–6.8 ppm in the phantom
was in good agreement with the in vivo value (6.78 ppm), and the chemical shift of PC
(6.2–6.4 ppm) was slightly higher compared to the in vivo chemical shift of 5.9 ppm [36].

In 31P MRS, signals of PC and PE often overlap; therefore, they are usually evaluated
as a combined PME (phosphomonoester) signal. An increase of PC was shown using
high-resolution 1H MRS, and similarly, an increased PME signal was observed in vivo in
various cancers; for review, see [44]. In muscles, PME concentration is very low. However,
in the liver, PME concentration is about 1–3 mM [9,19,45], and the PME signal is one of
dominant signals in the spectra.

3.2.2. Phosphoenolpyruvate (PEP) and Phosphatidylcholine (PtdC)

The phosphoenolpyruvate (PEP) signal is a singlet and, in our phantom, showed a
chemical shift between 2.0 and 2.27 ppm at a pH of 7.0 and 7.5, respectively. The strong
dependence of the PEP signal on pH has already been described by Bierwagen [5], who
measured chemical shifts of 1.53 and 2.13 ppm at a pH of 7 and 8, respectively. Similarly,
Chmelik [4] reports a change in the chemical shift of PEP from −1 to 2.5 ppm in the pH
range from 0 to 14 (~1.6 ppm at pH 7).

Very close to the chemical shift of PEP is the chemical shift of phosphatidylcholine
(PtdC). It is one of the main compounds in the bile and can decrease in patients with
cholangiopathies [46]. PtdC itself is very poorly soluble in water, and therefore, its reso-
nance frequencies were obtained in ethanol–water mixtures (with a Triton−100 surfactant).
We measured the chemical shift values between 2.14 and 2.13 ppm at pH 7.21 and 7.5,
respectively. This is in accordance with the values obtained by Bierwagen [5] (chemical
shift of PtdC of 2.15 and 2.16 ppm at a pH of 7 and 8) and Chmelik [4] (the phantom
chemical shift of 2 ppm).

In the in vivo 31P MR spectra of the liver, the signal at 2.06 ppm was attributed to
the combined signal of phosphoenolpyruvate and phosphatidylcholine, with an average
concentration of 1.67 mM. Detailed studies [4,5] have shown that the main contribution
comes from PtdC. In the liver parenchyma, this signal also appears and increases with
decreasing distance of the VOI from the gallbladder. Therefore, the VOI for measuring
the liver parenchyma should be carefully positioned to avoid unwanted signal overlap.
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In muscles in vivo, the PEP signal is at the noise level, so it cannot be evaluated and
compared with the in vitro signal.

3.2.3. Glucose-1-Phosphate (G1P) and Glucose-6-Phosphate (G6P)

Signals of both these compounds can be found in the range of 4 to 7 ppm. The G6P
chemical shift position in vitro (7.03 ppm at pH = 7) corresponds to the in vivo position of
G6P = 7.1–7.2 ppm [36,47].

Without proton decoupling G1P forms a doublet and G6P forms a triplet signal.
The proton decoupling technique simplifies both of them to singlet signals. In the G6P
signal, two other minor signals were found, probably from other enantiomer/isomers of
glucose. A pH change from 7 to 7.5 results in a chemical shift difference of ±0.2 ppm for
both metabolites.

In vivo skeletal muscle concentrations of G6P were shown to be around 0.1 (mg/kg
muscle) [48,49] with a blunted, insulin-stimulated increase in insulin-resistant and type 2 di-
abetic patients, as well as in conditions in which plasma free fatty acids are elevated [40,50].
The muscle concentration of G1P is too low to be detected by 31P MRS in vivo; moreover,
its signals are overlapped by other phosphomonoesters (PME) [47].

3.3. Phosphodiesters (PDE)

Phosphodiesters resonate in a frequency range from 2 to 4 ppm and include several
compounds that are difficult to separate due to insufficient resolution if a low magnetic
field is used. PDE may reflect (and serve as a marker of) membrane damage. Importantly,
PME and PDE signals of 31P MRS may be also used in the diagnosis of liver diseases.
In cirrhosis, the PDE signal has been shown to decrease compared to healthy controls or
patients with steatosis [9,50].

The overall PDE concentration in the liver reported from 31P MR spectra in vivo is
in the range between 5 and 13 mM [9,19,51–56]. It depends on the number of metabolites
included, spectra resolution (1.5–7 T), and corrections to relaxation times.

