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ABSTRACT

The success of protein engineering and design
has extensively expanded the protein space, which
presents a promising strategy for creating next-
generation proteins of diverse functions. Among
these proteins, the synthetic binding proteins (SBPs)
are smaller, more stable, less immunogenic, and bet-
ter of tissue penetration than others, which make the
SBP-related data attracting extensive interest from
worldwide scientists. However, no database has been
developed to systematically provide the valuable in-
formation of SBPs yet. In this study, a database
named ‘Synthetic Binding Proteins for Research,
Diagnosis, and Therapy (SYNBIP)’ was thus intro-
duced. This database is unique in (a) comprehen-
sively describing thousands of SBPs from the per-
spectives of scaffolds, biophysical & functional prop-
erties, etc.; (b) panoramically illustrating the binding
targets & the broad application of each SBP and (c)
enabling a similarity search against the sequences
of all SBPs and their binding targets. Since SBP is
a human-made protein that has not been found in
nature, the discovery of novel SBPs relied heavily
on experimental protein engineering and could be
greatly facilitated by in-silico studies (such as AI
and computational modeling). Thus, the data pro-
vided in SYNBIP could lay a solid foundation for
the future development of novel SBPs. The SYN-
BIP is accessible without login requirement at both
official (https://idrblab.org/synbip/) and mirror (http:
//synbip.idrblab.net/) sites.

GRAPHICAL ABSTRACT

INTRODUCTION

The success of protein engineering and design has exten-
sively expanded the protein space (1–3), which presents a
promising strategy for developing next-generation proteins
of diverse functions, such as binders (4,5), enzymes (6,7),
biosensors (8–10), etc. Protein engineering was first applied
to design antibodies (11) that were used as an essential tool
for virtually every biological research discipline (12). How-
ever, various serious attributes of antibodies (such as large
size, poor folding, & stability issue) limit their application in
living systems (13). Therefore, the idea of synthesizing bind-
ing protein using scaffold from antibody fragments (e.g.
nanobody (14–16)) or non-antibody (e.g. designed ankyrin
repeat protein (17)) has recently emerged as a popular
technique (18–20), which opens up exciting opportunity to
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develop numerous synthetic binding proteins (SBPs, that
are tailored to bind to a particular molecular target of in-
terest) (21–28).

Compared with classical antibodies, the SBPs are smaller,
and most of them are more stable, less immunogenic, and
better of tissue penetration (24,29–31), which makes them
hold great promise for tackling biomedical challenges, such
as COVID (32–37), cancers (38–41), and CNS disorders
(42,43). Moreover, many SBP-based biological therapies ex-
hibit their clinical implications with some drugs approved
(e.g. Ecallantide (44)) and others in clinical trials/preclinical
investigations (45,46). Due to the great importance, SBP-
related data attract extensive interests from worldwide sci-
entists (47–54). Such data include (i) the appropriate scaf-
folds that shape the starting point of rational SBP design
(47,48), (ii) the biophysical (e.g. thermal stability) & func-
tional (e.g. binding conformation variation) properties of
SBP that determine target binding potency (49,50,55) and
(iii) the structure and sequence properties of privileged
SBPs that can facilitate the design of new SBPs of mini-
mized off-target interaction (52–54). In other words, these
data are essential for the fields of protein engineering and
the development of next-generation proteins (54,56).

So far, several SBP-related databases have been devel-
oped and are currently active, the majority of which fo-
cus on providing intact data of antibody (e.g. ABCD (57)
and Yvis (58)) or nanobody (e.g. Thera-SAbDab (59) and
sdAb-DB (60)), and another of which are specialized in de-
scribing structural classification of diverse antibodies (e.g.
PyIgClassify (61)). Moreover, some reputable databases
(e.g. STRING (62), BioGRID (63), DifferentialNet (64),
HPRD (65), and IntAct (66)) and tools (e.g. iLearnPlus
(67), and DeepCleave (68,69)) demonstrating a wealth of
information of protein–protein interactions and convenient
analyses of protein sequences have been available. How-
ever, no database has been constructed yet to systemat-
ically describe the SBPs’ information of their scaffold,
sequence, structure, biophysical/functional property, and
so on.

