
Genetic factors shared among diverse autoimmune 
disorders
Autoimmune disorders (AIDs), which as a group affect 
approximately 8.5% of individuals worldwide [1], are 
responsible for a substantial amount of disability and 
morbidity. Some AIDs are organ specific (for example, 
type 1 diabetes (T1D) targets the pancreas, autoimmune 
thyroid disease (AITD) attacks the thyroid gland), where
as others can affect multiple organs and/or be associated 
with systemic manifestations. Systemic lupus erythema
tosus (SLE) is the prototypic systemic AID that can affect 

multiple organs and can also be associated with signi fi
cant systemic manifestations, morbidity and early mortality 
[2]. Most AIDs, including rheumatoid arthritis (RA), 
ankylosing spondylitis (AS), inflammatory bowel disease 
(IBD) and multiple sclerosis (MS) have a predilection for 
specific organs (for example, the synovial joints in RA 
and the gastrointestinal tract in IBD) but are also 
associated with manifestations outside the primary target 
organ. Reasons for the diverse manifestations exhibited 
by different AIDs remain unclear, but recent progress in 
elucidating genetic susceptibility loci for this group of 
disorders promises to shed light on this important issue.

Although AIDs encompass a broad range of phenotypic 
manifestations and severity, several features suggest that 
they share common etiologic factors. For example, most 
AIDs are characterized by female predominance, and 
many are associated with the production of autoanti
bodies (for example, anticitrullinatedpeptide antibodies 
are observed among 70 to 80% of RA patients). These 
shared disease features, in conjunction with epidemio
logic evidence that demonstrates the clustering of multiple 
AIDs within individuals and families, strongly implicate 
shared etiologic factors, including shared genetic loci.

Familial clustering of autoimmune disorders has been 
long recognized and supports a role for shared genetic 
predisposition. For example, family studies have docu
mented the clustering of certain autoimmune diseases 
among the relatives of individuals who have RA, MS, 
SLE, T1D and other diseases [39]. One of the earliest 
autoimmune disease clusters to be described involved 
RA, T1D and AITD, and this cluster was recently sup
ported by a systematic review of studies describing 
clustering of RA, T1D, AITD and MS [3]. Interestingly, 
that systematic review found evidence of inverse cluster
ing of RA and MS, suggesting that MS and RA might be 
less closely related than some other AIDs [3]. This 
conclusion was reinforced by a recent study comparing 
the genetic variation profiles of six AIDs [10]. That study, 
by Sirota et al. [10], was based on an analysis of a large 
number of genetic variants examined in recent genome
wide association studies (GWAS). It found that RA and 
AS appeared to represent one AID cluster that is distinct 
from another represented by MS and AITD, with T1D 
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showing similarity to both groups and Crohn’s disease to 
neither.

Early candidate gene studies, particularly those focus
ing on genes within the human leukocyte antigen (HLA) 
region [11], also supported the notion of shared ‘auto
immunity’ loci. Strong support for genetic loci that are 
shared across autoimmune disorders and located outside 
the HLA region has been demonstrated for several loci 
encoding proteins that have immunemediating func
tions, including cytotoxic Tlymphocyte antigen 4 
(CTLA4; a member of the immunoglobulin superfamily 
that is expressed on the surface of helper T cells and 
transmits an inhibitory signal to T cells), protein tyrosine 
phosphatase nonreceptor type 22 (PTPN22; which is 
expressed primarily in lymphoid tissue and plays a role in 
the regulation of Tcell receptor signaling pathways), and 
tumor necrosis factor (TNF) alphainduced protein 3 
(TNFAIP3; which inhibits NFkappa B activation as well 
as TNFmediated apoptosis) [1214]. Many of the 
recently identified AID loci involve pathways related to 
Bcell or Tcell activation and differentiation, innate 
immunity, and regulation of cytokine signaling [15,16]. 
Certain loci, however, appear to be associated with specific 
autoimmune diseases. For example, variants in NOD2 
(nucleotidebinding oligomerization domain contain ing 
2) and ATG16L1 (ATG16 autophagyrelated16like 1) 
have been associated with defective autophagy in dendritic 
cells from Crohn’s disease patients [17].

