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Continuous Force Decoding from 
Local Field Potentials of the 
Primary Motor Cortex in Freely 
Moving Rats
Abed Khorasani, Nargess Heydari Beni, Vahid Shalchyan & Mohammad Reza Daliri

Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor 
cortex can be used as a high informative input for decoding of motor functions. Recent studies show 
that different kinematic parameters such as position and velocity can be inferred from multiple LFP 
signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the 
LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press 
a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in 
the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the 
continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient 
of determination between decoded and actual force signals were r = 0.66 and R2 = 0.42, respectively. 
We found that LFP signal on gamma frequency bands (30–120 Hz) had the most contribution in the 
trained decoding model. This study suggests the feasibility of using low number of LFP channels for the 
continuous force decoding in freely moving animals resembling BMI systems in real life applications.

Advent of invasive microelectrodes in brain machine interface (BMI) systems has provided a practical tool for 
restoration of movements in individuals with paralyzed limbs1,2. In these motor BMIs, movement is decoded 
from cortical neurons and then a proper motor command is produced to move a real body part (exoskeleton, 
muscle innervation) or an artificial effector similar to healthy subjects controlling their body parts. The spik-
ing activity recorded with high density multi-electrode array from primary motor cortex (M1) can provide the 
highest-resolution brain signals in both space and time domains. However, local field potential (LFP) signals rep-
resenting mainly synaptic activity of local neurons would be a better choice than spikes in practical BMI systems, 
because of both stability in long periods of time and simplicity of the extraction3. On the other hand, unlike semi 
invasive methods like electrocorticography (ECoG) recordings, LFP has a higher signal to noise ratio and spatial 
resolution. Therefore, LFP would be a more informative choice for decoding of movement parameters in BMIs.

Recent studies have shown that different movement-related parameters such as direction, position and veloc-
ity can be inferred from multichannel LFPs as precisely as spiking activities4–8. For instance, reaching direction 
can be decoded from the spectral features of multichannel LFPs9,10. Furthermore, continuous movement param-
eters such as position and velocity in 3-D or 2-D space can be decoded from multichannel LFPs recorded from 
motor cortex4,8,11.

All of the aforementioned studies have focused on the decoding of kinematic parameters. However, in com-
mon everyday tasks like grasping an object or pressing a button, accurate decoding of force amplitude is also 
critical. Nevertheless, a few studies have focused on the continuous decoding of force from cortical signals12–15. 
Gupta et al.12 investigated the decoding of end-point force applied by monkeys to a joystick. In their study, 
96-channel intracortical electrodes were implanted in the M1 area of the two macaque monkeys, the spike trains 
were obtained and the force parameter was continuously decoded from the firing rate of neurons using a linear 
decoder. Chen et al.13 decoded the force profile (not the real force values) from 16-channel ECoG measure-
ments in two monkeys. The monkeys were trained to pull a force sensor and then the normalized force (to max-
imum values of all the trials) was continuously decoded from ECoG signals. Flint et al.14 showed the feasibility 
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of decoding isometric force from ECoG signals in human subjects. Ten epileptic subjects were asked to squeeze 
a force sensor between their fingers and then the applied force was decoded from the ECoG signals. With one 
exception15, to the best of our knowledge LFPs have not been used so far for the continuous decoding of force 
amplitude. In ref. 15, Milekovic et al. showed that both types of griping and load forces can be classified based on 
the spectral information of 100 LFP channels in two monkeys. They also showed that the force applied to indi-
vidual fingers during object grasping can be continuously decoded from 100 LFP channels. Here, we decode the 
continuous force amplitude from the small number of LFP channels (16) in the M1 region of freely moving rats.

