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Chronic hepatitis C virus (HCV) infection disrupts immune functions, including that of

cytotoxic CD8+ T-cells which are important mediators of immune response. While HCV

cure aims to eliminate long term sequelae of infection, whether direct-acting antiviral

(DAA) treatment results in immune reconstitution remains unclear. We and others have

reported generalized CD8+ T-cell dysfunction in chronic HCV infection and our research

suggests that the degree of liver damage is a factor in this process. Our recent research

indicates that liver fibrosis is not readily reversed after DAA-mediated clearance of

chronic HCV infection. We therefore examined the function of circulating CD8+ T-cell

subsets in chronic HCV infection in the context of liver fibrosis severity, determined

by ultrasound elastography and Metavir F-score system. We observed progressive

shifts in CD8+ T-cell subset distribution in HCV-infected individuals with advanced

liver fibrosis (F4) compared to minimal fibrosis (F0-1) or uninfected controls, and this

remained unchanged after viral cure. Impaired CD8+ T-cell function was observed as

a reduced proportion of CD107+ and perforin+ late effector memory cells in HCV+(F4)

and HCV+(F0-1) individuals, respectively. In HCV+(F4) individuals, nearly all CD8+ T-cell

subsets had an elevated proportion of perforin+ cells while naïve cells had increased

proportions of IFN-γ+ and CD107+ cells. These exaggerated CD8+ T-cell activities

were not resolved when evaluated 24 weeks after completion of DAA therapy and HCV

clearance. This was further supported by sustained, high levels of cell proliferation and

cytolytic activity. Furthermore, DAA therapy had no effect on elevated concentrations of

systemic inflammatory cytokines and decreased levels of inhibitory TGF-β in the plasma

of HCV+(F4) individuals, suggesting HCV infection and advanced liver disease result

in a long-lasting immune activating microenvironment. These data demonstrate that in

chronic HCV infection, liver fibrosis severity is associated with generalized hyperfunctional

CD8+ T-cells, particularly with perforin production and cytotoxicity, and this persists after

viral clearance. Whether DAA therapy will eliminate other related long-term sequelae in

HCV+(F4) individuals remains an important research question.
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INTRODUCTION

One third of circulating immune cells pass through the liver
every minute, wherein host responses and tolerance are delicately
balanced. Hepatic and extra-hepatic changes in liver disease are
associated with immune dysfunction (depression/exhaustion,
overstimulation/activation) and systemic inflammation,
depending on the liver disease severity and etiology (1, 2).
Over 50 million people worldwide are chronically-infected
with hepatitis C virus (HCV), of which ≈15–30% will silently
develop advanced liver fibrosis/cirrhosis, symptomatic liver
disease, and predisposing to end-stage liver disease and portal
hypertension (3, 4) with high mortality rates. Even after HCV
cure, regression of liver fibrosis is slow, if it occurs at all, as
reported after treatment with the former gold-standard IFN-α
+ ribavirin therapy (5, 6) and more recently with DAA therapy
(7). Despite the treatment of HCV infection with either of those
therapies, individuals with advanced liver disease are still at
risk of developing hepatocellular carcinoma (HCC) (8, 9) and
many remain on liver transplant lists (10). The functions of
many innate and adaptive immune system cells are impaired
in chronic HCV infection, particularly HCV-specific CD8+

T-cells (11–16), while underlying mechanisms remain to be
understood. Chronic HCV infection may have a more extensive
effect on all CD8+ T-cells, both those directed to HCV and
other antigens, as markers of exhaustion are observed on CD8+

T-cells in the blood, spleen and liver (17–20). We have observed
significant impairment of cytokine signaling and survival of the
entire CD8+ T-cell compartment in the blood and liver in HCV
infection and this was associated with the severity of liver disease
(21). Whether the functional capacity of circulating CD8+

T-cells in HCV infection with advanced liver disease is markedly
different than with minimal liver fibrosis is not known. Given the
importance of CD8+ T-cells in responses to viruses, intracellular
bacteria and parasites and tumor cell surveillance, all of which
remain a challenge to positive outcomes post-DAA therapy,
investigation of this perspective is required. Also, whether DAA
therapy can restore immunological dysfunction remains unclear.

Infection with HCV is typically cleared with 8–12 weeks
of direct-acting antiviral (DAA) therapy in most individuals
(>98%), although HCV genotype (genotype 3) and liver fibrosis
stage (F4) are associated with reduced treatment efficiency.While
new DAA therapies have achieved spectacular results for viral
clearance, the immunorestorative effects of DAA therapy are not
known. Restoration of innate immune cell function with DAA
therapy, such as NK cells in a study comprised of 42% cirrhotic
individuals (22) are countered by reports of how mucosal-
associated invariant T (MAIT) cells are not reinvigorated with
DAA therapy in cirrhotic individuals (23). Similarly, there are
conflicting reports on reversibility of impaired HCV-specific

Abbreviations: CFSE, carboxyfluorescein succinimidyl ester; CMV,

cytomegalovirus; CM, central memory; DAA, direct-acting antiviral therapy;

EM, effector memory; e-EM, early effector memory; EBV, Epstein-Barr virus;

F0-1, Metavir score for minimal liver fibrosis; F4, Metavir score for advanced

liver fibrosis; HCV, hepatitis C virus; l-EM, late effector memory; MLR, mixed

lymphocyte reaction; SVR, sustained virological response.

CD8+ T-cell function after viral clearance with 48 weeks of IFN-
α + ribavirin, suggesting irreversible immune cell dysfunction
(11, 24). Detection of impaired HCV-specific CD8+ T-cells in
chronic HCV infection prior to antiviral therapy predisposes re-
infected individuals to developing chronic HCV infection yet
again (25). Studies have demonstrated the restoration of HCV-
specific T-cells after DAA therapy yet have not isolated effects
of liver fibrosis severity. It remains to be determined whether
the generalized immune dysfunction observed in chronic HCV
infection persists long after DAA therapy.

Understanding the immunological changes associated with
advanced liver fibrosis in chronic HCV infection is imperative to
overcome the remaining relevant clinical outcomes after therapy
as many patients will not experience a reversal of liver fibrosis for
many years, if at all. Our recent studies have confirmed that liver
fibrosis reversal occurs slowly, if at all, 1 year after the completion
of DAA therapy in HCV-infected individuals alongside persisting
liver steatosis and inflammation, as measured by controlled
attenuation parameter scores (the highest of which were among
those with advanced liver fibrosis) [Doyle et al. (26)]. Since
HCV is the only chronic viral infection that can currently be
cured, there is a unique opportunity to investigate whether
immune dysfunction is reversed with viral clearance following
successful therapy. An understanding of the functional potential
of the entire CD8+ T-cell compartment may offer insights
on future responses to remaining clinical sequalae post-cure
(e.g., other infections, re-infection with new strains of HCV,
vaccination efficacy, and cancer surveillance to prevent HCC and
extrahepatic cancers). In this study, we sought to determine if
liver disease severity is associated with generalized dysfunction
of CD8+ T-cells in chronic HCVmono-infection before and after
DAA therapy.We evaluated CD8+ T-cell phenotypic distribution
and various indicators of immune and cytolytic function in
circulating CD8+ T-cells. We demonstrate for the first time that
advanced liver fibrosis/cirrhosis is associated with generalized
immune dysfunction that persists long after HCV cure.