A theme emerging from recent genetic studies of AIDs 
relates to the surprising degree of overlap between 
genetic loci for this diverse group of disorders, given the 
phenotypic diversity. Several recent reviews have 
summarized emerging work that identifies both genetic 
loci that are shared across the spectrum of autoimmune 
disease and the biologic pathways whose involvement is 
implicated by these shared loci [15,16,18,19]. For example, 
Zhernakova et al. [18] completed a detailed review of 16 
genomewide association (GWA) or nonsynonymous 
SNP scans for 11 immunerelated disorders that were 
published in 2007 or 2008. Their analysis underscores the 
extensive sharing of genetic risk loci across this spectrum 
of disorders, and the fact that most of these loci can be 
mapped to a few shared biologic pathways, including 
those related to innate immunity, immune signaling, 
Tcell differentiation, cytokines and chemokines.

The analysis by Zhernakova et al. [18] also suggests that 
the degree to which each of these disorders is charac
terized by shared (rather than unique) susceptibility loci 
varies substantially, from all loci shared (for RA) to 50% 
or more shared for celiac disease, psoriasis, MS, SLE, 
T1D, AS and AITD [18]. The two types of IBD examined, 
Crohn’s disease and ulcerative colitis (UC), shared 
substantial numbers of loci between them but relatively 
few with the other AIDs studied. The extent to which the 

Tcell differentiation, immune cell signaling, innate 
immunity and TNF signaling, or other pathways are 
impli cated for each of these disorders varies, but overall 
the analysis by Zhernakova et al. [18] suggests that most 
of these pathways contribute (to a variable degree) to 
most of these disorders.

In this review we focus on recent studies that have 
sought to refine genotypephenotype associations by 
comparing susceptibility loci between specific AIDs. We 
concentrate on RA, AS, celiac disease, MS, SLE, T1D and 
IBD. Table  1 summarizes these AIDs in terms of their 
prevalence in the population and major phenotypic 
features. In particular, we focus on comparative studies 
that use GWA results to distinguish genetic variants that 
are specific to individual AIDs from those that are shared 
among multiple AIDs. We also summarize the results of a 
recently published crossphenotype metaanalysis that 
uses genetic association results to highlight four main 
AID clusters. A detailed understanding of these shared 
and distinct genetic loci provides insight into funda
mental etiologic mechanisms in autoimmune disease. It 
has the potential to inform the choice of current therapies 
and the development of novel targeted therapies and 
other interventions that could improve our ability to 
manage these complex human disorders.

Comparative studies of GWA data to identify 
shared and distinct genetic loci for AIDs
GWA and other recent genetic studies of AIDs have been 
remarkably successful in terms of the number of genetic 
loci that have been identified. For example, more than 70 
genetic loci have now been firmly established as 
susceptibility factors for Crohn’s disease [20], and more 
than 30 loci that contribute to the risk of RA and/or SLE 
have been identified [21,22]. Following the completion of 
many large GWAS of individual AIDs, a number of 
studies have sought to refine the specificity of loci that 
are associated with AIDs. More specifically, these recent 
studies have examined AID risk loci identified for one 
AID in casecontrol collections that have been developed 
for another AID to distinguish between those risk loci 
that are shared and those that are distinct for the AIDs 
being compared. In Table 2, the specific disease compari
son studies that are discussed in this review are listed 
alongside both the major shared (and unique) loci that 
have been identified and the biologic pathways or mecha
nisms implicated by these analyses. Table 3 and Figure 1 
further highlight the patterns of shared AID risk loci and 
their associated pathways revealed in these studies. In the 
next section, we summarize very recent work by Cotsapas 
et al. [23] that addresses these relationships in an analy
tically powerful way. Specifically, they utilized GWA data 
generated for seven AIDs and performed a cross
phenotype metaanalysis (CPMA) to distinguish between 
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genetic variants that are common to all of these seven 
AIDs from variants that are common to some but not all 
of these AIDs and variants that are specific for one AID.