Materials and Methods
Behavioral task. Three male Wistar rats (300–400 g) were used in this study to perform a behavioral task. 
All rats were trained to control a lever by pressing a key connected to a force sensor (1 DOF load cell) to receive 
a drop of water as a reward. The force sensor does not rotate during the applying force and was located in the 
front of the rats 10 cm above the floor of experimental setup. The applied force (0–0.15 N) was linearly mapped to 
the 0–90 degrees in rotation of a mechanical arm. The animals could only rotate the lever to 90 degrees, but the 
force values further than 0.15 N are also considered in the analysis. When the applied force reaches a predefined 
threshold (0.15 N), the lever will stop in 90 degrees angle, and after 1.5 s the animal will receive the water in front 
of his mouth for 75 ms from the end point of the lever (Fig. 1). The animals were free to press the force sensor at 
any time and we did not define any cue for the start and end of each trial. Note also that the orientation/position 
of forelimb during applying force was stable due to the fixation of the force sensor.

Micro-array implantation. When we ensured that the rats have learned the behavioral task, micro-wire 
arrays were implanted in the primary motor cortex (M1) area for each rat contralateral to their preferred arm. 
In this study, all animals used their right hand to perform the task and so the arrays were implanted in the left 
hemisphere of their brain. All animals were anesthetized by administrating mixture of ketamine (100 mg/kg) and 
xylazine (10 mg/kg). We monitored the depth of anesthesia by both toe pinching and controlling of respiration 
rate. Then, animals were mounted on a stereotaxic frame. At the first step of surgery, an incision was made in head 
skin midline and all of the tissues were removed from the scalp to access the head bone. Then, the Bregma and 
Lambda points were identified and the desired craniotomy position was marked. Then, one screw was placed in 
the posterior of Lambda point for connecting the ground wire and 5 extra screws were also mounted on the scalp 
to stabilize dental acrylic on the head.

The (4 ×  4) micro-wire array (Microprobes Inc., Gaithersburg, USA) is constructed from 25 μ m Platinum/
Iridium Teflon-coated wires (500–800 KΩ). The micro-wire array with inter-wire distance of 500 μ m(1.5 ×  1.5) 
was implanted in the forelimb region of the M1. The coordinates of forelimb region were identified using rat brain 
atlas16. The center of the array was implanted in a position 1.6 mm anterior to Bregma, 2.6 mm lateral to the mid-
line and 1.5 mm deep under the surface of the dura mater to cover all the areas of forelimb region17,18. At the end, 
the exposed craniotomy and the opened head areas were sealed with dental acrylic. For two days after surgery the 
animals were intraperitoneally administrated meloxicam (0.2 mg/kg) for pain relief and enrofloxacin (5 mg/kg) 
every 12 hours for avoiding possible infection. The local ethics committee (The animal care and use committee of 

Figure 1. Schematic of force decoding from multichannel LFP data. The rat presses a force sensor and 
a mechanical arm rotates proportional to the quantity of force and if the applied force by animal’s forelimb 
reaches to a predefined threshold, the lever will stop on 90 degrees and the animal will have a drop of water as a 
reward. 16 channels of intracortical signals from the M1 area are recorded simultaneously and the LFP contents 
are obtained from band-pass filtering (0.1–500 Hz) and down-sampled to 1 kHz. The LFPs are band-pass filtered 
in 6 frequency sub-bands and a Partial Least Square (PLS) decoder is used to continuously decode force signal 
from high dimensional feature vector. Coefficient of correlation (r) and coefficient of determination (R2) are 
employed to assess the accuracy of the decoding.
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Neuroengineering and Neuroscience Research Laboratory, Iran University of Science & Technology) approved 
all the issues, including training, anesthetization, craniotomy surgery and recovery procedures and all the proce-
dures were in line of NIH protocols for animal research.