PDE concentration in resting muscles ranges between 2–10 mM [11,52] and is related
to energy metabolism [7] or neuromuscular conditions [57]. It increases with age [58] and in
overweight subjects with a sedentary lifestyle [11] and also depends on physical status [59].

3.3.1. Glycerophosphocholine (GPC)

Glycerophosphocholine (GPC) is, in addition to glycerophosphoethanolamine (GPE),
the main component of the PDE signal observed in vivo. In the liver and muscles, GPC
concentration is about 2–4 mM [4,11,19,56]. Recently, skeletal muscle and hepatic GPC
were suggested as biomarkers of the tissue-specific action of thyroid hormones [10].

The chemical shift position of GPC was almost independent of pH. Proton decoupling
simplified the triplet signal to a singlet. An in vitro chemical shift of 3 ppm was slightly
different from the in vivo position of 2.76 ppm [4].

3.3.2. 2,3-Diphosphoglycerate (2,3-DPG)

In the structure of 2,3-DPG, there are two phosphorus atoms providing signal—a
doublet and a triplet at positions 4.1, 5.3 ppm (pH = 7) and 4.6, and 5.8 ppm (pH = 7.5) in a
phantom. Proton decoupling simplifies this multiple structure to two singlets. In blood
in vivo, both signals of 2,3-DPG are singlets at positions of 5.5 and 6.3 ppm. The difference
between 2,3-DPG signals in vitro in a phantom and in blood may be explained by the
2,3-DPG association with hemoglobin in erythrocytes and its paramagnetic effect that
strongly influences the chemical shift of 2,3-DPG [29].

The concentration of 2,3-DPG is strongly dependent on pH and very sensitive to
the energy demand of the erythrocytes. The normal concentration of 2,3-DPG is about
4.5–5.1 mM packed red cells or 10.5–16.2 µmol/g Hb. Neonatal values are about 20% lower
than those in an adult [60].
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The presence of 2,3-DPG in erythrocytes is the basis for a typical 31P MRS signal
of blood. Its presence in the 31P MR spectra of the heart indicates contamination of the
myocardial signal by the signal of blood.

3.4. Nicotinamide Adenine Dinucleotide Metabolites (NAD+, NADH)

The pair of NAD+/NADH is an electron acceptor/donor in a redox reaction involved
in cellular metabolism. The 31P signals of both compounds without 1H decoupling are
singlets with positions at 8.32 (NAD+) and 8.16 (NADH) ppm, both insensitive to pH
change. 1H decoupling reshapes the NAD+ signal to a doublet centered at 8.32 ppm, while
the NADH signal only narrows. Measured in vitro shift positions are in good agreement
with other in vitro and in vivo NAD+/NADH measurements, where shifts of ~8.1 ppm for
NADH and ~8.3 ppm for the center of NAD+ have been reported with 4 to 11.7 T [61,62].
Similarly, in decoupled spectra, the NADH signal had the shape of a singlet and NAD+

had the shape of a doublet/quartet.
The concentration of NAD+/NADH and their ratio can be determined in vivo by MR

techniques at magnetic fields of 3–7 T. However, the resonances of NAD+ and NADH
are difficult to analyze separately without 1H decoupling. The analysis allows for the
determination of the NAD+/NADH redox state of the tissue, e.g., in the brain, equal to
5.7 [21]. Total intracellular NAD+/NADH concentration is approximately 0.4 mM in the
human brain [20,63] or 0.5 mM in the muscle of young, healthy volunteers [64].

3.5. Uridine Diphosphoglucose (UDPG)

The UDPG molecule contains two nonequivalent phosphorus nuclei. The JP-P, as
well as the JH-P interaction, strongly modulates their signal. The application of proton
decoupling simplifies the signal to two doublets with center positions at −9.8 ppm (phos-
phorus attached to the glucose part) and −8.2 ppm (phosphorus attached to the ribose
part) [20,65]. In vivo, the UDPG signal at −8.1 ppm partially overlaps with NADH (resonat-
ing at −8.16 ppm), but signal at the −9.8 ppm position is well-resolved. The concentration
of UDPG is approximately 0.2–0.3 mM in the brain [20] and 2.00 ± 0.22 mM wet tissue in
the liver [19]. It seems that hepatic UDPG content does not change with age or weight [55],
NAFLD, or cirrhosis [6,19].

Uridine diphosphate glucose (UDP-glucose) is an “activated” form of glucose because
UDP provides additional energy to the glucose molecule. As such, UDPG is a precursor of
polysaccharides (glycogen), glycoproteins, lipopolysaccharides, and glycosphingolipids.
UDP-glucose can also be converted into UDP-galactose and UDP-glucuronic acid used in
the synthesis of polysaccharides containing galactose and glucuronic acid.