Type 1 diabetes
Several recent studies have compared the pattern of 
genetic association between T1D and other AIDs, includ
ing celiac disease [24], RA [25] and IBD [26]. On the basis 
of the association of both T1D and celiac disease with 
HLA class II loci, Smyth et al. [24] evaluated both the 
association of eight nonHLA celiac disease risk loci with 
T1D and of 18 T1D loci with risk of celiac disease in very 
large samples of patients, controls and families. Their 
analysis revealed that seven loci were common to these 
two AIDs, including RGS1 on chromosome 1q31, 
IL18RAP on chromosome 2q12, TAGAP on chromosome 
6q25, a 32bp insertiondeletion variant on chromosome 
3p21, PTPN2 on chromosome 18p11, CTLA4 on chromo
some 2q33, and SH2B3 on chromosome 12q24. Further, 
the associated alleles for IL18RAP and TAGAP confer 
risk of celiac disease but protection against T1D. Non
shared loci include the T1D risk loci INS (chromosome 
11p15), IL2RA (chromosome 10p15), and PTPN22 
(chromo some 1p13) and the celiac disease risk loci IL12A 
(chromosome 3q25) and LPP (chromosome 3q28).

Eyre et al. [25] extended this work by investigating 
genetic overlap between T1D and celiac disease risk loci 
and RA. They studied eight celiac disease risk loci and six 
T1D risk loci in a large sample of RA patients and control 
individuals. Although they found significant evidence for 
association of the TAGAP locus (which is associated with 
both celiac disease and T1D but with opposing effects) 

with RA and modest evidence of association between the 
C1QTNF6 T1D risk locus and RA, overall their investi
gation revealed little evidence of association between 
celiac disease and T1D risk loci and RA, suggesting that 
RA might be more genetically distinct.

Finally, Wang et al. [26] studied GWA data from large 
collections of IBD patients (Crohn’s disease and UC), 
T1D patients and control individuals of European ances
try to identify shared susceptibility loci. Although they 
identified a number of overlapping susceptibility loci 
among these diseases, their results were notable for the 
frequency with which risk alleles for one disease appear 
to provide protection against another. They interpret 
these data as indicating that many AID risk loci could be 
under balancing selection and that variants that have 
opposing effects on different AIDs might contribute to 
the maintenance of common susceptibility alleles in 
human populations.

Inflammatory bowel disease
Although the two types of IBD, Crohn’s disease and UC, 
differ in several important ways, such as the depth and 
location of inflammation in the gastrointestinal tract 
(Table 1), the clustering of these diseases within certain 
families and their overlapping risk loci support their etio
logic relationship. Thus, these diseases have often been 
considered together in GWA and other genetic studies.

In addition to the aforementioned investigation of IBD 
and T1D [26], other recent work has investigated genetic 
overlap between IBD and other AIDs, including AS, 
celiac disease, psoriasis, SLE, RA and MS [20,2729]. As 
mentioned previously, a large number of loci that 

Table 1. Prevalence and major phenotypic features of autoimmune diseases 

 Frequency in the 
Autoimmune disease  general population  Major phenotypic features

Celiac disease [39] 750 per 100,000  Break in immune tolerance to gluten, with malabsorptive diarrhea, and villous atrophy of 
 (United States)  intestinal mucosae

Type 1 diabetes [40] 50 to 200 per 100,000  Hyperglycemia with macro- and microvascular complications 
 (United States)  

Inflammatory bowel disease  200 per 100,000 Ulcerative colitis: superficial continuous ulceration of the large bowel.  
(ulcerative colitis and  (United States) Crohn’s disease: transmural lesions that can occur throughout the gastrointestinal tract 
Crohn’s disease) [39]   

Rheumatoid arthritis [41] 500 to 1,100 per 100,000  Chronic inflammatory joint disease with potential joint destruction 
 (United States and  
 northern Europe) 

Juvenile idiopathic arthritis [42] 12 per 100,000  Clinically heterogeneous group of disorders characterized by chronic inflammatory arthritis 
 (United States)  in children

Multiple sclerosis [43] 22 to 177 per 100,000  Inflammatory disorder of the central nervous system with a wide range of neurological 
 (United States) symptoms resulting from white matter lesions 

Systemic lupus  150 per 100,000 Wide range of clinical manifestations with multi-organ involvement 
erythematosus [44] (United States)  

