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Abstract

Rationale: The relationship between leukocyte gene expression and recovery of respiratory function after injury may
provide information on the etiology of multiple organ dysfunction.

Objectives: To find a list of genes for which expression after injury predicts respiratory recovery, and to identify which
networks and pathways characterize these genes.

Methods: Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 days from 147 patients who had been admitted to the
hospital after blunt trauma. Leukocyte gene expression was measured using Affymetrix oligonucleotide arrays. A linear
model, fit to each probe-set expression value, was used to impute the gene expression trajectory over the entire follow-up
period. The proportional hazards model score test was used to calculate the statistical significance of each probe-set
trajectory in predicting respiratory recovery. A list of genes was determined such that the expected proportion of false
positive results was less than 10%. These genes were compared to the Gene Ontology for ‘response to stimulus’ and, using
Ingenuity software, were mapped into networks and pathways.

Measurements and Main Results: The median time to respiratory recovery was 6 days. There were 170 probe-sets
representing 135 genes that were found to be related to respiratory recovery. These genes could be mapped to nine
networks. Two known pathways that were activated were antigen processing and presentation and JAK- signaling.

Conclusions: The examination of the relationship of gene expression over time with a patient’s clinical course can provide
information which may be useful in determining the mechanism of recovery or lack of recovery after severe injury.
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Introduction

There has been improvement in the outcome for acute lung

injury (ALI) [1] but ALI and its sequelae multiple organ

dysfunction syndrome (MODS) remain the leading cause of

mortality after the first 24 hours post-injury [2]. These complica-

tions of trauma represent an enormous health care expenditure.

Thus, the continued investigation of the pathogenesis of ALI/

MODS remains a national research priority.

This paper is a preliminary report from the large scale

collaboration Inflammation and the Host Response to Injury

(Glue), a multi-centered study supported by the National Institute

of General Medical Sciences (NIGMS), that aims to better

describe genomic response in patients following severe injury or

burns ([3,4]). Our hypothesis was that we could find a list of genes

for which expression levels predict a patient’s clinical outcome,

and that the identification of these genes could lead to new insights

into the biology of MODS.

In a previous paper we showed that baseline gene expression

could predict future MODS and other clinical events [5]. The

predictor was a combination of thousands of gene expression

values and thus could not provide insight into specific mechanisms.

Current thinking is that mechanical tissue disruption and

cellular shock trigger a cascade of proinflammatory reactions, the

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14380



systemic inflammatory response syndrome (SIRS). This primes the

innate immune system such that a secondary insult during this

vulnerable window provokes an unbridled inflammatory response

culminating in early MODS [6–8]. The injury also initiates events

resulting in a depressed adaptive immune response, counter

inflammatory response syndrome (CARS), that renders the patient

at risk for overwhelming infection, resulting in delayed MODS

[9,10].

We have investigated the mechanisms critical for early priming

of the innate immune system and have employed the circulating

PMN as a surrogate for this response [11,12]. Our previous work

has documented that injured patients at risk for MODS have a

remarkably consistent pattern of post-injury PMN priming;

beginning within 2 hr of injury, peaking at 6–12 hr, and resolving

by 24 hr if there are no further insults [13–15].

Although the MODS is the primary mechanism of morbidity in

the patients in this study there was often no clear period between

the end of resuscitation and the onset of MODS. For this reason

we choose respiratory recovery as a surrogate for MODS. In

addition respiratory recovery represents a positive clinical outcome

for a patient and can be viewed as a marker of an improving

overall health.

In this paper, we apply novel statistical methods [17] to identify

genes for which the expression trajectory predicts respiratory

recovery, and then we relate these genes to the networks and

pathways to which they belong.

Materials and Methods

The analysis presented in this report includes data on a subset of

147 patients admitted to one of seven participating institutions,

between November 2003 and July 2006. Our paper focuses on a

subset of 147 patients who had complete genomic profiles at the

time of our analysis. The Glue study entry criteria included patients

who had suffered a blunt trauma without isolated head injury, who

had arrived at a hospital within 6 hours of the injury, and had

either hypotension or an elevated base deficit. Subjects with

anticipated survival of less than 24 hours, significant pre-existing

organ dysfunction, or severe traumatic brain injury were excluded.