METHODS

Study Subjects
This study was carried out in accordance with the
recommendations of the guidelines established by the Ottawa
Health Science Network Research Ethics Board with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the Ottawa Health Science
Network Research Ethics Board. Staff in The Ottawa Hospital
Clinical Investigations Unit consented the study participants and
collected blood samples. Study groups included healthy HCV−

individuals (n = 9) and chronically-infected HCV+ (>6 months
HCV RNA+) treatment naïve individuals (see Table 1 for
patient characteristics). HCV-infected individuals were classified
based on the degree of liver fibrosis. Liver fibrosis evaluation
was performed within 6 months of blood sample collection
using transient elastography. This score, in kiloPascals (kPa)
was converted to the METAVIR staging system (F0-F4). The
HCV-infected individuals were grouped as follows: HCV+(F0-1)
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TABLE 1 | Clinical characteristics of control and HCV+ study groups.

Parameter Chronic HCV

(F4a)

Chronic HCV

(F0-1a)

Uninfected controls

Number of participants 7 11 9

Sex 6 (M), 1 (F) 7 (M), 4 (F) 4 (M), 5 (F)

Mean age years ± SD (range) 59.9 ±

11.7 (45–76)

57.3 ± 7.8 (41–64) 43.6 ± 10.0 (25–54)

Race Caucasian (6),

East Indian (1)

Caucasian (10),

First Nations (1)

Caucasian (9)

Mean baseline fibrosis score (kPab) ±SD

(24 weeks post-SVRc)

22.5 ± 14.94

(10.5 ± 2.6, n = 4)

5.4 ±1.7 (5.9

±1.8, n = 4)

n/a

IgG anti-CMVd 3/4 seropositive 4/4 seropositive n/a

aLiver fibrosis score (Metavir fibrosis/cirrhosis F4, ≥12.5 kPa); (Metavir minimal fibrosis F0-1, ≤7.0 kPa).
bkPa, KiloPascal (determined by transient elastography).
cSVR, sustained virological response (undetectable HCV RNA 12 weeks after treatment cessation).
dCMV, cytomegalovirus, assessed in subjects treated with DAA therapy. n/a, Not assessed. SD, standard deviation.

(≤7.0 kPa, n = 11) or HCV+(F4) (≥12.5 kPa, n = 8). The latter
group was restricted to individuals with Child-Pugh class A liver
disease. Individuals with Child-Pugh B and C cirrhosis (i.e.,
decompensated liver disease) were excluded from this study. The
average age of controls was 43.6 ± 10.1, which was lower than
HCV+ study groups (F0-1: 57.3 ± 7.8 yrs p = 0.002 and F4: 59.9
± 11.7 p = 0.001). There was no significant difference in the age
of the HCV+ groups.

To evaluate the effects of DAA therapy on CD8+ T-cell
function in this context, HCV-infected individuals about to
undergo HCV treatment were grouped based on liver fibrosis
stage prior to DAA treatment initiation (see Table 1 for patient
characteristics). These individuals were treated with a 12 week
regimen of paritaprevir (protease inhibitor), ombitasvir (NS5a
inhibitor), dasabuvir (non-nucleoside polymerase inhibitor) with
or without ribavirin (Abbott Laboratories, Chicago, IL, USA).
Blood samples used for this study were collected at day 0 and 24
weeks post-SVR treatment. All treated individuals studied here
achieved a sustained virological response, SVR (i.e., undetectable
HCV RNA by 12 weeks after treatment cessation). Seropositivity
for cytomegalovirus (CMV) was determined by ELISA (MP
Biomedicals, Solon, Ohio, USA). There was no significant
difference in the average age of individuals in the HCV+ groups
receiving DAA therapy (F0-1: 51.8 ± 9.0, F4: 67.3 ± 9.5). The
effect of age on cell function could not be evaluated in this data set
as there were not young vs. older individuals to compare within
these groups.

Cell Isolation and Culture
Blood samples were collected in heparin-containing tubes and
PBMCs were isolated by Ficoll gradient centrifugation and frozen
for later use following publishedmethods (27). After an overnight
incubation of thawed PBMCs, CD8+ T-cells were isolated using
the EasySepTM Human CD8 Positive Selection Kit II (STEMCELL
Technologies, Vancouver, British Columbia, Canada). Cells (2
× 106 cells/ml) were cultured in plates pre-coated overnight
at 4◦C with anti-CD3 (10µg/mL, kindly provided by Dr. S.H.
Lee, University of Ottawa) and soluble anti-CD28 antibodies

(10µg/mL, Biolegend, San Diego, CA, USA). Cells were cultured
for 48 h before analysis of cell functions, as determined by time
course and dose response experiments (Figure S1).

Cell Subset Determination
Subsets of CD8+ T-cells were distinguished on the basis
of cell surface receptor expression as described previously
(28), using antibodies specific for CD45RA-ECD (clone
2H4LDH11LDB9, Beckman Coulter), CCR7-APC/CY7 (Clone
G043H7, BioLegend, San Diego, CA, USA), and CD27-PC5
(clone 1A4CD27, Beckman Coulter. The following subsets
were analyzed in this study: Naïve (CD45RA+CCR7+CD27+/−),
Effector (E, CD45RA+CCR7−CD27+/−), Early EffectorMemory
(e-EM, CD45RA−CCR7−CD27+), Late Effector Memory (l-
EM−, CD45RA+/−CCR7−CD27−), and Central Memory (CM,
CD45RA−CCR7+CD27+/−). Cell subsets were assessed by flow
cytometry using a FC500 machine (Beckman Coulter, Marseille,
France). This began by gating on the lymphocyte population
based on FSC/SSC, followed by doublet-exclusion and live/dead
staining using the Live-Dead Fixable Stain Kit (Molecular Probes,
Eugene, Oregon, USA). Cells were evaluated by applying the
fluorescence minus-one color compensation strategy followed by
gating on CD45RA+ and CD45RA− subsets, followed by subset
determination based on CCR7 and CD27 expression on the latter
subsets. Data were analyzed using FlowJo software (FLOWJO,
LLC, Ashland, Oregon).

Assessment of CD8+ T-Cell Functions
Proportion of IFN-γ± Cells
Six hours prior to the end of the 48 h anti-CD3/-CD28 cell
stimulation, cells were treated with Brefeldin A (15µg/mL,
Millipore SIGMA, Oakville, ON, Canada). After labeling cells
with subset determination antibodies and cell fixation (see
above), cells were permeabilized with saponin (Millipore
SIGMA) in 10% Human AB serum (Vally Biomedical Inc.,
Winchester, VA, USA) + anti-human IFN-γ-FITC antibodies
(clone 4S.B3, BioLegend) or IgG1κ-FITC isotype control (clone
MOPC-21, BioLegend) and evaluated by flow cytometry.
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Proportion of Perforin± Cells
After cell subset labeling and fixation, cells were labeled for
perforin using anti-human perforin-FITC antibodies (clone δG9,
BD Pharmingen, BD Bioscience, San Jose, CA, USA) or IgG2b-
FITC isotype control antibodies (clone 27–35, BD Pharmingen,
BD Bioscience). To minimize non-specific binding, human AB
serum (10%) was included in all buffers.

Proportion of Degranulating (CD107a±) Cells
Six hours before the end of the 48 h cell stimulation, cells
were treated with monensin (8µM, BD Bioscience) while
incubating cells with anti-human CD107a-FITC antibody or
IgG1κ-FITC (clones H4A3, and MOPC-21, respectively, BD
Biosciences). Cells were then labeled with antibodies for cell
subset determination, fixed and analyzed by flow cytometry.