3.6. 31P Basis Set for LCModel Calculations

The commonly used quantification of in vivo MR spectra is performed in the time
domain using the jMRUI software package [66], or, in the frequency domain using LCModel
software [14]. Both approaches require prior knowledge of chemical shifts, interaction
constants, widths, and relative signal intensities within one molecule. These parameters are
obtained by an analysis of the spectra of metabolites measured in vitro or from simulated
spectra. The LCModel package is mostly used to analyze 1H in vivo MR spectra in the
range of chemical shifts of 5–10 ppm. In this report, we used it to evaluate 31P in vivo
spectra. Its application for the analysis of 31P spectra with signals resonating in the
spectral range of about 30 ppm is more difficult and is not often used. Recently, however, a
successful modification of the input parameters of the calculation of 31P and 13C spectra was
proposed [16,67–69], which enabled the correct definition of the baseline of the spectrum.
We adapted these input parameters, and we used our basis set for the analysis of 31P spectra
of muscles and the liver. The chemical shifts of all 15 metabolites in phantoms measured at
3 T were in agreement with published high-resolution in vitro NMR spectra and simulated
datasets. In addition, small changes of chemical shifts of ATP were necessary for in vivo
applications, as described above. Two other signals were added to the BASISp—the signal
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of membrane phospholipids and GPE based on the parameters from the literature [15].
The basis set used for the analyses contained 19 signals of 18 model spectra (Table 1)

The full BASISp set for LCModel was used in a representative calculation of the 31P
MR calf muscle and liver spectra, as shown in Figure 1.

In addition, the comparison of the LCModel and jMRUI methods was performed
on a group of five randomly selected 31P liver spectra and five spectra from the calf
muscle (at rest) from our internal database, see Table 2. The modified BASISp set with
only six prominent signals in both measured tissues was used. The calculated relative
intensities are similar for most signals, as shown by the coefficients of variation (CV) of the
metabolite relative intensity signals in Table 2. Concerning muscle spectra, both methods
give similar results with the highest but still acceptable CV for GPC and Pi. As expected
in the liver due to lower signal to noise, the highest CV values (CV > 30, unacceptable
difference) were obtained for GPC signal, which represents different PDE metabolites.
In addition, PCr signal was also used in this case for comparison, although it represents
only contamination from the surrounding tissue, see Table 2. CVs in this pilot test show
that both LCModel and jMRUI methods often reach similar results; the difference originates
from different mathematical principles of signal intensity calculation, as described in the
original literature [14,66].

Regarding the calculation of the concentration of metabolites, a number of papers
have been published concerning the application of LCModel frequency domain approach
to 1H MRS (mostly brain), and most of the 31P MRS reports used the AMARES based
jMRUI time–domain fitting approach. Besides the historical reason for this difference, there
was no available complete basis set for muscle or liver 31P MRS that could be used for
LCModel. In line with our experience from 1H MRS data processing, the LCModel is more
useful for routine calculation of larger data sets than jMRUI. The AMARES-based jMRUI
approach, on the other hand, can be used more easily to characterize and analyze a single
spectrum. Based on our experience and the result of this study, we think that it is useful to
combine both methods for evaluating spectra.

4. Materials and Methods
4.1. Phantom Preparation

All chemicals from Table 1 were purchased from the Sigma-Aldrich Company.
Structural formulas are depicted in Supplementary Materials. MgCl2, K2HPO4, and
NaH2PO4 were obtained from Lachema, Brno, Czech Republic.

Phantoms of 100 mL volume consisted of water solutions: MgCl2 (concentration
CMgCl2 = 0.35 mM), K2HPO4, and NaH2PO4 1:1 (concentration Csum = 40 mM) and phos-
phocreatine (concentration CPCr = 5 mM) (as a standard). To this solution, metabolites were
added to reach a final concentration of 10 mM; see details in Table 1. UDPG and 2,3-DPG
phantoms were prepared with a lower concentration of c ~2 mM. In these phantoms, the
concentration of K2HPO4/NaH2PO4 was reduced to c = 10 mM.

MgCl2 was added to phantoms to stabilize solutions because Mg2+ ions often form
complexes with 31P metabolites that may affect the shape and chemical shift of the 31P
metabolites [37,70]. The K2HPO4 and NaH2PO4 were used to buffer pH and prevent
cleavage of Pi from 31P metabolites.