Written informed consent was obtained from all patients or their

legally authorized representative. Blood was sampled at 12 hours

and at 1, 4, 7, 21 and 28 days after the blunt trauma and was

hybridized to an Affymetrix HU133 plus 2.0 gene chip. The

details of the clinical protocol and sample processing are described

in [5]. Respiratory recovery, the primary outcome of interest in

this study, was defined as a patient’s ability to breathe on their own

after the removal of mechanical ventilation. The maximum follow-

up time was 28 days, with patients who had not recovered by 28

days treated as censored with respect to the primary outcome at

that time.

Gene expressions were extracted from oligonucleotide probes

by a perfect-match model using dChip software (www.dChip.org)

and gene expression values were log-transformed prior to any

calculations. There were several steps taken to reduce the

overwhelming dimensionality of the microarray. We first excluded

probe-sets labeled ‘Absent’ over all arrays by the Affymetrix

software. ‘Present/Absent’ labels in this technology indicate

whether a probe-set was reliably detected or not. This step

reduced the number to 48,992 probe-sets. Applying the assump-

tion that the genes exhibiting temporal changes are potentially

related to the outcome, we next excluded those probe-sets with a

‘low’ sample coefficient of variation, which we defined as having a

coefficient of variation in the bottom half of the sample (i.e., below

the sample median). This reduced the number of probe-sets to

11,461. Lastly, we performed the analysis of time-course

microarrays using the EDGE [16] and deleted those that did not

change with time. The number of investigated probe sets in the

final dataset was 4,010.

The method used to obtain a list of statistically significant probe

sets has been described previously [17]. The intention of this

method is to apply a statistical test to assess whether the gene

expression level predicts a subsequent event. In order to do this,

we need the value of this expression level from each patient who is

under observation and at ‘‘risk’’ for the event. Since this value will

usually be missing, we need the approach described in [17] to

handle the missing data. For this approach, we calculated one test

statistic for each probe set among 4,010 by fitting a straight line to

the expression level over time. We then used the estimated line to

impute the probe set expression value at each time an event

(respiratory recovery) occurred. We then calculated the difference

between the imputed value for the patient who had the event and

the mean of the imputed values for all patients who were on

ventilator immediately before the event. This difference measures

Figure 1. Kaplan-Meier plot of time to respiratory recovery.
doi:10.1371/journal.pone.0014380.g001

Table 1. Patient summary.

Median (range) or % Total (n = 147)

Age 34 (16,55)

Gender, male 64%

Race

White 88%

African Am. 6%

Asian 4%

Am. Indian 1%

Other 1%

Injury severity score 33 (6,75)

Max. MODS score 5.6 (0.4,16.4)

ICU days 10 (1,88)

ICU vent days 7 (0,48)

doi:10.1371/journal.pone.0014380.t001
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whether, at the event time, the observed expression level of the

patient who had the event is greater or less than its expected value

of the expression level if there were no relationship between the

gene expression level and the occurrence of an event. The sum of

these differences tests whether the expression levels are associated

with the occurrence of an event.

Once we obtain a set of probe-set specific test statistics, we

cannot use classical p-values to infer which probe-sets are

important because the large number of hypothesis tests we have

just done will result in an inflated type I error rate (inappropriate

p-value). Instead, we can assess the statistical significance of each

test by sorting them in descending order by their absolute value

and decide how many genes in the list were statistically significant

using a false positive ratio of 10% [18]. For this, we simulated the

distribution of these statistics under the null hypothesis by

permuting the event indicators among subjects at risk at that

time. In other words, the number of subjects with events is kept

fixed at each event time, but their event indicators are randomly

exchanged among those currently at risk [17]. When we compared

the simulated test statistics with our observed test statistics, we

found that all but 170 probe-sets were eliminated, which preserved

a false positive ratio of 10%. Thus we are accepting the fact that of

the 170 probe-sets, 17 may be associated with a false positive test

statistic [19].

Results

Table 1 shows the demographic and clinical characteristics of

the patients reported in this paper. Among 147 subjects, 11 did not

experience respiratory recovery, including six patients who died

during the study follow-up; for these 11 patients, time to recovery

was censored. Figure 1 shows a Kaplan-Meier plot of the time to

respiratory recovery. The median time to respiratory recovery was

6 days with a (2, 28) day range.