Herein, a new database, synthetic binding proteins for re-
search, diagnosis, and therapy (SYNBIP) was therefore in-
troduced. First, comprehensive literature reviews on SBPs
were conducted, and thousands of unique SBPs binding
specifically to physiologically relevant targets were col-
lected. These SBPs were from diverse scaffolds, such as af-
fibodies (70), anticalins (71), DARPins (17), i-bodies (72),
monobodies/adnectins (73), nanobodies (14), repebodies
(74), scFabs (75), scFvs (76) and vNARs (77). Second,
based on the collected SBPs, their binding targets were
manually curated from literatures, and the panoramic view
of their binding profile and application (therapy, diagno-
sis and/or research) was provided. Third, the sequence-
based similarity search against all SBPs and their bind-
ing targets was enabled to facilitate the design of novel
SBPs and application to new research directions. All these
efforts contributed to the unique characteristics of SYN-
BIP (described in Figure 1). Since the SBP is a human-
made protein that has not been found in nature, the dis-
covery of novel SBPs relied heavily on the experimental
protein engineering (78) and can be greatly facilitated by

in silico studies (e.g. AI technique (2,49,79) and compu-
tational modeling (3,80–82)). Thus, the unique data and
functions provided in SYNBIP (https://idrblab.org/synbip/)
laid a solid foundation for the future development of novel
SBPs.

FACTUAL CONTENT AND DATA RETRIEVAL

Data collection and SBP classification & scaffolds

The SBPs and their scaffolds were collected by the litera-
ture review in PubMed (83). Frist, using the keyword com-
binations of ‘synthetic + binding protein + scaffold’, ‘non-
antibody + scaffold’, ‘engineered + binding protein + scaf-
fold’, etc., a total of 68 SBP scaffolds were identified. Then,
2074 SBPs were collected by the keyword searching of SBP
scaffold names and their synonyms in PubMed (83). Third,
detailed information of each SBP was further obtained from
KEGG (84), PDB (85), UniProt (86) and additional litera-
ture review. The resulting information included SBP name,
sequence, structure, molecular weight, expression system,
function, applications, research organizations and thermal
denaturation temperature. Fourth, several reputable clin-
ical databases (e.g. ClinicalTrials.gov, ChiCTR, and EU-
CTR) and the official websites of many pharmaceutical
enterprises (e.g. AffibodyAB, NavigoProteins, and Bicycle
Therapeutics) were scanned, and the highest clinical de-
velopment status for each SBP was therefore confirmed.
Finally, the additional SBP affiliated data were reviewed
and collected from literatures, which included binding tar-
gets (affinity, mechanism of action, etc.), atomic details
(nonstandard amino acids, connections in the sequences,
etc.) and experimental details (expression system, in vitro
method, etc.).