Neural and force data recording. The first session of recording in behaving animals was started 2 weeks 
after surgery. The animals were placed in the behavioral setup and both brain and force signals were recorded 
simultaneously while performing the task. The preamplifiers (2*MPA8I) of recording device (USB-ME16, 
Multichannel system, Germany) were attached to the implanted array connector (Omnetics Connector, USA) 
and the recorded raw brain signals at sampling rate of 10 KHz were transferred to PC through electrical cable. The 
spike signals were extracted by band pass filtering of raw brain signals (300–3000 Hz) and then manual threshold-
ing of each channel. Furthermore, to obtain LFP signals the raw brain signals were band-pass filtered (0.1–500 Hz, 
4th order Butterworth, band-pass filter, forward and backward) and resampled at the rate of 1 KHz. The force 
signals were also continuously recorded at the sampling rate of 30 Hz and TTL-synchronization was used to 
synchronize LFP and force signals. Due to negligible power of force data above 5 Hz, force signals were low-pass 
filtered at a cutoff of 5 Hz (4th order Butterworth, low-pass filter, forward and backward) and down-sampled to 
10 Hz. Because in the designed experimental task the rats were free to push the force sensor at any time, duration 
of pushing the force sensor by rats has been very small in comparison to the duration that rats did not perform the 
force-based task. Thus, only data samples corresponding to the task have been considered for the decoding in this 
study. Although the data were recorded continuously, only the 1.5 s before and 2 s after crossing the applied force 
from 0.15 N were considered as a trial. Therefore, we obtained one lever press per trial with 3.5 s duration. Then, 
these extracted trials were concatenated to construct the full training and test sets.

Continuous decoding of force signal from LFPs. The final goal of this study was to predict the force 
amplitude applied by the rat forelimb to the force sensor continuously from the multichannel LFPs. In the first 
step, the common noise in LFP signals was removed using common average referencing (CAR) method19. 
Considering the fact that the recorded brain signals are mixed of cortical signals and a common, noisy term, the 
noise term can be removed by subtracting the mean of all channels at each time from each one:
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where ych(t) represents the original LFP signal in one channel at time t, ′y t( )ch  represents the filtered one after 
applying the CAR filter, and M shows the total number of electrodes. In the second step, to extract the meaningful 
features from the LFP signals, the filtered LFPs using the CAR method were band-pass filtered (4th order 
Butterworth, band-pass filter, forward and backward) in each channel through the following 6 frequency 
sub-bands:

δ − θ − α − β − γ − γ − .(1 4Hz), (4 8Hz), (8 12Hz), (12 30Hz), low (30 120Hz), high (120 200Hz)

In the next step, to extract the temporal continuous changes related to the force variations in each frequency 
band, the obtained time series in each frequency band were rectified (absoluted) and then smoothed using a 
Savitzky-Golay filter (3rd order, 100 ms width). Applying smoothing to the rectified signal provides the envelope 
of input signal. In this study, unlike conventional methods for smoothing, we used Savitzky-Golay filter as it pre-
serves the local maxima of the original signal better than the others20. In the final step of feature extraction, the 
smoothed features were normalized by subtracting the mean and dividing by the standard deviation values over 
all the training data.

In the next phase, Partial Least Square (PLS) regression method was used to continuously decode the force 
signal from the extracted features21. The time history of features over 1 s before time t in 0.1 s time-steps were 
used for force decoding. This leads to a 960 dimensional feature vector (16 channels*6 frequency bands* 10 time 
lags). To treat with high-dimensional data, PLS regression is a powerful choice due to its ability in both avoiding 
over-fitting and omitting feature selection procedures. The description of the PLS algorithm has been presented 
here:

Assume the relationship between the input and output variables based on the linear model f =  X β +  α, where 
Xnp and fnl show the input variables (input features) and output response (in our case 1 D force signal), respec-
tively. The parameter n shows the number of samples which is equal to the length of the input signal and p shows 
the number of available features in input space, respectively. Basically, the PLS method reduces the input fea-
tures to the smaller sets of uncorrelated components and then applies least square regression on them, instead of 
the original input data. Furthermore, the PLS method tries to extract components in a way that maximizes the 
covariance between input and output variables. Assume A (A <  p) as the number of optimal components for the 
prediction of force from the input neural features. PLS iteratively tries to find each component (a =  1, 2, … , A) 
based on the following steps:

(1) Finding loading weights: These weights show the direction that the covariance between Xa−1 and fa−1 becomes 
maximum:

= ′ − −W X f (2)a a a1 1

(2) Finding first component: The orthogonal components are estimated using linear coefficients obtained in the 
previous step:
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(3) Finding the projection of X (pa) and f (qa) on the first component ta by:
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(4) Removing the information of first component from the original input feature X:
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(5) Return to step 1 to find the next component with Xa and fa as the new input and output variables. These pro-
cedures are repeated until finding all components (a =  1, 2, … , A).