As described above, 4,010 probe-sets were evaluated for an

association with the time to respiratory recovery. Of these, 170

were identified as statistically significant when the proportion of

false positive findings is set at the 10% level. Using the WebGestalt

[20] application, the 170 probe-sets were mapped onto 135 known

genes. Of the 135 selected genes, 58 were found to be positively

related to the time to respiratory recovery, while 77 genes were

found to be negatively related to this event. Here, a positive

association between a gene and time to a recovery means that the

elevation in gene expression over the time prior to the event is

associated with a shorter time to recovery. The opposite is true for

the negatively associated genes, where elevation in gene expression

prior to the event is associated with a prolonged time to respiratory

recovery. Table 2 lists the subset of selected genes grouped by the

direction of the association to the time to respiratory response. For

Table 2. Description of a subset of selected genes found to be positively or negatively related to time to respiratory recovery.

Elevation in expression is associated with shorter time to recovery

Symbol Description GO term (biological function)

APOL2 apolipoprotein L, 2 acute-phase response

CCR5 chemokine (C-C motif) receptor 5 inflammatory response

CD244 CD244 natural killer cell receptor 2B4 cellular defense response

CREBBP CREB binding protein signal transduction

DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 innate immune response

EGFR epidermal growth factor receptor MAP/ERK kinase activity

IL12RB1 interleukin 12 receptor, beta 1 antimicrobial humoral response

KIR2DL2 killer cell immunoglobulin-like receptor immune response

NINJ1 ninjurin 1 cell adhesion

PSMB9 proteasome subunit, beta type immune response

PSME1 proteasome activator subunit 1 (PA28 alpha) immune response

SAMHD1 SAM domain and HD domain 1 immune response

TAP1 transporter 1 ATP binding

TAP2 transporter 2 ATP binding

Elevation in expression is associated with longer time to recovery

Symbol Description GO term (biological function)

ALOX5AP arachidonate 5-lipoxygenase-activating protein inflammatory response

ANXA1 annexin A1 anti-apoptosis

DNAJC4 DnaJ (Hsp40) homolog heat shock protein binding

HHEX homeobox, hematopoietically expressed antimicrobial humoral response

NR3C1 nuclear receptor subfamily 3 inflammatory response

PLP2 proteolipid protein 2 chemokine binding

POLI polymerase (DNA directed) iota DNA binding and repair

S100A12 S100 calcium binding protein A12 inflammatory response

S100A8 S100 calcium binding protein A8 inflammatory response

Legend: A subset of the 58 (77) genes found to be positively (negatively) related to the time to respiratory recovery is presented in the top (bottom) part of the table.
For example, an elevated expression of APOL2 is associated with shorter time to recovery, while elevated expression of ALOX5AP is associated with a longer time to
respiratory recovery.
doi:10.1371/journal.pone.0014380.t002
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example, elevated expression for IL12RB1 (interleukin 12

receptor) is associated with a shorter time to recovery.

We next examined the Gene Ontology (GO) terms corre-

sponding to our group of genes found significant by statistical

hypothesis testing. These are listed in Table 3. Figure 2 illustrates

the hierarchy for the ontology terms comprising the Response

branch of the biological process. Each node contains the number

of genes among the identified genes in our set that are

represented in that particular ontology term (this is a directed

graph, where a line indicates precedence, so that the number of

genes in a lower node is included in the total number of the

preceding node). For example, a group of 30 genes were

represented among the genes comprising response to stimulus GO

term. The six genes that were represented in the inflammatory

response GO term were ANXA1 (annexin A1), S100A8 (S100

calcium binding protein A8), ALOX5AP (arachidonate 5-

lipoxygenase-activating protein), S100A12 (S100 calcium binding

protein A12), CCR5 (chemokine (C-C motif) receptor 5), NR3C1

(glucocorticoid receptor).

The 170 probe-sets with a false discovery rate (FDR) less than

0.1 were used in the network and pathway analysis. Affymetrix

probe-set IDs were imported to the Ingenuity Pathway Analysis

(IPA) software [21]. 168 of those probe-sets were mapped to the

Ingenuity database. The identified genes were overlaid on the

genomic network from the Ingenuity database and labeled as

Focus genes. Connections for each focus gene were calculated by

the percentage of its connections to other significant genes. A

total of nine networks were found, six of which are shown in

Table 3. For each network, all genes that compose it are listed.