Plasma Cytokine Quantification
The concentrations of pro- and anti-inflammatory cytokines
in plasma were quantified using multiplexing immunobead
assays analyzed using the BioRad Luminex machine (Bio-Rad
Laboratories, Hercules, CA, USA). Transforming growth factor
β (TFG-β)−1,−2, and−3 were quantified using the TGF-Beta
1,2,3 Magnetic Bead Kit (Milliplex, Millipore SIGMA) while all
remaining cytokines were assayed using the 48-plex Bio-Plex
ProTM Human Cytokine Screening Panel (BioRad, Mississauga,
ON, CANADA).

Data Analysis
Data were analyzed by either Student’s one-way t-test, one-way
ANOVA with Dunnett’s post-test (p ≤ 0.05) or Mann-Whitney
U-test with interquartile ranges (25 and 75%) with adjusted p-
values, as appropriate. GraphPad Prism 5.0 software, Microsoft
Excel and R programming language were used for statistical
analyses and to plot data.

RESULTS

Increased CD8+ Effector and Late Effector
Memory T-cell Subsets in Untreated HCV
Infection With Advanced Liver Fibrosis
The distribution of blood-derived, CD8+ T-cell subsets was
evaluated in HCV uninfected individuals (controls) and in
untreated HCV+(F0-1) and HCV+(F4) individuals to detect
any differences associated with liver fibrosis severity. Subset
distribution in unstimulated cells was determined after 48 h
of cell culture, alongside other cell function assays described
herein. A time- and dose-dependent analysis of anti-CD3/CD28-
stimulated CD8+ T-cells responses indicated responses after 6 h
and additional responses after 48 h (Figure S1). The latter time
point was selected as a means to reliably detect either increases
or decreases in function and is consistent with approaches used
in our previous work (21, 29). There was also a small but
measurable in vitro stimulation effect on cell phenotype during
this time. The proportion of naïve cells increased (10% more
than unstimulated cells) while the proportion of e-EM and l-EM
cells decreased (<5%) in controls and HCV+(F0-1) individuals.
Similar effects were observed in cells fromHCV+(F4) individuals

as well as decreases in the proportion of E and CM cells
(<5%) (Figure S2). There were no significant differences in the
distribution of any CD8+ T-cell subset between controls and
HCV+(F0-1) individuals, as determined by one-way ANOVA
and Dunnett’s post-test (Figure 1). In HCV+(F4) individuals,
there was no difference in the proportion of CD8+ e-EM and
CM CD8+ T-cells compared to controls. However, HCV+(F4)
individuals had ∼50% fewer naïve CD8+ T-cells (mean 27.47%
± 7.0 S.E., n = 7) than controls (mean 45.40% ± 5.4 S.E., n = 9),
(ANOVA p = 0.03). This study group also had more than
twice as many E cells (mean 17.7% ± 3.1 S.E.) and l-EM cells
(mean 20.62% ± 6.4 S.E.) compared to controls (E mean 8.18%
± 4.6 S.E., l-EM mean 11.54% ± 1.5 S.E.) (ANOVA p = 0.05
and 0.002, respectively). Mean values of naïve and l-EM subsets
in the HCV+(F4) group were lower than those of HCV+(F0-
1) individuals, although this did not reach statistical difference.
While the HCV+ individuals were significantly older than
controls, we did not associate differences in subset proportions
with age.

More IFN-γ+ Circulating Naïve CD8+

T-cells in Untreated HCV Infection With
Advanced Liver Fibrosis
To determine if the production of the immune modulating
cytokine IFN-γ by circulating CD8+ T-cells is associated
with the severity of liver disease in chronic HCV infection,
intracellular IFN-γ expression was assessed in anti-CD3/CD28-
stimulated cells. Following stimulation of blood CD8+ T-
cells, the proportion (%) of IFN-γ+ cells did not differ in
any cell subset between the groups (Figure 2A). In stimulated
cells from HCV+(F4) individuals, the proportion of IFN-γ+

naïve CD8+ T-cells (mean 16.99%) demonstrated a trend of
a nearly 2-fold increase compared to controls and HCV+(F0-
1) individuals (mean = 9.39% and 9.50%, respectively: one-
way ANOVA and Dunnett’s post-test, p = 0.06 and 0.07,
respectively, Figures 2A–D).

Increased Degranulation of Naïve Cells in
Advanced Liver Fibrosis While l-EM Cells
Were Reduced in This Capacity
To further examine if altered CD8+ T-cell activity in HCV
infection is associated with the degree of liver fibrosis, the
detection of degranulation marker CD107a was evaluated
following cell stimulation. The expression of CD107a is
undetectable in unstimulated CD8+ T-cells, while anti-
CD3/CD28 stimulation induces the exposure of this inner leaflet
receptor, indicating the capacity of the cell to degranulate. There
were no differences in the CD107a expression induced in CD8+

T-cells between any of the study groups (Figure 3A). There
were significantly more CD107a+ naïve cells from HCV+(F4)
individuals compared to controls or HCV+(F0-1) individuals
(ANOVA p = 0.02 and 0.05, respectively, Figures 3A,B). There
was also a significant decrease in the induced proportion of
CD107a+ l-EM cells in HCV+(F4) individuals compared to
controls (p = 0.04, ANOVA, Figures 3D,E), while no significant
change was detected cells from HCV+(F0-1) individuals
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FIGURE 1 | The degree of liver fibrosis in chronic HCV infection is associated with altered circulating CD8+ T-cell subset distribution. CD8+ T-cells were isolated from

PBMCs for analysis of subset distribution. The proportions of cell CD8+ T-cell subsets were distinguished based on surface marker expression by flow cytometry as

follows: Naïve (CD45RA+CCR7+CD27+/−), Effector (E, CD45RA−CCR7−CD27−), Early Effector Memory (e-EM, CD45RA−CCR7−CD27+), Late Effector Memory

(l-EM, CD45RA+/−CCR7−CD27−), and Central Memory (CM, CD45RA−CCR7+CD27+/−). (A) Representative dot plots of the lymphocyte gate (forward vs. side

scatter) and phenotype strategy are shown. The distribution of (B) uninfected controls (n = 9) and treatment naïve HCV+ individuals with (C) minimal (Metavir score

F0-1, liver thickness ≤7.0 kPa, n = 9) or (D) advanced liver fibrosis/cirrhosis (F4, ≥12.5 kPa, n = 5) are shown with pie-charts [mean percentages (%), subset S.D.