There are two types of SBPs in SYNBIP: non-antibody
and antibody fragment (87,88). As shown in Figure 2, a
table of scaffolds for all SBPs collected in SYNBIP was
described, which was the key starting points for the engi-
neering of novel SBPs in current researches (24,89). The
numbers of non-antibody scaffolds and antibody fragments
were 57 and 11, respectively. The scaffolds in the same col-
umn of Figure 2 were engineered within the same type of re-
gions. There were seven region types for non-antibody scaf-
fold (such as loops, �-helixes, and �-sheets) and two types
for antibody fragment (single domain & multi-domains).
The scaffolds within the same column were ordered based
on the molecular weight (decreasing from the bottom to
the top). In this study, the cyclic peptides were considered
as SBP scaffolds due to the following reasons. First, simi-
lar to those known SBPs, cyclic peptides have small molec-
ular weight, relative high stability, and with the region of
protein engineering in the loops on ring-shaped structures
(90). Second, the binding property and function of cyclic
peptides to their targets were highly similar to those known
SBPs (91). As a result, Figure 2 provided comprehensive de-
scription on all SBP scaffolds collected in SYNBIP, such as
scaffold name, typical 3D structure, the ranges of molecu-
lar weight and melting temperature, and so on. These data
were essential for exploring the thermal stability (49,50) and
off-target interactions (52–54) of SBP, and were thus key
for the rational design of new SBP (48). Moreover, the clas-
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Figure 1. The unique characteristics of SYNBIP. Extensively describing a comprehensive set of synthetic binding proteins (SBPs) from the perspectives
of scaffolds, biophysical and functional properties, etc. (shown in the inner three layers); panoramically illustrating the binding target & and the broad
application of each SBP (presented in the outermost layer); enabling the sequence-based similarity search against SBPs and their binding targets (provided
at the bottom).

sification (class/scaffold) and the amount of SBPs in each
class/scaffold were described in Supplementary Figure S1.
As shown, those top-5 scaffolds of the most SBPs were: scFv
(343 SBPs), nanobody (271 SBPs), monobody (234 SBPs),
DARPin (182 SBPs) and Fab (114 SBPs).

It was worth mentioning that SYNBIP mainly focused on
providing the human-made ‘synthetic’ proteins by exclud-
ing the natural-occurring ones such as native protein binder.
This was different from SAbDab (59,92), a database previ-
ously featured in NAR to provide valuable nanobody data.
Particularly, the majority (∼90%) of the nanobodies in the
SAbDab were the native protein. Since the SYNBIP had
collected and described 271 ‘synthetic’ nanobodies, it could
be adopted as an important complement to those available
databases, such as SAbDab (59,92).

Biophysical, structural & functional data of SBPs

Low molecular weight. Compared with the classical anti-
bodies, the molecular weights (MWs) of SBPs were much
lower. As provided in Figure 2, the MWs of 65.7% SBPs
collected in SYNBIP were between 2 and 20 kDa, which
demonstrated that the size was a major feature of SBPs as
next-generation proteins. Owing to its low MW, the SBP
showed the advantages of efficient tissue delivery and pene-

tration (30), which are well-suited for generating bi-/multi-
specific molecules (88).

High thermal stability. Thermal stability (measured by
thermal denaturation temperature, Tm) of the starting scaf-
fold is frequently considered in protein engineering (24,89).
As illustrated in Figure 2, except for some SBPs from the
scaffold of i-body, beta roll domain, EVH1 domain, beta-
hairpin mimetic, abdurin, and diabody, the Tm values of the
majority (72%) of the SBP scaffolds were within the range
of 37–120◦C. This indicated that most of the SBPs in SYN-
BIP were stable at high temperature, and were therefore rel-
atively easy and cheap for production in bacteria, yeast or
even by chemical synthesis (30). Moreover, those SBPs were
reported to remain remarkable stabilities and binding ac-
tivities after long-term (years) storage at room temperature
(30).

In addition to those low molecular weight and high ther-
mal stability, the solubility and expression yield were essen-
tial for SBP’s applications (24). However, only a few relevant
data (<100 entries) could be obtained, due to the limited
number of related publications. With the rapid advances in
these promising fields, we would expect an explosion of such
valuable data, which will be timely collected to SYNBIP
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Figure 2. Table of scaffolds for all synthetic binding proteins (SBPs) collected in SYNBIP. The backgrounds of non-antibody scaffolds and antibody
fragments were colored in light orange and orange, respectively. The scaffolds in the same column indicated the same region(s) of protein engineering and
design. There were nine types of region(s), seven of which were for non-antibody scaffolds (loops; loops & �-sheets; �-sheets; loops & �-helixes; �-helixes;
loops, �-helixes & �-sheets; and cyclic peptides) and the remaining two of which were for antibody fragments (single domain; and multi-domains). The
scaffolds in the same column were ordered according to their molecular weights (decreasing from the bottom to the top). Within each cell, the details of a
particular scaffold were provided, which included scaffold name, representative structure, the range of molecular weights (MWs), and the range of melting
temperature (Tm).

for facilitating the further advancement for this research
direction.