Spondyloarthropathies [45] 1,300 per 100,000  Inflammatory rheumatic disorders characterized by axial and or peripheral arthritis, associated 
 (United States)  with enthesitis, dactylitis and potential extra-articular manifestations such as uveitis and skin  
  rash
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contribute to risk of IBD have been identified through 
GWA and related studies; some of these loci are shared 
by Crohn’s disease and UC, whereas others are specific to 
one of these forms of IBD. This work has recently been 
reviewed by Lees et al. [20] and is briefly discussed here. 
Among the shared loci, components of the IL23 pathway 
are of particular interest because of the development of 
therapies directed against IL12p40, the protein subunit 
shared by both IL12 and IL23. Other AIDs that are 
associated with variants of IL-23R (that is, psoriasis and 
AS) are therefore candidates for the assessment of treat
ments that target the IL23 pathway. By contrast, loci that 
are specific for Crohn’s disease highlight the role of 
bacterial component clearance by infected cells through 
autophagy, mechanisms that might not be involved to the 

same extent in other AIDs. The spectrum of loci shared 
by IBD and other AIDs is more limited, involving innate 
immunity (IRF5), Tcell activation (PTPN22, IL2, IL2RA 
and IL21) or the activation of the unfolded protein 
response (ORMDL3). Interestingly, some variants affect 
the risk of different associated AIDs in opposite direc
tions. For example, the PTPN22 allele, which is associated 
with increased risk of RA and SLE, reduces the risk of 
IBD.

Rheumatoid arthritis and juvenile idiopathic arthritis
Several recent studies have investigated genetic risk loci 
that are shared between RA or juvenile idiopathic 
arthritis (JIA) and other AIDs, including SLE, T1D, celiac 
disease, IBD and MS [25,3033]. Studies investigating 

Table 2. Summary of studies included in this review and the shared autoimmune disease risk loci that they identified 

Autoimmune  
diseases compared  Study design Shared risk loci (see Table 3 for other gene definitions)

T1D and CeD [24] 8,064 T1D; 3,064 parent-child trios RGS1, IL18RAP, TAGAP, CCR3, PTPN2, CTLA4, SH2B3
 2,560 CeD 
 9,339 controls  

RA and SLE [30] 3,962 RA and 9,275 controls BLK (B lymphoid tyrosine kinase), UBE2L3 (Ubiquitin-conjugating enzyme E2L 3)
 Screening of 11 SLE-associated SNPs  
 Case control study and meta-analysis 

RA and SLE [31] 1,635 RA and 1,906 controls No shared SNPs except the BLK locus in the subgroup of patients with sicca
 Screening of nine SLE-associated SNPs syndrome 
 Case control study and meta-analysis 

RA and CeD [32] 1,368 RA, 795 CeD and 1,683 controls SH2B3, TNFAIP3, IL2/IL21, SH2B3, LPP, MMEL1/TNFSF14, PFKB3/PRKCQ
 Screening of 11 RA and 11 CeD loci 
 Case control study and meta-analysis 

RA, T1D and CeD [25] 3,962 RA and 3,531 controls TAGAP (CeD- and RA- associated SNP)
 Screening of 8 CeD- and 6 T1D-associated SNPs CeD: minor allele at-risk 
 Case control study RA: minor allele protective

JIA and AID loci [33] Exploratory cohort: 809 JIA and 3,535 controls PTPN22, PTPN2, IL2-IL21, STAT4 (Signal transducer and activator of
 Replication cohort: 1,015 JIA and 1,569 controls transcription 4), TNFAIP3, COG6 (Component of oligomeric Golgi complex 6), 
 Screening of 519 AID-associated SNPs ANGTP1
 Case-control study and meta-analysis 

AS and Crohn’s [27] Screening of 39 Crohn’s disease-associated SNPs ORMDL3
 182 AS patients

AS and Crohn’s [28] Screening of 53 Crohn’s disease-associated SNPs Chr 1q32 (near KIF21B), STAT3, IL23R
 2,773 AS patients and 2,215 controls

Crohn’s and CeD [29] Meta-analysis of GWAS data from Crohn’s disease  PTPN2, IL18RAP, TAGAP, PUS10 (Pseudouridylate synthase 10)
 and CeD

IBD and T1D [26] Screening of 81 non-MHC loci associated with  UC-associated loci: ICOSLG (Inducible T-cell co-stimulator ligand), TNFSF15, 
 various AIDs from previous GWAS TNFAIP3
 1,689 Crohn’s disease, 777 UC, 989 T1D and  T1D-associated loci: HERC2 (Hect domain and RLD 2), IL26
 6,197 controls CD-associated loci: IL10, CCNY (Cyclin Y), PTPN22, IL27, IL18RAP