(6) In the last step all the computed loading weights, components and loadings are stored in the following matrices:
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(7) The linear coefficients and bias of PLS decoder are computed based on the following equation:
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where X and f  show the average of input and output variables, respectively. Therefore, in our case the regression can be 
applied between a low dimensional vector (A <  960) and the force signal as output. The final goal of PLS is the estima-
tion of linear coefficients to model the relationship between the extracted feature vector and the output force signal:
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where f(t) represents the force signal in time t, βijk is the regression coefficient corresponding to each feature xij for 
ith channel, jth frequency band and kth time lag. α is the bias coefficient and temporal lag Δ t is equal to 0.1 s here.

To evaluate the accuracy of force decoding from LFPs, 7-fold cross validation method after shuffling the order 
of trials was used. Thus, the PLS method identified the linear coefficients in each training fold and the decoding 
performance was evaluated over the test fold which was not used in the training set. Moreover, to select the opti-
mal number of PLS components (A) in each training fold, Wold’s R criterion was used based on the 10-fold cross 
validation over the training sets22:

=
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where PRESS represents squared error between predicted and observed force signal considering m first latent vari-
ables for decoding. It is shown that selecting the optimal number of latent variables based on the Wold’s R criterion 
leads to better statistical properties compared with frequent methods that search for minimum PRESS22. Based on 
this method, when the defined criterion reaches to a threshold value (0.9), the number of components is consid-
ered optimum. We chose the threshold value of 0.9 empirically to achieve the best force decoding performance.

Performance criteria. We used both coefficient of correlation (r) and coefficient of determination (R2) to 
evaluate the accuracy of force prediction from 16-channel LFPs in each test fold. Coefficient of correlation rep-
resents the shape similarity between predicted and observed force on the test fold using the following formula:
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where fi and f̂ i represent ith sample of observed and predicted force, respectively. f and f show the mean values of 
observed and predicted force in the entire of each test fold, respectively. The parameter n shows the total number 
of samples in each test fold. In addition, the coefficient of determination (R2) is a good criterion to measure the 
amount of variance in the observed force signal explained by the predicted one which is calculated as following:

= −
∑ −

∑ −
=

=

ˆ
R

f f
f f

1
( )
( ) (11)

i
n

i i

i
n

i

2 1
2

1
2



www.nature.com/scientificreports/

5Scientific RepoRts | 6:35238 | DOI: 10.1038/srep35238

Contribution of each frequency band and time lag in the force decoding. To investigate the 
amount of force-related information in each frequency band and time lag, the percentage of contribution of each 
frequency band and each time lag are calculated based on the following formula:
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where %Cfreq(j) and %Clag(k) are the percentage of contribution of jth frequency band and kth time lag in the force 
decoding, respectively.

Results
In Table 1, the information of the experiments for each rat is shown. The numbers of trials for each rat (1–3) are 
105, 112 and 98, respectively. These trials are obtained from 5, 7 and 5 sessions in each rat respectively spread 
across 50 days started from two weeks after array implantation. The rats (1–3) have pressed the force sensor 21 
(± 5.6), 16 (± 3) and 19 (± 4.2) times on average per session while they were free to press the force sensor at any 
time. Furthermore, the mean (± SD) of peak force values obtained from all trials in each rat are 0.31 (± 0.17),  
0.37 (± 0.14) and 0.35 (± 0.12). Considering the fact that the animal can press the force sensor much further than 
a predefined threshold (0.15 N), the range of obtained force signals for all trials in different rats (1–3) are 0–0.95, 
0–0.79 and 0–0.7 (Fig. 2). It is also important to mention that the negative force values are not considered in the 
current study, because the animals were not trained to pull the force sensor.