Sequence & structure. There were 1359 SBPs in SYNBIP
with full-length sequence information, which accounted for
most (65.5%) of those 2074 collected SBPs. Such sequence
data were frequently adopted in the site-directed muta-
genesis study and design of scaffold-based library, which
greatly facilitates the engineering of SBP (2,48). Moreover,
based on literature review, the structures of 246 SBPs were
resolved by the technique of nuclear magnetic resonance
(NMR), X-ray crystallography (X-ray) or cryogenic elec-
tron microscopy (Cryo-EM) and thus collected to the SYN-
BIP, which had great implications for structure-guided en-
gineering of critical protein regions (38,93–96).

Apart from the experimentally validated structures, the
computationally modelled SBP structures were found to
be capable of modelling 3D structures (from protein se-
quences), which extensively facilitated the rational design
of SBP (97–100). In SYNBIP, the 3D structure of SBP
without any experimentally validated structural informa-
tion was therefore modelled using a well-established pro-
tocol trRosetta (101,102), which combined algorithms of
deep residual network and Rosetta-constrained energy min-
imization, and had been widely used to the rapid and ac-

curate prediction of protein structure (102). As a result,
the 3D structures of 1083 SBPs without an experimentally
validated structure were modelled by trRosetta (101,102),
and the confidence estimation scores (TM-scores) of all pre-
dicted SBP structures were higher than 0.7, indicating a
correctly modeled topology (101). Although the modelled
structures may not be completely identical to SBP’s 3D con-
formation (98), they can be adopted as references for guid-
ing the rational design of SBP (98). To distinguish the ex-
perimentally validated SBP structures from those compu-
tationally modelled ones, these two types of structure were
therefore labelled in SYNBIP website by ‘Experimentally
Validated Structure’ and ‘Computationally Modelled Struc-
ture’, respectively. Both types of SBP structure data together
with the SBP sequence information can be fully down-
loaded directly from the official (https://idrblab.org/synbip/)
and mirror (http://synbip.idrblab.net/) sites of SYNBIP.

Binding target & affinity. The binding targets of SBPs were
collected by literature reviews or from the official web-
sites of many pharmaceutical enterprises. As a result, the
binding targets of all SBPs (2074 in total) were identified,
which resulted in 423 protein targets, 28 small molecular
targets, and 15 other targets (such as carbohydrates, RNAs,
DNAs, etc.). As shown in Supplementary Figure S2, the

https://idrblab.org/synbip/
http://synbip.idrblab.net/


D564 Nucleic Acids Research, 2022, Vol. 50, Database issue

Figure 3. A typical page in SYNBIP describing the SBP (monobody BMS-962476, SBP000002). Monobody BMS-962476 was explicitly described as one
SBP with molecular weight of 11.3kDa, thermal denaturation temperature of 81◦C, and highest clinical trial status in Phase I. Meanwhile, its sequence
and structure were fully provided and could be directly download from this page.

targets were from very broad origins. Particularly, 317 tar-
gets were from very diverse metazoan species, such as hu-
man, mouse, bovine, jellyfish, scorpion, etc.; 106 targets
were from various microorganisms, such as Staphylococcus
aureus, Klebsiella pneumoniae, Mycobacterium tuberculo-
sis, Escherichia coli, Plasmodium falciparum, Streptomyces
clavuligerus, etc.; and 43 targets were from plant species,
such as Lolium perenne, Ricinus communis, Chlamydomonas
reinhardtii, etc.