MS and AID loci [36] 2,864 MS and 2,930 controls SH2B3 (SH2B adaptor protein 3) associated with RA, SLE and T1D; KIF5A
 Screening of 20 SNPs associated with various AIDs  (Kinesin family member 5A) and CD226 associated with RA and T1D
 from previous GWAS 
 Case control study and meta-analysis 

SLE and AID loci [34] 1,500 SLE and 5,706 controls JIA-associated locus: VTCN1
 Screening of 446 variants associated with 17 AIDs  Crohn’s disease-associated loci: PLCL1, VEGFA, ZGPAT
 from previous GWAS MS-associated loci: IL12A, RPL19P8, CD40
 Replication study with 2,085 SLE and 2,854 controls CeD-associated loci: IL12A, TRAF1
 Case control study and meta-analysis  UC-associated loci: VEGFA, ZGPAT
  RA-associated loci: TRAF1, CD40
  T1D-associated locus: CCR7
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Table 3. Shared autoimmune disease loci and biologic pathways that are implicated according to the NCBI database 
(entrez Gene summary) or UniProtKB/Swiss-Prot

Shared loci Biologic pathways

ANGPT1 (Angiopoietin 1) Roles in vascular development and angiogenesis
BLK (B lymphoid tyrosine kinase) B-cell receptor signaling and B-cell development
CCNY (Cyclin Y) Control of cell division cycles and regulation of cyclin-dependent kinases
CCR3 (Chemokine receptor 3) Binds to eotaxin, eotaxin-3, MCP-3, MCP-4, RANTES and MIP-1
CCR7 (Chemokine receptor 7) Receptor for the MIP-3-beta chemokine
CD40 Member of the TNF-receptor superfamily; receptor for CD40L
CD226  Receptor involved in intercellular adhesion, lymphocyte signaling, cytotoxicity and 
 lymphokine secretion mediated by cytotoxic T-lymphocyte (CTL) and NK cells
COG6 (Component of oligomeric Golgi complex 6) Required for normal Golgi function
CTLA4 (Cytotoxic T-lymphocyte-associated protein 4) Negative regulator of T-cell responses
HERC2 (Hect domain and RLD 2) E3 ubiquitin-protein ligase 
FCGR2A (Fc fragment of IgG) Binds to the Fc region of immunoglobulins gamma
ICOSLG (Inducible T-cell co-stimulator ligand) Co-stimulatory signal for T-cell proliferation and cytokine secretion. Ligand for the 
 T-cell-specific cell surface receptor ICOS
IKZF1 (IKAROS family zinc finger 1) Transcriptional regulator of hematopoietic cell differentiation
IL10 Inhibits the synthesis of a number of cytokines, including interferon-gamma, IL-2, IL-3, TNF 
 and GM-CSF; produced by activated macrophages and by helper T-cells
IL12A Cytokine that can act as a growth factor for activated T and NK cells
IL18RAP  NFkB and JNK activation (IL-18 dependent)
IL2/IL21 Cytokines required for T-cell or B-cell proliferation
IL23R Binds IL23 and mediates T-cell and NK cell stimulation
IL26 Activates STAT1 and STAT3, MAPK1/3 (ERK1/2), JUN and AKT
IL27 Broad functions in adaptive immunity
IRF5 (Interferon regulatory factor 5) Transcription factor involved in virus-mediated activation of interferon
IRF8 (Interferon regulatory factor 8) Plays a negative regulatory role in cells of the immune system
IRGM (Immunity-related GTPase family, M) Might play a role in the innate immune response by regulating autophagy formation in 
 response to intracellular pathogens
KIF5A (Kinesin family member 5A)  Microtubule-dependent motor required for intracellular protein transport
LPP (LIM-domain-containing preferred translocation  Role in cell shape and motility
partner in lipoma)
MMEL1 (Membrane metallo-endopeptidase-like 1) Metalloprotease involved in sperm function
TNFSF14 Activates NFkB and stimulates T-cell proliferation
ORMDL3 (ORM1-like 3) Might indirectly regulate endoplasmic reticulum-mediated Ca2+ signaling
PLCL1 (Phospholipase C-like 1) Involved in an inositol phospholipid-based intracellular signaling cascade
PRKCQ (Protein kinase C theta) TCR-mediated T-cell activation
PTPN2 (Protein tyrosine phosphatase, non-receptor type 2) Lymphocyte cell signaling
PTPN22  Involved in the TCR signaling pathway
PUS10 (Pseudouridylate synthase 10) Post-transcriptional nucleotide modification of RNAs
RGS1 (Regulator of G-protein signaling 1) Might be involved in the regulation of B cell activation and proliferation
RPL19P8 (Ribosomal protein L19 pseudogene 8) Pseudogene
SH2B3 (SH2B adaptor protein 3) T-cell receptor activation signaling
STAT3 (Signal transducer and activator of transcription 3) Th17 differentiation pathway
STAT4 (Signal transducer and activator of transcription 4) Th1 differentiation (interferon-gamma expression)
TAGAP (T-cell activation RhoGTPase activating protein) T-cell activation
TNFAIP3  Negative regulator of the TNF- or LPS-mediated activation of NF-kappa-B
TNFSF15 Mediates activation of NF-kappa-B
TRAF1 (TNF receptor-associated factor 1) Adapter molecule that regulates the activation of NF-kappa-B and JNK
UBE2L3 (Ubiquitin-conjugating enzyme E2L 3) Ubiquitination of intracellular component
VEGFA (Vascular endothelial growth factor A) Signaling protein involved in the regulation of angiogenesis and vasculogenesis
VTCN1 (V-set domain containing T cell activation inhibitor 1) Negatively regulates T-cell-mediated immune response by inhibiting T-cell activation, 
 proliferation, cytokine production and development of cytotoxicity
ZGPAT (Zinc finger, CCCH-type with G patch domain) Negatively regulates expression of epidermal growth factor receptor (EGFR)