Figure 2 shows an example for the effect of CAR filtering on both temporal and spectro-temporal information 
of LFP signals. This figure shows the average and standard deviation of LFP signals (session 1, 23 trials, rat3, chan-
nel 11) in the time domain before and after applying the CAR filter in a 3 s period before and after one lever press. 
As can be seen, the CAR filter has increased the variance of some channels, but in some channels this variance has 
decreased. This shows that the variance parameter is not a proper criterion to evaluate the temporal modulation. 
But, the results show that applying CAR filter has revealed 27% improvement in decoding performance in terms 
of R2 over all datasets (ρ <  0.01, Wilcoxon signed-rank test). These results show that CAR filter has removed the 
non-force related information from the raw brain signals. The right section of this figure shows the average spec-
trogram of the same LFP signals (session 1, 23 trials, rat3, channel 11) before and after applying the CAR filter in 
a 3 s period before and after one lever press. As can be seen, most of the high frequency components of LFPs that 
may contain artifact sources have been removed.

The results of force decoding from 16 channel LFPs for all 3 rats in each of 7 test folds are represented in 
Table 2. As it can be seen, the mean (± SD) of r and R2 values obtained from all 7-test folds for each rat (1–3) 
are (r =  0.68 ±  0.06, R2 =  0.45 ±  0.1), (r =  0.64 ±  0.04, R2 =  0.41 ±  0.08) and (r =  0.67 ±  0.05, R2 =  0.42 ±  0.08), 

Rat1 Rat2 Rat3

Number of trials 105 112 98

mean of peak force (N) 0.31 ±  0.17 0.37 ±  0.14 0.35 ±  0.12

Force values range (N) 0–0.95 0–0.79 0–0.71

Table 1.  Details of the trials in each rat experiment.

Figure 2. The analysis of the CAR filtering effect on the LFP signals in time and time-frequency domain. Left 
panel: The mean (bold blue line) ±  SD (opaque colored tube) of the LFP signal on channel #11 are drawn over 
23 trials in one session recording from rat 3. Right panel: The average spectrogram obtained over the same trials. 
The mean of (bold blue line) ±  SD (opaque colored tube) force signals are shown in the bottom of both panels.
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respectively. Figure 3 shows 35 s (10 trial) of force decoding in a test fold with the highest value of R2. The R2 
value in these best folds for each rat (1–3) is 0.63, 0.52 and 0.53, respectively. The mean (± SD) optimal number of 
components based on the Wold’s R criterion for all 7 folds is 5.7 (± 0.81) for rat 1, 4 (± 0) for rat 2 and 4.71 (± 0.75)  
for rat 3 (Fig. 4). The obtained values show that the number of selected PLS components for force decoding is 
much smaller than the overall feature dimension (960). Figure 5 shows the contribution of each frequency band 
corresponding to 7 folds of each rat dataset. As it can be seen, in all 3 datasets, the contribution of low gamma 
band (30–120 Hz) has been significantly greater than the mean contribution of all frequency bands (Wilcoxon 
signed-rank test). Figure 6 shows the temporal contribution of different time lags obtained from 7 folds in each 
dataset. As can be seen the contribution of temporal offsets (Δ t) between 0–300 ms have been significantly greater 
than the mean contribution of all time lags (Wilcoxon signed-rank test). It should be noted that backward fil-
tering may also introduce some temporal leakage in the information, so the temporal contribution may have 
changed after applying backward filtering.

To investigate the decoding performance of different channel groups, 4 combinations of channels including 
1 ×  1, 2 ×  2, 3 ×  3 and 4 ×  4 were selected for the analysis. In 1 ×  1 cases, the decoding performance of each chan-
nel is computed separately. In 2 ×  2 cases, the decoding performance of 4 adjacent channels is computed and so 9 

Test Fold

Rat1 Rat2 Rat3

r R2 r R2 r R2

1 0.74 0.49 0.58 0.33 0.70 0.46

2 0.64 0.33 0.65 0.42 0.63 0.40

3 0.70 0.49 0.67 0.44 0.59 0.29

4 0.67 0.44 0.72 0.52 0.75 0.53

5 0.80 0.62 0.62 0.40 0.71 0.49

6 0.57 0.33 0.65 0.42 0.62 0.38

7 0.66 0.43 0.61 0.37 0.68 0.44

Mean (± SD) 0.68 ±  0.06 0.45 ±  0.1 0.64 ±  0.04 0.41 ±  0.08 0.67 ±  0.05 0.42 ±  0.08

Table 2.  Results of force decoding in all 7 test folds for all rats. Mean (±SD) of all test folds for r and R2 
criteria is shown at the bottom of the table.