< ±10%]. Representative dot plots of CD8+ T-cell subset distribution in the (E) HCV+ (F0-1) and (F) HCV+ (F4) study groups are shown.
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FIGURE 2 | Advanced liver fibrosis/cirrhosis is associated with increased IFN-γ+ circulating naïve CD8+ T-cells in chronic HCV infection. After isolating CD8+ T-cells

from PBMCs of uninfected controls (n = 9), HCV+ individuals with minimal or advanced liver fibrosis (F0-1, ≤7.0 kPa, n = 9; F4, ≥12.5 kPa, n = 5, respectively), cells

were stimulated with anti-CD3/CD28 antibodies for 48 h, the proportion (%) of cells expressing intracellular IFN-γ was assessed by flow cytometry. (A) These data are

summarized in bar graphs. (B) Histograms of IFN-γ flow cytometry traces of naïve cells to provide representative examples from each HCV+ group to show marker

placement strategy relative to unstained cells and cells cultured with medium alone (Ctl) or stimulated with anti-CD3/CD28 antibodies and differences in %IFN-γ+

cells. The y-axis represents the relative number of cells after normalization to the mode (i.e., unit distribution) using FlowJo software. Representative dot plots of IFN-γ

expression in naïve CD8+ T-cells in cells isolated from individuals with either (C) minimal or (D) advanced liver fibrosis are shown. Statistical trends in altered

proportion of IFN-γ+ cells between groups are shown with a line and p-values approaching statistical significance (p ≤ 0.05) are shown, as determined by one-way

ANOVA and Dunnett’s post-test.
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compared to the other groups. There were significantly more
CD107a+ naïve cells in the HCV+(F4) group (Figure 3C)
compared to the HCV+(F0-1) (Figure 3B) and control groups
(p < 0.05, ANOVA).

Increased Proportion of Perforin+ CD8+

T-cells in Untreated HCV Infection With
Advanced Fibrosis
To complement the CD107a degranulation observations above,
expression of the lytic protein perforin was evaluated. Firstly, all
study groups expressed a similar baseline level of perforin+ cells
(≈5%). Following anti-CD3/-CD28 stimulation, the proportion
of perforin+ CD8+ T-cells cells fromHCV+(F4) individuals with
advanced liver fibrosis (mean 23.39%) was significantly greater
than HCV+(F0-1) individuals (mean 9.44%) or healthy controls
(mean 9.0%) (p = 0.02, ANOVA) (Figure 4). This was most
evident in naïve cells (mean 28.56% vs. HCV+(F0-1) 9.01%,
p = 0.003 or vs. controls 10.70%, p = 0.04, Figures 4B,C).
Subdividing CD8+ T-cell subsets based on the degree of CD27
expression has previously been shown to reveal diametrically
opposed levels of perforin expression such that more CD27lo

cells express perforin compared to CD27hi cells (30). In our data,
this was most readily testable in the CM population due to the
significant number of cells in each of the CD27hi and CD27lo

subsets. We detected a significant increase in perforin+ cells
in CD27lo CM cells from HCV+(F4) individuals compared to
HCV+(F0-1) individuals (p = 0.03, ANOVA). No such increase
was observed in CD27hi CM cells. Significantly more CD27−

naïve cells expressed perforin in the HCV+(F0-1) and (F4)
groups compared to controls (p= 0.03 and= 0.02, respectively).
An equivalent analysis of CD27hi/lo cells in the l-EM subset was
not informative due to a lack of significant cell numbers in the
CD27− subset.

A significant impairment in the proportion of induced
perforin+ cells was observed in HCV+(F0-1) individuals,
specifically in the E and l-EM subsets compared to controls
(p = 0.06 and 0.02, respectively, ANOVA) whereas the
proportion of perforin+ cells in those subsets in cells from
HCV+(F4) individuals were nearly equivalent to that of controls.
In HCV+(F4) individuals, E and naïve cells had the highest
proportion of perforin+ cells among subsets, whereas far fewer
naïve cells were perforin+ in the HCV+(F0-1) individuals and
controls (p < 0.05, ANOVA).

Direct-Acting Antiviral Therapy Does Not
Normalize CD8+ T-cell Function in
Advanced Liver Fibrosis
To determine whether the increased activity of CD8+ T-
cells observed in chronic HCV infection is reversed following
elimination of the virus with DAA therapy, the above functions
were evaluated before the initiation of DAA therapy and 24 weeks
post-SVR. While there was individual variation in the cellular
responses after DAA therapy, CD8+ T-cells from HCV+(F0-1)
individuals tended to have reduced functions by 24 weeks post-
SVR. This was particularly evident in the proportion of IFN-
γ+ and CD107a+ cells in all subsets, in which group means

at 24 weeks post-SVR were typically 50% lower than week 0
(Figures 5A,B vs. C and 6A,B vs. C), although this did not reach
statistical significance, perhaps due to the individual variation
in responses and small group size. In the HCV+(F0-1) group,
there were proportionally fewer perforin+ cells compared to the
HCV+(F4) group, with levels often equivalent to unstimulated
cells (Figure 7A). These low proportions of perforin+ cells did
not change by 24 weeks post-SVR (e.g., Figures 7B vs. C).
Therefore, HCV+(F0-1) individuals produced fewer perforin+

cells than HCV+(F4) individuals and had an overall tendency to
reduce IFN-γ and CD107a responses after DAA therapy.

Nearly 1 year after the initiation of DAA therapy (i.e., 24
weeks post-SVR), there was a clear pattern of sustained CD8+

T-cell activity in HCV+(F4) individuals (Figures 5A, 6A, 7A).
In this study group, the different cell functions were stable in
many cell subsets after DAA therapy as seen by stable group
means from week 0 to 24 weeks post-SVR (for representative
examples, see Figures 5D vs. E, Figures 6D vs. E, Figures 7D vs.
E). The exception to the observations of sustained cell function
after DAA therapy, was the reduced proportion of perforin+

CD8+ T-cells (group mean: wk 0 = 27.39%, 24 weeks post-
SVR = 15.25%, p = 0.01, Figure 7A). This was reflected by the
only subset-specific reduction in perforin expression, observed
in naïve cells (Figures 7F vs. G, group mean: wk 0 = 34.99%, 24
weeks post-SVR = 22.60%, p = 0.04). Therefore, the clearance
of HCV by DAA therapy had a significant effect on CD8+

T-cell functions, particularly in HCV+(F4) individuals, whose
exaggerated level of CD8+ T-cell activity was retained despite
viral clearance with therapy. Metavir scores of liver fibrosis did
not change significantly in either study group by 24 weeks post-
SVR, therefore liver fibrosis reversal during and after therapy
could not be associated with these observations. This concurs
with our recent study that found that DAA therapy did not
significantly decrease liver thickness (ave. 9.7 kPa at week 0
vs. 7.5kPa 24 weeks post-SVR, n = 23) (26). Furthermore,
fibrosis scores of F(4) individuals did not decrease with statistical
significance and remained classified as F4 (n= 5, week 0 ave. 21.6
kPa vs. 24-weeks post-SVR ave. 14.6 kpa). The fibrosis measures
of F(0-1) individuals also did not decrease significantly in this
study (n = 9, week 0 ave. 4.9 kPa vs. 24-weeks post-SVR ave. 5.0
kPa). Treatment with DAA did not alter cell subset distribution
by 24 weeks SVR in any of the study groups (data not shown).
In addition, we did not detect a different in CMV serostatus
among the DAA-treated individuals studied. However, nearly all
individuals were CMV-antibody positive (7/8, see Table 1).

Plasma Cytokine Concentrations Before
and After DAA Therapy Differ Between
Individuals With Minimal or Advanced Liver
Fibrosis
To complement our studies of circulating CD8+ T-cell
function, the concentrations of pro- and anti-inflammatory
cytokines were quantified in the plasma of HCV-infected
individuals across a spectrum of liver fibrosis severities (F0-
1 n = 8, F4 n = 4), before and after DAA therapy.
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FIGURE 3 | Evidence of increased degranulation is observed in circulating naïve CD8+ T-cells in HCV-infected individuals with advanced liver fibrosis while l-EM cells

reduced their capacity to degranulate. The detection of CD107a, a marker of cell degranulation, was conducted by flow cytometry on anti-CD3/-CD28-stimulated

CD8+ T-cells isolated from the blood of health controls and HCV+ individuals with minimal or advanced liver fibrosis. (A) The proportion of CD107a+ cells are

summarized in a bar graph, by cell subset. Statistically significant changes are demonstrated with representative dot plots to compare CD107a expression in

HCV-infected individuals with either minimal or advanced liver fibrosis in (B,C) naïve and (D,E) l-EM cell subsets. Statistically significant changes are indicated with a

“*” (one-way ANOVA and Dunnett’s post-test, p ≤ 0.05).