GM-CSF, granulocyte-macrophage colony stimulating factor; LPS, lipopolysaccharide; NK, natural killer; TCR, T-cell receptor.
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genetic overlap between RA and SLE have revealed both 
shared and distinct risk loci. For example, Orozco et al. 
[30] studied 11 SLE risk loci (TNFSF4, BANK1, TNIP1, 
PTTG1, UHRF1BP1, ATG5, JAZF1, BLK, KIAA1542, 
ITGAM and UBE2L3) for evidence of association with 
RA. They found that RA cases were enriched, overall, for 
SLE genetic risk alleles. Variants within the BLK and 
UBE2L3 loci were most strongly associated with RA. 
Similarly, SuarezGestal et al. [31] studied nine variants 
at the following SLE risk loci for evidence of association 
with RA among cases and controls from Spain: ITGAM, 
C8orf13-BLK, TYK2, 1q25.1, PXK, KIAA1542, MECP2, 
BANK1, and LY9. Previously established shared risk loci, 
including HLA, PTPN22, STAT4 and 6q23, were not 
studied. None of the nine SLE risk variants studied was 
signi ficantly associated with RA, suggesting that the 
genetic contribution to these two AIDs is relatively dis
tinct, although it is also possible that this study was not 
powered sufficiently to identify shared risk loci.

Coenen et al. [32] investigated the extent of genetic 
overlap between RA and celiac disease. Specifically, they 
evaluated 11 RA and 11 celiac disease risk loci among 
Dutch RA patients, celiac disease patients and control 
individuals. Their analyses revealed six risk loci that were 
shared by RA and celiac disease, which included the 
TNFAIP3, IL2/IL21, SH2B3, LPP, MMEL1/TNFRSF14 
and PFKFB3/PRKCQ loci. Overall, the shared loci 
supported the importance of both adaptive and innate 
immunity in susceptibility to these two disorders.

Thompson et al. [33] used GWAS to investigate more 
than 400 genetic variants that had been associated 
previously with one or more AIDs to determine whether 
they are also associated with the risk of JIA. Using a two
stage design (discovery and replication cohorts), they 
found strong evidence of association for seven distinct 
loci, including PTPN22, PTPN2, ADAD1-IL2-IL21, STAT4, 
C12orf30, COG6 and ANGPT1. These loci have been 
previously associated with RA, T1D, Crohn’s disease and/

Figure 1. Overlap of associated loci among autoimmune diseases highlighted in this review. Loci depicted in red are those shared by more 
than two autoimmune diseases. Loci depicted in black are those shared only by two autoimmune diseases. CD, Crohn’s disease; CeD, celiac disease; 
JIA, juvenile idiopathic arthritis; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SpA, spondyloarthropathy; T1D, 
type 1 diabetes; UC, ulcerative colitis.
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or MS, supporting genetic overlap between JIA and a 
broad spectrum of AIDs. Given the phenotypic hetero
geneity of JIA, which includes several distinct clinical and 
serologic subgroups, however, further work will be 
needed to clarify whether patterns of shared risk loci 
differ among specific JIA subsets.