Moreover, 1860, 192 and 22 out of all 2074 SBPs col-
lected in SYNBIP were identified with 1, 2 and ≥3 bind-
ing targets, respectively. Particularly, 1384 out of all the
collected SBPs (∼66.7%) were with binding affinities re-
ported, the value of which was measured by dissociation
constants (Kd), inhibition constants (Ki), half maximal in-
hibitory concentrations (IC50), and so on. Among these
1384 SBPs, 1087 (78.5%), 81 (5.9%) and 216 (15.6%) were

found with binding affinities against 243 protein, 19 small
molecular, and 3 other targets, respectively. In the mean-
time, 16.8%, 24.1%, 24.7%, 16.4% and 18.1% of all the
affinities collected in SYNBIP were <1 nM, 1–10 nM, 10–
100 nM, 100 nM–1 �M and >1 �M, respectively. In other
words, most (65.4%) affinities were <100 nM, which may
benefit from the highly-specific molecular recognition of
SBPs (89).

SBPs’ applications in research, diagnosis & therapy

Due to the rapidly-growing interest in SBP design based on
the protein scaffold of low molecular weight and high ther-
mal stability, significant advances have been made not only
in the design of new binders but also in their applications to
various directions of research, diagnosis, and therapy (22).
In SYNBIP, the detailed applications together with the cur-
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Figure 4. The additional information of the SBP provided in SYNBIP. Those provided additional data (for this particular SBP: monobody BMS-962476)
included: SBP scaffold (e.g. monobody), binding target (e.g. proprotein convertase 9), and clinical development status (Phase I for treating hypercholes-
terolemia). Detailed clinical information was also provided at the bottom.

rent clinical/investigative status were described in the cor-
responding webpage of a specific SBP.

Research. There were 1189 SBPs in SYNBIP (from 56
scaffolds provided in Figure 2) reported as powerful
research tools for bridging the functional investigations with
the structural ones (22), monitoring the localization of en-
dogenous proteins in living system (103), stabilizing the pro-
tein structure for capturing specific crystalized conforma-
tion (104), and so on.

Diagnosis. 139 SBPs (covering 20 scaffolds in Figure 2)
had been tested or applied as diagnosis tools for monitor-
ing the in-vivo sites of disease’s occurrence (89), imaging the
disease-associated molecular targets (105,106), and so on.

Therapeutics. 746 SBPs (belonging to 44 scaffolds in Fig-
ure 2) were engineered as therapeutics for the treatment of
various diseases, especially for the complex indications like
cancer, infection, CNS disorders, etc. Among these clini-
cally important SBPs, 66 of them (belonging to 17 protein
scaffolds) had been tested in clinical trials, and 9 of them
had been approved by FDA. Particularly, 71 SBPs (belong-
ing to nine protein scaffolds) were clinically adopted for
dealing with the pandemic of COVID-19, and two repre-
sentative SBPs (Glenzocimab and Ensovibep) were clinically

tested in Phase II and Phase III, respectively. All in all, the
detailed descriptions of the applications in research, diag-
nosis, and therapy were provided in the corresponding page
of each SBP.

Similarity-based identification of SBP from SYNBIP

In addition to the keyword search, the sequence-based sim-
ilarity search against SBPs in SYNBIP was realized, which
might facilitate the design of SBP and its application to
novel research fields. The level of similarity between the se-
quence of an input protein and that of those SYNBIP SBPs
were evaluated using BLAST (107), and with the sequence
identities listed out in the order from the highest to the
lowest. Using the sequence of ‘monobody anti-KRas/HRas
NS1’ as one query, a total of 226 SBPs could be identi-
fied. For the identified SBPs showing high sequence similar-
ity (e.g. monobody anti-KRas 12VC1), they were generated
from the same/similar protein scaffolds and had their sta-
bility and molecular size & function similar to the query
sequence of NS1. Thus, it was reasonable to expect that
those identified SBPs could be used as references to design
novel SBPs of enhanced binding affinity and specificity (22).
For the identified SBPs showing medium sequence similar-
ity (e.g. centyrin anti-ERBB1 83v2 variant), their scaffolds
were different from that of the query sequence, which might
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Figure 5. The function of sequence-based similarity search realized in SYNBIP. Sequence-based similarity search was carried out by BLASTing
(107) against SBPs or their binding targets, which could facilitate the design of novel SBPs and application to the new research directions.