Using multiplexed immunobead assays, several pro- and anti-
inflammatory cytokines, chemokines and growth factors were
significantly increased across the all HCV+ individuals before
therapy, compared to healthy controls (n = 4) (see Table 2).
Despite the small sample size and individual variation in

plasma cytokine concentrations, several distinct differences
were found when analyzing HCV+ individuals based on the
severity of liver disease. At baseline, the (F4) group expressed
significantly higher concentrations of pro-inflammatory tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) and
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FIGURE 4 | The proportion of perforin+ CD8+ T-cells induced following stimulation is increased in nearly all cell subsets in HCV-infected individuals with advanced

liver fibrosis. After cell stimulation, the intracellular expression of perforin was measured by flow cytometry across several CD8+ T-cell subsets. (A) The data for

perforin expression in cells from healthy controls and HCV-infected individuals with minimal or advanced liver fibrosis are summarized in a bar graph. (B,C) An

example of a significant difference in cell subset expression of perforin between minimal and low fibrosis is shown with representative dot plots of naïve cells.

Statistically significant changes are indicated with a “*” (one-way ANOVA and Dunnett’s post-test, p ≤ 0.05) and statistical trends are indicated where p-values

approach statistical significance.

chemokine MIG (monokine-induced by gamma-IFN, CXCL9)
and tended to express more IL-8 compared to the (F0-1) group.
There was a particularly significant difference in plasma TGF-β
concentrations between the groups. The (F4) group expressed
significantly less anti-inflammatory TGF-β. A previous report
found similar levels of plasma TGF-β in HCV+ individuals
of which 80% had F4 fibrosis, and these concentrations were
significantly lower than that of healthy controls (ave. 3,800 pg/ml)
(31). Other growth factor differences in the (F4) group included
decreased G-CSF and increased HGF concentrations compared
to the (F0-1) group.

After DAA therapy (i.e., 24 weeks post-SVR), the
concentrations of several cytokines decreased significantly
in HCV+(F0-1) individuals compared to baseline (Table 2).
Some cytokines underwent small and unlikely biologically

relevant changes after treatment, and the small sample size
and individual variation in marker concentrations confounded
the interpretation of treatment or group effects. However,
significant reductions in the concentrations of key pro-
inflammatory cytokines (IL-18, IL-2Rα, IL-8 and TNF-α)
and several chemokines were observed. The elevated levels
of TGF-β1 at baseline in the HCV+(F0-1) group decreased
significantly at the end of treatment (p = 0.01, week 12, data
not shown) as reported previously (32), and this was maintained
up to 24 weeks post-SVR. In contrast, most plasma cytokine
concentrations remained unchanged in the HCV+(F4) group,
with trends toward decreases in chemokines Gro-α (CXCL1),
IP-10 (CXCL10) MIG, and MIP-1α (CCL3). Plasma TGF-β1
levels remained stable throughout week 12 and then further
decreased by 40% at 24 weeks post-SVR.
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FIGURE 5 | The proportion of IFN-γ+ CD8+ T-cells tended to decrease after DAA therapy in HCV-infected individuals with minimal fibrosis yet was sustained in a

state of advanced liver fibrosis. Treatment-naïve HCV-infected individuals were treated with direct-acting anti-HCV (DAA) therapy for 12 weeks, and PBMCs were

collected at wk 0 and 24 weeks post-SVR. Isolated CD8+ T-cells from PBMCs of HCV+ individuals with minimal or advanced liver fibrosis (F0-1, ≤7.0 kPa, n = 4; F4,

≥12.5 kPa, n = 4) when DAA treatment was initiated were stimulated with anti-CD3/-CD28 for 48 h and CD8+ T-cell functions were assessed. (A) A bar graph

summarizes the proportion of IFN-γ+ CD8+ T-cells in HCV+ individuals with minimal or advanced liver fibrosis, before and after DAA therapy (B–E) Representative

dot plots demonstrate the expression of IFN-γ in l-EM cells.

DISCUSSION

Immune dysfunction in advanced liver disease has been

described previously and includes a disruption of normal T-

cell activity. In chronic HCV infection, the impairment of

virus-specific CD8+ T-cells has been widely documented yet

the broader effects on circulating CD8+ T-cells is less well-
understood. We observed dramatic differences in the phenotypic
distribution of CD8+ T-cell subsets in blood between untreated
HCV+(F0-1) and HCV+(F4) individuals. We also observed
hyperfunctional activity of several CD8+ T-cell subsets, in a
generalized manner, in HCV+(F4) individuals. In contrast, the
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FIGURE 6 | Levels of cell degranulation marker expression are sustained after HCV cure in individuals with advanced liver fibrosis. The presence of CD107a was

evaluated in in vitro stimulated CD8+ T-cells isolated from HIV-infected individuals before treatment with direct-acting anti-HCV therapy (DAA) and 24 weeks

post-SVR. (A) These data are summarized in a bar graph showing data for individuals with minimal liver fibrosis on the left and advanced fibrosis on the right (n = 4 in

each study group). Data for week 0 data are shown in solid colored bars while data for 24 weeks post-SVR are shown in hatched bars. (B,C) Representative dot plots

demonstrate the reduction in detectable CD107a+ l-EM cells from week 0 to 24 weeks post-SVR in an individual with minimal fibrosis. (D,E) Additional representative

dot plots contrast the latter with sustained CD107a levels in l-EM cells of an individual with advanced liver fibrosis before and after DAA therapy.

function of bulk CD8+ T-cells in HCV+(F0-1) individuals were
typically similar to that of uninfected healthy controls. The
generalized hyperfunction of circulating CD8+ T-cells from
HCV+(F4) individuals was largely sustained up to a year

post-treatment initiation, particularly with perforin production
and cellular cytotoxicity. It is possible that this hyperfunction
is sustained in part by the ongoing systemic inflammation and
reduced anti-inflammatory signaling after HCV cure. This is the
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FIGURE 7 | The proportion of perforin+ CD8+ T-cells remains elevated in most cell subsets long after elimination of chronic HCV infection in individuals with

advanced liver fibrosis. Isolated CD8+ T-cells from PBMCs collected from HCV-infected individuals before treatment with direct-acting anti-HCV therapy (DAA) and 24

weeks post-SVR were stimulated with anti-CD3/–CD28 for 48 h followed by the detection of perforin+ cells were detected in cell subsets by flow cytometry. (A) The

proportion of perforin+ cells in CD8+ T-cells and subsets thereof is summarized in a bar graph, showing data for week 0 and 24 weeks post-SVR in colored and

hatch bars, respectively. Statistical significance is indicated with a “*” (one-way ANOVA and Dunnett’s post-test, p ≤ 0.05, n = 4 in each study group). Representative

dot plots demonstrate (B,C) the low level of perforin+ l-EM cells in HCV-infected individuals with minimal fibrosis, and how this was stable long after therapy

compared to the higher proportion of perforin+ l-EM cells in individuals with advanced liver fibrosis (D,E). (F,G) Finally, a representative dot plot depicts how the

increased proportion of perforin+ naïve CD8+ T-cells in a sample from an HCV-infected individual with advanced liver fibrosis was the only subset to demonstrate a

significant decrease in perforin expression after DAA therapy.
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first demonstration that DAA therapy does not resolve systemic
immune cell changes in HCV+ individuals with advanced
liver disease.