Figure 3. Result of force decoding from 16 channel LFPs in test folds with maximum value of R2 for all the 
rats. 10 trials of these test folds have been shown as an example.

Figure 4. Selecting the optimal number of PLS components based on the Wold’s R criterion for all 7 folds 
in each rat dataset. 
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different 2 ×  2 configurations have been considered separately. In 3 ×  3 cases, 9 adjacent channels are selected and 
so 4 different 3 ×  3 configurations have been considered separately. In 4 ×  4 case, all channels have been used for 
the force decoding. In Fig. 7, the best result of force decoding in each of 4 conditions resulted from 7-test folds for 
all rats is shown. As can be seen, in all 3 rats the decoding performance of 2 ×  2, 3 ×  3 and 4 ×  4 were not signifi-
cantly different for the best results (ρ >  0.3, Wilcoxon rank sum test).

We also investigated the variability of force decoding performance across different sessions. Because the num-
ber of trials in some sessions was low and different across days, 40 trials corresponding to the period 30 days 
after array implantation are selected as first sessions and 40 trials corresponding to the period 45 days after array 
implantation are selected as last sessions. In this way, the interval between trials in each group would be at least 
15 days. The mean (± SD) of R2 values obtained from all 7-test folds in the first sessions are 0.43 (± 0.13) for rat 
1, 0.40 (± 0.08) for rat 2, 0.40 (± 0.08) for rat 3 and in the last sessions are 0.43 (± 0.10) for rat 1, 0.41 (± 0.12) for 
rat 2 and 0.41 (± 0.09) for rat 3. Figure 8 demonstrates that the decoding of force amplitudes has not significantly 
changed in different sessions (ρ >  0.7, Wilcoxon rank sum test). Moreover, to show the force decoding stability, we 
trained the decoder using 40 trials of first sessions related to 15–30 days after array implantation and then tested 
decoding performance using 40 trials of the last sessions related to > 45 days. The R2 values in each rat dataset  
(rat 1–3) obtained from the evaluation on the last sessions were 0.30, 0.33 and 0.31, respectively.

Discussion
In the current study, we showed that the force amplitude can be continuously decoded from a small number of 
channel LFPs. As far as we know, this is the first study on the continuous decoding of the forelimb force form LFPs 
in freely moving rats. In ref. 23 the force parameter was continuously extracted from the neural signals recorded 
from the corticospinal tract (CST) of the rat spinal cord. However, designing a spinal cord computer interface 
does not seem a practical human-based system since firstly the mechanical stability of implanted arrays in the spi-
nal cord is a crucial issue and secondly, this technology cannot be used for tetraplegia or ALS patients due to lack 
of receiving control signals from cortex23. Furthermore, in experimental setup of the aforesaid study, the force 
sensor was located on the floor of the experimental setup. Thus, the measured force may not be purely resulted 
from the applied force by animal forelimb and the weight of the animal may be contributed in the measured force. 
In our study, at the stage of designing the experimental task we considered two important issues. Firstly, we tried 

Figure 5. Contribution of each frequency band in force decoding. Each bar shows the mean and standard 
error of contribution weights obtained from 7 folds. The frequency bands with contribution significantly greater 
than the mean value of all contributions are marked with asterisks (ρ <  0.01, Wilcoxon signed-rank test).