Focus genes are represented in bold. The remaining genes that

Table 3. Six of the nine networks found by IPA.

Networks Score Focus Functions

ALOX5AP, APP, APPBP2, ATF1, C20ORF18, CCR5, COL6A1 33 20 Gene Expression

CREBBP, EGFR, GLUL, GMEB1, GMEB2, HHEX, HOXB2 Tumor Morphology

HTR2A, IL12RB1, ITCH, JAK2, LEPR, MACF1, MGMT Cancer

MICAL1, NEDD9, NR3C1, OSMR, PIAS2, PML, PTMS, RFP

RPS6KA3, SMAD3, SNX4, SNX6, STAM2, TPSAB1

ABCD2, ANXA1, BCOR, CASP1, CASP14, CEBPG 18 13 Lipid Metabolism

CLIC4, DUSP6, FABP1, FPRL1, HDAC9, HDAC1 Small Molecular Biochemistry

HIVEP1, ICEBERG, IPO11, JARID2, KLF5, MEFV Molecular Transport

MNT, NINJ1, NUTF2, PCYT1A, PEA15, PLP2

PSMB9, PSME1, PSME2, RAN, SAMD4A, SERPINB9

SET, TGIF,TNF, UBE2E1, UBE2E3

AKAP2, AVO3, BET1L, CAMKK1, CKAP2, CTPS 17 12 Cancer

EPB41L2n, EPB41L3, FBXO9, KLC3, MARK1 Tumor Morphology

NCAM1, NET1, OAT, PCTK2, PRKAR2A, PRODH Cellular Development

RAPTOR, RNH1, RPS6KB1, SCOTIN, SRGAP2

STARD10, STK11, SYNPO2, TAP1, TAP2, TGFA

TGFB1, TP53, VDP, WARS, YWHAG, YWHAH, ZNF175

ARHGEF11, C9ORF76, CASP3, CDKN2A, CDV3, DNAJB1 17 12 Cell Morphology

F2, GAST, GPX4, GRHPR, HD, HIP1, HIP1R, HNRPDL Cancer

LAMP1, MAP1LC3B, MAPK14, MAPKAPK5, MCF2L, NUDCD3 Lipid Metabolism

PRKD2, RAB8A, RAC1, RPL7, RPS19, S100A8, S100A9

SH3GLB1, TBX2, TCOF1, TNS4, TRIO, YBX2, ZBTB10, ZNF385

AIF1, AKT3, ARHGDIA, ASPH, BST1, CD44, CNP 15 11 Cardiovascular System

CSRP1, DDX58, DTX1, DTX3L, EP400, GCH1, GGT1 Connective Tissue

HLA-DMA, IGF1, IGFBP6, INSR, NFIL3, OSBPL7 Organ Morphology

PA2G4, PCNA, PDCD4, PDE3B, PGK1, PHLDA1, POLD2

POLH, POLI, PTEN, SLC20A1, SYNCRIP, TNFSF11, TRAIP, TUB

CD48, CD244, CSTA, CTSC, CYP3A, DMXL2, EXPI 13 10 Cellular Function

FOS, GAB2, GCNT1, GRIN2B, GSTA1, IL2, IL3 Cell-To-Cell Signal

IL13, IL16, IL13RA2, INS1, KCNJ15, KIF17 Hematology System

KIR2DL2, LIN10, LIN7A, LRP5, PAEP, PPM2C

PPP1R12B, PTPN22, RGD:632285, RPS7, RPS14

RPS4X, SNX3, TCF1, TNFSF4

Legend: Six of the nine genomic networks found by importing the 170 probe-sets into the Ingenuity Pathway Analysis (IPA) software. Focus genes (in bold) are genes
from the input set represented in a particular network. Score of 3 or higher indicates that there is a 0.001 probability of a network being generated by chance alone.
doi:10.1371/journal.pone.0014380.t003
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appear in regular print were used to create each network and

provide connections to the focus genes. For example, in the first

network, there were 20 of the genes from our input set that were

over-represented in that network relative to the size of the

network. Each network is also assigned a score, which is a

probability that the focus genes were represented in the particular

network by chance alone. A network with a score of 3 or higher

has a 0.001 probability of being generated by chance alone based

on the Fisher’s exact test. Figures 3 and 4 were created using

Ingenuity software and represent the first two networks with the

two highest scores. In these figures, shadowed boxes represent

focus genes.