Differences in CD8+ T-cell subset distribution in treatment-
naïve HCV-infected individuals with disparate degrees of liver
fibrosis suggested there may be also functional differences. Our
previous work had shown significant reductions in naïve CD8+

T-cells in chronic HCV infection using a cell phenotyping
method involving CD45RA and CCR7 cell surface markers but
did not detect differences between individuals with minimal
vs. advanced liver fibrosis (n = 8 vs. n = 4, respectively)
(21). In the present study, the inclusion of the co-stimulatory
receptor CD27 as a marker in our cell subset determination
strategy is arguably more precise in its distinction between
effector and memory cell subsets (28, 30). We detected profound
decreases in the proportion of naïve cells in the HCV+(F4)
group and a significant over-representation of effector and late
effector memory cells. In untreated HCV+(F4), the low number
of naïve cells may be due to the expansion of effector and
memory cell compartments (particularly l-EM cells) compared
to that of HCV+(F0-1) individuals or healthy controls. We also
observed that the decreased proportion of naïve CD8+ T-cells
was sustained long after SVR with DAA therapy, as reported
by others (33). It has been suggested that reduced expression
of CD5, a negative regulator of T-cell receptor signaling, may
be associated with such sensitivity to activation in naïve T-cells
(33). Rapid and sustained increases in CD4+ and CD8+ T-cell
numbers during DAA treatment with immediate reductions in
viral load may reflect an efflux of hepatic lymphocytes from
the liver as the virus is cleared and liver inflammation reduces
(34, 35). The functional consequence has not been addressed, yet
the increased proportion of cells expressing markers of immune
activation (e.g., CD38+HLA-DR+) in HCV+(F4) individuals
may reflect these differences. Human naïve and memory CD8+

T-cells have recently been shown to differ fundamentally in their
metabolic programming upon activation (36), and the effects of
chronic disease on cell proportions may be an indicator of other
underlying biochemical differences.

The degree of T-cell activity that we observed in HCV+(F4)
individuals suggests an altered threshold for T-cell functionality,
compared to HCV+(F0-1) individuals or healthy controls.
Immune activation with aberrant activation of CD4+ and CD8+

T-cells is a hallmark of untreated HIV mono- and HIV-HCV co-
infection (37) and Barrett et al., have suggested that their findings
with regards to strong HCV-specific T-cell responses are related
to liver fibrosis severity (38). The antigen specificities of these
cells are largely unknown hence either antigen-dependent or -
independent mechanisms resulting from an inflammatory milieu
and microbial translocation may be the underlying cause (39).
This bystander effect is thought to skew memory/effector cell
differentiation toward exhaustion, marked by high levels of PD-1
(40, 41). Increased numbers of IFN-γ+ naïve cells may seem like a
curious finding (Figure 2) yet has been previously reported along
with increased granzyme B expression yet was not stratified by
the degree of liver fibrosis (33). The latter study found that these
hyperfunctional naïve cells recovered>2 yrs post-SVR after IFN-
α + ribavirin (n = 5) or IFN-α-free (n = 2) therapies. Our data

indicates that this recovery is not so evident after DAA therapy
in HCV+(F4) individuals and may have important repercussions
if altering naïve cells, thereby influencing T-cell pre-immune
repertoire with clinical outcomes that remain to be identified.
Elevated proportions of perforin+ naïve cells may further support
this possibility (Figure 4A). Perhaps the generalized state of
hyperfunctional CD8+ T-cells in HCV+(F4) individuals will
weaken their responsiveness to antigen-specific stimuli, resulting
in reducing the efficacy of immune responses while contributing
to bystander tissue damage. Tissue damage may be a possible
outcome of elevated perforin+ EM cells, which may gain access
to peripheral tissues including the liver by virtue of tissue homing
receptors. The phenomenon of bystander activation of T-cells,
including that of naïve cells, is increasingly noted for having a
role in exacerbating disease severity (42).

The association of CD8+ T-cell hyperfunction in chronic
HCV infection with immune activation is not well-understood
and is in contrast to the reports on the impairment of HCV-
specific CD8+ T-cells in circulation and in the liver (11–16).
While an evaluation of antigen-specific responses to HCV may
have added some insights here, limited numbers of such cells in
circulation is a significant technical challenge, as previously noted
(38). The responses to anti-CD3/-CD28 stimulation measured
here may not represent responses to HCV infection. In this
post-cure era, our rationale was to gain perspectives of host
response that extend beyond HCV-specific responses, which
have been reported on extensively and it is well-accepted that
those responses are impaired and contribute to the inability
to clear HCV infection. Rather, our findings will inform the
potential of the HCV-non-specific CD8+ T-cell population as
it pertains to remaining clinical issues such as future responses
to other infections, routine vaccination and cancers. Viral
factors of HCV have been associated with immune impairment,
including our recent demonstration of how HCV core protein
can impair CD8+ T-cell activities (29). Whether host factors
associated with liver fibrosis severity determine the degree of
CD8+ T-cell function and immune restoration potential after
DAA treatment has not been addressed until our study. Age-
related effects on immune function are known, yet the two
HCV+ groups studied here did not differ significantly by age
(F0-1: ave 57.3 ± 7.8 (range 41–64), F4: ave 59.9 ± 11.7
(range 45–76). A stepwise loss of CD8+ T-cell functions is
possible, as in models of chronic viral infection (43), wherein
retention of some activities occurs at the expense of others as
one progresses toward decompensated cirrhosis. Recent studies
described hyperfunctional circulating CMV-/EBV-specific CD8+

T-cells (increased intracellular expression and release of IFN-
γ and TNF-α or detectable CD107a expression) in chronic
HCV infection, despite elevated expression levels of exhaustion
markers PD-1, Tim-3 and 2B4 (44). While DAA therapy partially
restored CD8+ T-cell exhaustion marker expression by the
time of SVR, cellular functions remained elevated, suggesting a
disconnect between regulatory and activating signals. Nearly all
of the DAA-treated subjects in our study were CMV-seropositive
(7/8, Table 1), preventing any assessment of CMV reactivation
effects on CD8+ T-cells known to be associated with chronic
viral infection and aging (45). Our data, and that of our previous

Frontiers in Immunology | www.frontiersin.org 13 August 2019 | Volume 10 | Article 1926

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vranjkovic et al. T-Cell Dysfunction After HCV Cure

TABLE 2 | Plasma cytokine concentrations in HCV infected individuals with minimal or advanced liver fibrosis before and after direct-acting antiviral therapy.

Baseline 24 weeks post-SVR

Controla

(n = 4)

All HCV+ vs.

Ctl

(P-value)b

HCV+ (F0-1)

(n = 8)

HCV+ (F4)

(n = 4)

HCV+ F0-1

vs.