Systemic lupus erythematosus
In addition to the studies mentioned above that have 
compared the overlap between SLE and RA risk loci 
[30,31], recent work by Ramos et al. [34] suggests only 
modest overlap between SLE and other AID risk loci. 
More specifically, these authors evaluated 446 genetic 
variants that had previously been associated with one or 
more of 17 AIDs to determine which loci were signifi
cantly associated with SLE susceptibility. A number of 
AID loci, including FCGR2A, IL10, IRGM, TNFAIP3, 
IKZF1, IRF5, BLK, IRF8, and UBE2L3, were associated 
with SLE and one or more other AIDs. However, many 
SLE loci, including ITGAM, TNFSF4, PTTG1, PHRF1, 
WDFγ4 and BANK1, were associated with other AIDs 
only weakly, if at all.

Multiple sclerosis (MS)
Multiple sclerosis is characterized by very strong asso
ciations with HLA class II variants, but some of the other 
genes that are strongly associated with multiple AIDs, 
such as PTPN22, do not appear to contribute substan
tially to the risk of MS. Nonetheless, emerging evidence 
from GWAS supports overlap of MSassociated genes 
with genes that have been linked to a broad spectrum of 
AIDs [35]. For example, work by Alcina et al. [36] in 
which 12 genetic variants previously associated with 
other AIDs were studied in a large collection of Spanish 
MS cases and control individuals identified three shared 
susceptibility loci, including KIF5A, SH2B3 and CD226, 
that also influence risk of RA, T1D and SLE (SH2B3). 
More recently, a collaborative GWAS involving almost 
10,000 MS cases recruited from 15 different countries 
has identified a large number of susceptibility loci, most 
of which map to regions containing immunologically 
relevant genes [37]. Particularly overrepresented are loci 
implicated in Thelpercell differentiation. Further, just 
over onethird of the MS risk loci identified overlap with 
regions previously identified in GWAS of other AIDs. 
Most of these shared risk loci have been associated with 
celiac disease, T1D, RA and/or IBD [37].

As mentioned previously, recent work by Sirota et al. 
[10] highlights the fact that certain variants that are 
associated with increased risk for some AIDs appear to 
be protective for others. More specifically, Sirota et al. 
[10] studied six AIDs (T1D, MS, AS, RA, Crohn’s disease 
and AITD) and found that AS and RA formed one group, 
and MS and AITD formed another group (with T1D 

showing similarity to both groups and Crohn’s disease to 
neither). Further, susceptibility variants that are asso cia
ted with the first class of AIDs generally had a protective 
effect in relation to the second class of AIDs. As an 
example, TAP2, which is involved in the transport of 
antigens from the cytoplasm to the endoplasmic 
reticulum for association with MHC class I molecules, 
was found to be a susceptibility factor for AS, RA and 
T1D, but a protective factor for MS and AITD.

Results of CPMA to identify shared and distinct 
genetic loci in AID
Cotsapas et al. [23] have recently completed a CPMA 
that significantly extends our understanding of shared 
and distinct AID loci. More specifically, they studied 107 
SNPs associated in recent GWAS with one or more of the 
following AIDs: celiac disease, Crohn’s disease, MS, 
psoriasis, RA, SLE and T1D. Their study indicates that 
almost half of these loci (47/107, 44%) are associated with 
multiple AIDs; many of these variants were not pre
viously known to be shared across AIDs. Nine of these 47 
variants had opposing effects in different AIDs. Cotsapas 
and colleagues also examined patterns of disease asso
ciation for the 47 shared loci, and found that just one 
locus, a variant in an exon of SH2B3 (rs3185404) was 
signi ficantly associated with all seven of the AIDs exam
ined. The remaining 46 variants were associated with 
subsets of the seven AIDs.