be adopted as template to design new SBP scaffold with en-
hanced stability (108). For the identified SBPs showing rel-
atively low sequence similarity (e.g. nanobody anti-GlyT1
clone 5), their fold type might be the same as or similar to
that of the query sequence, which could also provide useful
information for the de novo design of SBPs (38).

Besides, the structure-based similarity search could also
facilitate protein engineering and novel protein design.
So far, some tools for structure alignment & comparison
had been available, such as TM-align (109), Fr-TM-align
(110) and MM-align (111). Although these available tools
were powerful in structure-based alignment and similarity
comparison, their applications were limited by their exces-
sive time cost spent on comparing two structures, which
made it impossible to scan all SBP structures by online
calculation. To partially enable the structure-based simi-
larity search function, SYNBIP allowed free download of
all SBP structures (each was indicated by its unique SBP
ID), and the users can use the local version of TM-align
that is downloadable from the tool’s official website (https:
//zhanggroup.org/TM-align/) to scan their query structures
against all SBP structures in SYNBIP based on their local
computing resources.

All in all, the similarity search functions based on either
sequence or structure were expected to be useful for current
protein engineering and design. These search functions pro-
vided in the latest version SYNBIP could therefore be es-
sential for the related research communities. Furthermore,
a user manual that provided a step-by-step instruction on
the usage of SYNBIP was shown in the ‘Help’ page, whose

web link could be readily found on the home page of SYN-
BIP.

Data access, retrieval and standardization

In SYNBIP, a user-friendly way to identify the SBPs of
users’ interest was designed and provided. Taking the
searching of ‘monobody BMS-962476’ as an example, its
corresponding entry could be identified by simply typing
this keyword and searching against all SYNBIP data. As
provided in Figure 3, BMS-962476 was explicitly described
as the SBP with molecular weight of 11.3kDa, thermal de-
naturation temperature of 81◦C, and highest clinical trial
status in Phase I. Meanwhile, its sequence and structure
were fully provided and could be directly download from its
own page. Furthermore, the additional data of SBP scaffold
(e.g. monobody), binding target (e.g. proprotein convertase
9), clinical development status (Phase I for treating hyper-
cholesterolemia), and so on, were also explicitly described
(see the webpage screenshots in Figures 3 and 4).

To make the access and analysis of SYNBIP data con-
venient for all users, the collected raw data were carefully
cleaned up and then systematically standardized. These
standardizations included: (i) all SYNBIP diseases were
standardized using the latest version of International Clas-
sification of Disease (ICD-11, officially released by World
Health Organization (112), which was expected to serve
comprehensive health managements (113); (ii) all SBP bind-
ing targets were standardized by and crosslinked to avail-
able databases, and the extended data of each SBP could be

https://zhanggroup.org/TM-align/
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accessed by hyperlinks to UniProt (86), ClinicalTrials.gov
(114), VARIDT (115), ChiCTR (116), EUCTR (117), TTD
(118), PDB (85), INTEDE (119), etc.; (iii) a sequence-based
similarity search against SBPs in SYNBIP and their bind-
ing targets was enabled to facilitate the design of SBPs and
their application to new research fields (described in Fig-
ure 5). All SBP data can be viewed, assessed, and down-
loaded from the SYNBIP website, which is freely assessable
without login requirement by all users at its official (https://
idrblab.org/synbip/) and mirror (http://synbip.idrblab.net/)
sites.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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