F4 (P-value)

HCV+ (F0-1)

24 weeks

post-SVR

F0-1 1rel.f

to

baseline

(P-value)

HCV+(F4) 24

weeks

post-SVR

F4: 1rel. to

baseline

(P-value)

Pro-inflammatory

IFN-y BDL 0 (0–4)c 0 (0–1) BDL BDL

IFN-a2 BDL 1.9 (1–12) 0 (0–1) 0.6 (0–3) 0.071 BDL

IL-12p40 5.8 14.9 (8–45) 11.4 (6–35) 5.7 (3–267) 12.1 (6–27)

IL-12p70 BDL 3.5 (2–23) BDL BDL 0.030 BDL

IL-18 2.6 0.0003, + 23.4 (15–59) 60.2 (37–71) 15.0 (8–40) 0.004 22.9 (21–33)

IL-2Rα 0.5 0.001, + 57.6 (45–72) 63.7 (56–72) 33.3 (21–44) 0.004 47.3 (31–56)

IL-6 BDL 0.053, + 0.7 (1–4) 1.4 (1–2) BDL 0.053 BDL

IL-8 0.3 0.001, + 8.0 (5–11) 13.2 (9–21) 0.064 5.8 (4–14) 9.2 (6–22)

TNF-α BDL 0.034, + 3.4 (2–82) 2.3 (1–3) BDL 0.018 2.3 (1–3)

TNF-β 1.3 7.4 (4–35) 1.2 (1–2) 2 (1–131) 0.7 (0–1)

TRAIL 18.0 23.3 (15–30) 7.2 (4–17) 0.033 24.4 (12–30) 2.6 (1–10)

Anti-inflammatory

IL-1Rα 19.6 0.002, + 171.4

(108–326)

93.2 (18–161) 150.6

(82–263)

115.1

(79–151)

IL-10 BDL 0.8 (0–7) BDL 0.6 (0–7) 0.500 BDL

IL-9 22.9 0.047, + 65.8 (43–162) 37.7 (31–47) 36.7 (26–268) 32.6 (27–37)

MIF 86.7 0.011, + 171.2

(110–406)

420

(223–566)

276.2

(16–550)

416.5

(262–478)

TGF-βd nae 6373

(4908–25595)

3283

(2963–4848)

0.010 5430

(2863–20165)

0.001 2154

(1740–3078)

0.03

Chemokines

CTACK (CCL27) 7.6 0.002, + 115.6

(66–174)

145.9 (112– 44.3 (23–92) 0.020 115.1

(61–143)

Eotaxin 19.2 0.002, + 433.6

(225–486)

283

(153–363)

286

(147–361)

0.012 204.9

(111–306)

GRO–α (CXCL1) 29.8 55.7 (28–87) 71.3 (68–75) 0 (0–19) 0.011 24.5 (12–44) 0.063

IP-10 (CXCL10) 36.3 0.0001, + 1896

(1087–3191)

2040

(1684–3053)

257

(111–347)

0.004 366

(284–528)

0.063

MCP-1 (CCL2 2.3 0.001, + 35.3 (28–56) 34.7 (19–63) 32.9 (20–37) 26.5 (15–48)

MIG (CXCL9) 585.1 0.026, + 1209.5

(1116–1470)

2794

(2282–3358)

0.001 688.4

(449–693)

0.074 1482

(900–1849)

0.063

MIP-1α (CCL3) 0.6 0.031, + 1.6 (1–2) 2.3 (2–3) 0.9 (0–2) 0.004 1.4 (1–2) 0.063

MIP-1β (CCL4) 20.0 0.003, + 41.6 (34–53) 47.2 (38–48) 31.8 (27–51) 0.054 32.3 (31–36)

RANTES (CCL5) 2420.7 0.013, + 5845.5

(4882–7406)

7960

(4694–10224)

6104

(5247–7556)

8460

(5943–8758)

Growth factors

G-CSF 4.3 0.007, + 57.2 (38–129) 17.4 (13–31) 0.015 26.3 (15–62) 12.8 (6–19)

HGF 117.3 0.019, + 192.9

(144–217)

243

(232–481)

0.010 160.0

(97–237)

236.4

(216–511)

IL-7 BDL BDL BDL BDL BDL

LIF BDL 0.064, + 8.1 (4–68) BDL 0.8 (0–5) 0.047 BDL

M-CSF BDL 0.001, + 20.0 (16–26) 21.7 (16–24) 7.1 (4–11) 0.004 10.6 (6–13)

aControl sample concentrations reported as means and IQR.
bStatistical significance was determined by Mann-Whitney U-Test (p ≤ 0.05) and are highlighted in bold, and statistical trends are included (p = 0.06–0.08).
cMedian and interquartile ranges (IQR) are rounded to the nearest whole number.
dTGF-β concentrations were determined in a separate assay.
en/a, data not available.
f∆ relative change compared to baseline (i.e., week 0, pre-DAA therapy).
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work, showed little change in the activity of the l-EM subset
(21) whose function is typically enhanced with CMV reactivation
(46, 47). Collectively, such immune cell activity may be a feature
of bystander expansion mediated by cytokines or other cell-cell
contact events, either in the liver or in circulation, and may
not reflect the dysfunction widely documented in HCV-specific
CD8+ T-cells.

Extreme immune dysfunction in liver disease (cirrhosis-
associated immune dysfunction syndrome) includes transition
through states of immune depression/exhaustion and
overstimulation/activation, depending on the liver disease
severity and etiology (1). Whether our findings are related
to the effects of chronic HCV infection or progressive liver
disease, or a combination thereof, remains to be determined
through studies in cirrhotic HCV uninfected individuals.
The mechanisms underlying CD8+ T-cell dysfunction in this
context are not known. Hyperfunctional CD8+ T-cells may
be predisposed to activation-induced cell death (33). We have
previously observed systemic and local effects on liver CD8+

T-cells in HCV infection (21). We specifically found that CD8+

T-cells from HCV+(F4) individuals produce less anti-apoptotic
Bcl-2 in response to the survival cytokine IL-7 compared to
cells from HCV+(F0-1) individuals. Since the liver filters one
third of the body’s blood volume every minute, circulating cells
can interact briefly yet regularly with the molecular and cellular
microenvironment of the increasingly damaged and inflamed
organ (48). The liver is an important source of the cytokine IL-7
(produced by hepatocytes) which mediates T-cell survival as
well as CD8+ T-cell cytotoxic activity as determined in a murine
model (49). Accumulating liver damage therefore reduces this
source of cytokine for circulating T-cells which we have found
to express unchanged levels of the IL-7 receptor α chain (21), a
situation which may persist if liver fibrosis regression does not
occur after anti-HCV therapy. Interestingly, immune blockade
inhibitors ±IL-7 in vitro failed to reverse the dysfunction of
HCV/CMV/EBV-specific CD8+ T-cells from HCV-infected
individuals with rapid fibrosis progression (50). Since we did
not observe any reversal in liver fibrosis scores during or after
therapy, we could not test whether liver fibrosis regression
influenced T-cell activity.

The results of this study expose an interesting relationship
between generalized CD8+ T-cell activity and liver fibrosis
severity. A limitation to the interpretation of these findings is
that the assessment of function after 48 h of in vitro stimulation
may not accurately reflect the status of cells in vivo in contrast
to a 6 h stimulation (Figure S1). In addition, sample size posed
a major limitation to data interpretation, with some responses
fraught with individual variation in function which may have
been alleviated with additional patient sampling. Until recently,
access to funding for DAA therapy was extremely limited in our
province, therefore limiting access to study samples, as reflected
in several reports with similar sample sizes in this field around
the world (20, 51, 52), while others have managed larger data
sets as DAA treatment became more accessible [e.g., Owusu
Sekyere et al. (44)]. However, many of these studies had low
proportions of cirrhotic HCV+ patients, further highlighting
difficulties in reaching ideal sample sizes [e.g., Alanio et al.