The authors extended their analysis of these variants to 
try to elucidate the molecular pathways underlying these 
subgroups of AID. Four clusters were revealed on the 
basis of the patterns of AID associations. The first cluster, 
represented by variants in IL23R, IL12B, PTGER4, JAK2, 
KIF21B, STAT3 and other genes, was most strongly asso
ciated with Crohn’s disease, psoriasis and MS. A second 
cluster, represented by variants in STAT4, IRF5, TNFAIP3, 
RGS1, CCR1, IL18RAP, IL2-IL21 and UBE2L3, was most 
strongly associated with celiac disease, RA and SLE. A 
third cluster, represented by variants in ORMDL3, 
CLEC16A, IL2RA, PRKCQ, CYP27B1, IKZF1 and ETS1, 
was most strongly associated with T1D, MS and RA. A 
fourth cluster, represented by variants in SH2B3, PTPN2, 
PTPN22, PRKCQ, CTLA4, UBASH3A, IL10, IFIH1, IL2, 
BACH2, IL27, CD226 and other genes, was most strongly 
associated with T1D, RA, celiac disease, Crohn’s disease 
and SLE. Further, an analysis of proteinprotein inter
actions revealed that the proteins encoded by variants 
within groups were more likely to interact with each 
other (either directly or via intermediates) than with 
proteins encoded by variants in other groups, under
scoring the biologic relevance of the AID relationships 
defined by this CPMA.

The delineation of genes and pathways that relate more 
specifically to certain AIDs than to others provides 
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valuable information that can be used to target auto
immune phenotypes with interventions that are relevant 
to those pathways. The highlighted biologic pathways 
then provide a focus for more fundamental research, 
aimed at elucidating the underlying disease mechanisms 
in autoimmunity, and they could inform the development 
of novel therapies. The success of antiTNF targeted 
therapies for a diverse group of autoimmune disorders, 
including RA, IBD, psoriasis, AS and others [38], nicely 
illustrates the potential value of this information. 
Similarly, the aforementioned collaborative GWAS of MS 
[37] highlights loci that are related to MS therapies, 
including VCAM1 (natalizumab) and IL2RA (daclizumab).

As recently summarized in a review by Rai and 
Wakeland [16], despite the dramatic increase both in the 
number of risk loci recently identified for human AIDs 
and in information about patterns of shared risk and 
biologic pathways, the current literature does not provide 
a complete mechanistic understanding of biologic path
ways that explain the pattern of AID susceptibility in 
human populations. Additional work will be required to 
refine genotypephenotype relationships in autoimmune 
disease more completely. This research should include 
larger casecontrol studies in diverse population groups 
and the application of new technologies, such as next
generating sequencing, to define all of the relevant 
genetic variation. Given the ‘missing heritability’ of human 
AIDs, and the fact that current GWAS have captured 
primarily common genetic SNP variants, it is likely that 
rare or structural variants explain much of the missing 
heritability, the identification of which will require new 
and emerging technologies. Finally, once the complete 
genetic architecture underlying human AIDs has been 
characterized, additional methods will be required to 
define the functional mechanisms that explain these 
genetic associations.

Summary and conclusions
Owing to the rapid pace of identification of AIDasso
ciated genes during the past 5 years, primarily as a result 
of GWAS, there is now a wealth of information available 
that allows for a more thorough delineation of the extent 
of genetic overlap across this broad group of disorders. 
Loci that are shared between various AIDs and involved 
in a wide range of immune pathways (for example, Tcell 
activation, Bcell activation, cytokine signaling) might 
help explain common pathogenic features and inform the 
development of novel therapies. Further, the lack of over
lap for other loci and pathways (for example, IL23R and 
STAT3 in IBD or spondyloarthritis) also suggests distinct 
pathogenic mechanisms that could explain, at least in 
part, the phenotypic diversity across the spectrum of 
auto immune disease. It is important to keep in mind, 
however, that current studies are likely insufficiently 

powered to characterize fully the genetic architecture of 
AIDs, including shared and distinct loci and biologic 
pathways. Thus, the ongoing generation and analysis of 
data emerging from GWA and other genetic studies is 
warranted in order to better define genotypephenotype 
associations in human AIDs and to clarify which 
pathways and specific targets are most relevant to the 
diseases within this diverse group of human disorders.
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