Two phantoms with a pH of 7.03 and 7.50 were prepared for each metabolite. pH was
adjusted by titration of NAOH/HCl in solutions at 37 ◦C and slightly fluctuated about
±0.05 during adjustment. The pH of phantoms was also verified during MR measurement
from differences in the chemical shift between the PCr and Pi signal.

In addition, a blood phantom for in vitro measurement of human venous blood was
prepared for the comparison of 2,3-DPG solutions. The blood phantom consisted of 50 mL
human blood with heparin.

Two phantoms were prepared without other specific metabolites containing PCr
(CPCr = 5 mM), MgCl2, and K2HPO4/NaH2PO4 with a pH = 7.03 and 7.5 to test the pH
dependency of the chemical shift position of PCr on pH.
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4.2. 31P MR Spectroscopy

Measurements were performed using a 3T MR system, VIDA (Siemens Healthineers,
Erlangen, Germany) equipped with a dual-channel 1H/31P surface coil (Rapid Biomedical,
Rimpar, Germany) with a diameter of 11 cm and an interface device; see Figure 2.
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Figure 2. Arrangement of the phantom 31P MRS experiment. A plastic bucket filled with water keeps
the temperature and loading of the coil.

An MRI localizer sequence was used to verify the position of the phantom and
adjustment volume, which was defined as a cube (35 × 35 × 35 mm) in the center of
the phantom. Automatic and manual adjustment of magnetic field homogeneity were
performed at the water signal; an excellent half-width of the water signal (3–4 Hz) was
achieved for all phantoms in defined adjustment volume (a critical step in achieving
excellent magnetic field homogeneity was to align the water level in the phantom and
temperature reservoir to the same position before measurement).

Two free induction decay (FID)-based non-localized 31P MR spectroscopic sequences
were applied in each phantom with the same parameters, as follows: repetition time (TR)
of 15 s; acquisition delay (TE*) = 0.4 ms, number of acquisitions (acq) = 64; flip angle
(FA) = 90◦ (BIR-4 adiabatic pulse); vector size = 2048; and bandwidth = 1000 Hz (20 ppm)
to cover chemical shift of studied metabolites. Transmitter frequency was set to that of the
PCr signal except for the ATP measurement; it was shifted to the signal of αATP in this case
to excite all ATP signals sufficiently. Non-slice selective proton decoupling (the WALTZ4
decoupling scheme) was applied in the second sequence to cancel the JP-H interaction
(standard Siemens setting—decoupling pulse duration 1 ms, decoupling duration 1000 ms,
decoupling flip angle 90 or 180◦, offset frequency for 1H—0 ppm, duty cycle 50%).

4.3. Spectra Evaluation

Spectra were loaded into jMRUI software (version 6.0). Manual correction of the
phase (zero- and first-order) was performed to obtain the absorption shape of phosphorous
signals, and then the position of the PCr and second metabolite were read according to
their maxima. The BASISp set for 31P LCModel version 6.3–0 G was constructed from
phantom chemical shifts presented in Table 1.

To analyze in vivo data, the spectra were phased manually in the jMRUI software
to obtain reliable prior knowledge of the zero- and first-order phase parameters used
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further in the LCModel analysis (starting points and standard deviations, DEGZER = −96,
SDDEGZ = 10, DEGPPM = 7, SDDEGP = 4). In addition, the following LCModel input
parameters were used: DKNTMN = 2*99; XSTEP = 5; RFWHM = 3; FWHMBA = 0.049;
NREFPK(2) = 1; PPMREF(1,2) = 0; and DESDSH = 0.01. The default values that de-
fine the spline baseline function were also adjusted to take into account the larger spec-
tral range of 31P compared to 1H: ALPBMN = 7.8 × 10−10; ALPBMX = 3.9 × 10−7;
ALPBPN = 9.8 × 10−10; and ALPBST = 1.2 × 10−9, as mentioned previously [71]. A repre-
sentative evaluation of in vivo 31P MR spectra of the liver and calf muscles using LCModel
software and the BASISp basis set is shown in Figure 1 and Table 2.

5. Conclusions

The 31P chemical shifts of 15 metabolites were measured under conditions close
to those of an in vivo examination at 3T and were compared and supplemented with
published values for in vitro and in vivo conditions. Based on all these data, a set of
19 signals necessary for the successful quantification of in vivo liver and muscle spectra
by LCModel software was generated. The tabulated values of chemical shifts can also
be used for other methods of in vivo spectra analysis, e.g., jMRUI software and other
analytical procedures.

Supplementary Materials: The following are available online: spectra and chemical structures of
measured metabolites.
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