(33)]. Despite this, we are confident that our findings are
compelling and novel with regards to linking hyperfunction of T-
cells to advanced liver fibrosis. Efforts are ongoing to overcome
such important sample size limitations to cell-based research.
We are increasing our capacity to collect PBMC from HCV-
infected individuals undergoing DAA therapy, including long-
term follow up, and storing samples in our new local biobank
(now supported in part by the Canadian Network for Hepatitis
C) for ongoing research.

Lasting T-cell dysfunction in HCV+(F4) individuals is of
great clinical significance, although studies on this have been
limited. The enduring effects observed in our study complement
a previous report of how one HCV-specific CD8+ T-cell subset is
maintained after DAA therapy, while other exhausted cells are
not (53). Irreversible immune cell dysfunction has been noted
following long-term IFN-α therapy (48 weeks) (24), suggesting
that it is not an observation restricted to the use of DAA therapy.
Collectively, our data and these reports suggest that a chronic
viral infection and advanced liver disease may underlie an
imprinting of immune cells resulting in long-term dysfunction,
even after viral cure. Effects on heterologous immunity should
also be considered (54). There is an increased risk of community-
acquired infections such as pneumonia in cirrhosis (55, 56)
and poor responses to influenza (57, 58) or hepatitis B (59–
61) vaccines by HCV-infected individuals, all of which rely on
effective antibody responses. Our understanding of the effects on
de novo or recall CD8+ T-cell responses is less well-understood.
Ongoing systemic inflammation after DAA therapy has been
associated with sustained CD8+ T-cell dysfunction (23), although
we can only speculate that systemic inflammationmay contribute
to observed differences in CD8+ T-cell functions in our study
groups. We observed sustained elevated levels of plasma TGFβ
in HCV+(F4) individuals (Table 1). Epigenetic imprinting of
TGFβ has recently been associated with hyperfunctional NK
cells (increased IFN-γ and TNF-α production) (62), so this
mechanism may extend to T-cells and should be investigated
further. Since functional HCV-specific memory CD8+ T-cells
are absolutely required for protection from HCV reinfection
(63), HCV vaccines currently under development must emulate
effective T-cell responses. Alterations to naïve cells may also
influence the potential for inducing de novo T-cell memory to
other viral antigen epitopes. Our data suggest that lasting CD8+

T-cell dysfunction after HCV cure in HCV+(F4) individuals
could result in a failure to generate effective responses to
such a vaccine when it becomes available, as others have
predicted (64).

Lastly, the risk of developing liver cancer increases
dramatically with progressive liver fibrosis in HCV+ individuals.
While DAA therapy is thought to reduce the risk of HCC
attributed to HCV infection (8, 9), two recent yet controversial
studies suggest there may be an increased HCC recurrence
(≈30%) after DAA therapy, whereas IFN therapy was only
associated with 1–2% recurrence rates (65, 66). This recurrence
is thought to be mediated in part by a derangement of
immune surveillance function of CD8+ T-cells, due to the
rapid decrease in viral load with DAA and the reduction of
the IFN response causing an imbalanced anti-tumor response
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(67). Determining the underlying mechanisms of sustained
CD8+ T-cell dysfunction after DAA therapy in HCV+(F4)
individuals will identify novel therapeutic add-ons to improve
clinical outcomes, particularly in this era of rising rates
of HCC.

In conclusion, our association of liver fibrosis severity to
CD8+ T-cell activity in chronic HCV infection highlights a
potentially important correlate of systemic immune dysfunction.
The sustained hyperfunction of CD8+ T-cells long after DAA
therapy suggests how profoundly affected the immune system
is by an HCV infection and advanced liver disease. The
mechanism by which this occurs is not well-understood, and
the search for immune-restoring interventions is an active
area of research (68). The long-term consequences for altering
T-cell response thresholds with advanced liver disease are
not known but may be relevant in pathogenic situations in
the context of chronic HCV infection or after HCV cure.
Remaining clinical sequalae post-cure, in which CD8+ T-cell
play a prominent role, include new, and often more aggressive
forms of the HCC (69), or an increased HCC recurrence
(65) and extrahepatic cancers (70). There is concern that
individuals who experienced chronic HCV infection may fail
to generate effective HCV vaccine responses when available, as
they will require de novo T-cell activity, posing a challenge to
vulnerable populations where HCV re-infection is a risk (64).
Hyperfunctional CD8+ T-cells may be a double-edged sword
with beneficial robust immune responses to certain infections
or ineffective, overactive and tissue-damaging cytotoxic activity.
Several important studies have identified lasting epigenetic
changes in the mouse model of chronic LCMV infection and
in small studies of either HIV of HCV infection (71). Whether
a state of advanced liver fibrosis further contributes to this
remains to be determined. Understanding the mechanisms
of immune dysfunction and barriers to immune restoration
after HCV cure will aid in mitigating the remaining negative
long-term health outcomes for individuals with advanced
liver fibrosis.
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Figure S1 | Dose response and time course analysis of anti-CD3/-CD28

stimulation of isolated CD8+ T-cells. To determine the appropriate dose of

stimulation reagents and culture time to detect robust functional readouts in bulk

CD8+ T-cell cultures, time course and dose response experiments were

conducted. Representative graphs of such experiments are shown here. (A) First,

the concentration of pre-coated anti-CD3 and soluble anti-CD28 antibodies was

titrated (1–20µg/ml) was evaluated across a time period of 6–72 h. The proportion

of IFN-γ+ cells was measured by flow cytometry, highlighting the significant

detection of IFN-γ+ cells at 48 h. Additional experiments over similar time courses

were conducted with 10µg/ml of anti-CD3/-CD28 antibodies, measuring (B)

CD107a+ and (C) perforin+ CD8+ T-cells.

Figure S2 | The effect of anti-CD3/-CD28 stimulation in vitro on CD8+ T-cell

subset distribution. CD8+ T-cells isolated from PBMCs were stimulated with

anti-CD3/CD28 antibodies (10µg/ml) for 48 h followed by an evaluation of

phenotype distribution, alongside function assessment. The proportions of cell

CD8+ T-cell subsets were distinguished based on surface marker expression by

flow cytometry as follows: Naïve (CD45RA+CCR7+CD27+/−), Effector (E,

CD45RA−CCR7−CD27−), Early Effector Memory (e-EM, CD45RA−CC

R7−CD27+), Late Effector Memory (l-EM, CD45RA+/−CCR7−CD27−) and

Central Memory (CM, CD45RA−CCR7+CD27+/−). The distribution of subsets in

(A) uninfected controls (n = 9) and treatment naïve HCV+ individuals with (B)

minimal (Metavir score F0-1, liver thickness ≤7.0 kPa, n = 9) or (C) advanced liver

fibrosis/cirrhosis (F4, ≥12.5 kPa, n = 5) are shown in bar graphs (error bars

represent SD). Unstimulated cells are shown in clear bars, whereas stimulated

cells are shown with gray bars. Statistically significant changes in subset

proportions with stimulation compared to unstimulated controls within each

subset were determined by two-way, paired Student’s t-tests and indicated with

an asterisk “∗” (p ≤ 0.05).
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