We next examined whether genes found in these networks

can also be placed within known pathways. There exist large

publicly available libraries of known networks and web

application that allow for organized search and examination

of these repositories. These web-based tools allowed us to

examine further our list of selected genes and compare them to

the configurations and content of known gene pathways.

Pathways of highly interconnected genes were identified using

the equation in [22].

For example, genes HLA-DMA, KIR2DL2, PSME1, TAP1,

TAP2 were involved in the antigen processing and presentation pathway,

while genes CREBBP, IL12RB1, JAK2, LEPR, MIZ1, ARCN2,

CCR5, were involved in the JAK-STAT signaling pathway, and

genes CREBBP, PLP2, and RPS6KA3 were in the Signaling

Pathway from G-Protein Families.

Discussion

Among the genes associated with a shorter time to recovery are

IL-12RB and CREB that indicate IL-2 activation and CCR5

increase, the indicators of increased immune lymphocyte function.

The Janus family (JAK-STAT) signaling pathway plays a critical

role in signal transduction mediated by cytokine and hormone

receptors. The JAK-STAT pathway is used by interferons and

Figure 2. GO hierarchy of response.
doi:10.1371/journal.pone.0014380.g002
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type I cytokines (cell products that that may stimulate immunity).

These cytokines and interferons activate Janus family tyrosine

kinases (JAK kinases), which in turn activate STAT proteins. In

addition, JAKs are involved in the signal transduction pathways

that govern cellular survival, proliferation, differentiation and

apoptosis. It has been well documented in the literature that the

loss of JAK kinase function has been found to result in disease

states such as severe-combined immunodeficiency and that the

optimal JAK kinase activity is crucial for normal cellular responses

[23] of downstream signaling events. In support of this hypothesis,

it has been found that JAK kinase function is required for optimal

activation of the Src-kinase cascade, the Ras-MAP kinase

pathway, the PI3K-AKT pathway and STAT signaling following

the interaction of cytokine/interferon receptors with their ligands.

Optimal JAK kinase activity is crucial for normal cellular

responses.

Among the genes associated with a longer time to recovery is

arachodoniate acid (ALOX5AP) that metabolizes into mediators

of inflammation such as leukotrienes and prostaglandins and

other ecocinoids which are associated with immune deactiva-

tion. Leukotrienes and prostaglandins act to increase vascular

permeability and serves as chemoattractant for neutrophils. In

addition, polymerase (DNA directed) iota (POLI) on the other

hand has been reported to have enzymatic properties consistent

with that of a somatic hypermutase and suggest that poliota may

be one of the DNA polymerases hypothesized to participate in

the hypermutation of immunoglobulin variable genes in vivo

[24].

The major shortcoming of the current study is that it is based on

a mixed cell population of leukocytes and genomic changes may

reflect changes in this population. At the time of this study the

technology was not available to obtain enough RNA from sorted

cells to reliably run chips on pure cell populations. This

technological hurdle has been overcome and we will soon be able

to replicate this paper with pure cell populations.

Describing all the findings of a study such as this is difficult

because the essential output of our analysis is a list of 170 probe

sets included in the supplement. These probe sets were then

mapped into 135 genes, and the genes where identified with

networks and pathways that are also described in the

supplement. We described these networks and pathways that

are known to be associated with inflammation in order to

validate the process that was used to find the 170 probe sets.

This does not contribute new knowledge. New knowledge comes

from the further study of some of the 135 genes that are not

generally known to be related to inflammation or associations of

our findings with other work that we are not aware of. We invite

the reader to do this. A much larger data set with extensive

genomic and clinical data is available by application on our

website [3].

Figure 3. Network with the highest score. The network with the highest score in Table 3 is illustrated here. Shadowed boxes represent focus
genes.
doi:10.1371/journal.pone.0014380.g003
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