Figure 6. The contribution of each time lags in force decoding. Each bar shows the mean and standard error 
of contribution weights obtained from 7 folds. The time lags with contribution significantly greater than the 
mean value of all contributions are marked with asterisks (ρ <  0.01, Wilcoxon signed-rank test).
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to diminish the forelimb movements by using a load cell sensor as a rigid body that its rotation around its axis is 
negligible. Although, the orientation/position of forelimb on the force sensor may change across trials, in each 
trial the orientation/position of forelimb has remained stable due to fixation of the force sensor. Therefore, the 
applied force can be considered as an isometric force. Secondly, we located the force sensor in a height that is not 
too high (to raise and push it), nor low (to use its body weight) in front of the rats (Fig. 1). In this design, the rats 
have to apply only a perpendicular force to the sensor to move the mechanical lever and receive the reward. In 
the current study animal can move freely, so all the body parts of the animal, including neck and hind limb parts 
and also power line move during the task. Fortunately, with intracortical recording the electrodes can be locally 
implanted in the desired location for decoding (forelimb area in this study). Therefore, it is unlikely that neural 
activity of other cortical areas like neck region affects decoding procedure. In addition, unlike EEG based studies 
that have proved the effect of somatosensory feedbacks on decoding24, using the intracortical techniques with 
higher spatial resolution can diminish the effect of sensory inputs (muscle spindles or Golgi tendons) in the force 
decoding. However, this impact cannot be completely ignored due to the projection of proprioceptive informa-
tion to the motor cortex25. This issue should not be considered as a negative factor in the force decoding, because 
these sensory inputs might also become available in real BMI systems26. Furthermore, in comparison to ECoG 
based recordings27, intracortical recordings benefits from a higher spatial resolution which can be considered as 
a powerful advantage in decoding capability4.

In this study, we used PLS decoder for force decoding because of its popularity working with multi-dimensional 
data. In this method the most informative components related to the output force amplitude are extracted from 

Figure 7. The analysis of force decoding performance corresponding to different channel groups. Each bar 
shows the mean and standard error of R2 values obtained from 7 folds of best channel combination. The mean 
of R2 values corresponding to the worst result in each combination is shown with a black line in each bar. The 
channel groups with significant difference in mean R2 are shown with asterisks (ρ <  0.05, Wilcoxon rank sum 
test).

Figure 8. The analysis of stability of force decoding performance in different sessions. Left bars show the 
mean and standard error of R2 values corresponding to trials obtained from experiment sessions on days 15 to 
30 after array implantation. Right bars show the mean and standard error of R2 values corresponding to trials 
obtained from experiment sessions on days further than 45 after array implantation.
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high dimensional neural features. We also used Wold’s R criterion to choose the optimal number of task-related 
components. Based on this criterion, the components that significantly improve the decoding performance are 
selected in the PLS model. So, the optimal number of components obtained from all 7 test folds for all 3 rats has 
been significantly less than the overall dimension of input features (4.8 ±  0.13 components on average for all 3 rat 
datasets out of 960 available features).

The comparison of force decoding accuracy from LFP signals in this study with other BMI studies shows that 
the obtained performances in terms of r and R2 are fairly comparable to the previous works [15, 14, 22]. In ref. 15  
the applied force amplitudes to the individual fingers during object grasping were continuously decoded from 
100-channel LFPs with mean accuracy of 0.21 over all dataset. But, we obtained better accuracy (R2 =  0.42 in 
average over all dataset) with only 16 channels of LFP. This better accuracy can be resulted either from good per-
formance of the PLS decoding method or from accurately locating the implanted array in forelimb area. However, 
both somatotopic organization (overlap of finger representation in the motor cortex) and co-activation of finger 
muscles make decoding of force from individual fingers more complex than the decoding of force applied to the 
object similar to our study. Furthermore, Flint et al.14 could decode isometric grasping force with an average 
accuracy of R2 =  0.6 from 10 human ECoG signals. Furthermore, in ref. 23 isometric force parameter were con-
tinuously decoded from 32 electrodes implanted in the cortical spinal tract of the rat spinal cord with accuracy of 
r =  0.66 and R2 =  0.44 which is comparable to our results.

The investigation of each frequency band contribution in force decoding in our study is also in agreement with 
other studies. In this study, the results show that the contribution of low gamma band frequency (30–120 Hz) 
in force decoding for all 3 rat datasets have been significantly greater than other frequency bands. In ref. 14 it is 
shown that (70–115 Hz) band of human ECoGs has been the most informative frequency band for continuous 
force decoding. Also, in ref. 4 it is shown that (70–250 Hz) band frequency of LFPs contains great information 
about movement. A study by Milekovic et al.15 also shows that the high frequency band (80–250) is highly modu-
lated with the force signal. In refs 9 and 28 it is also shown that information about movement direction is signifi-
cantly located in the gamma band (> 60 Hz). However, several studies have shown that the task-based information 
on gamma bands of LFPs is related to the spiking activity29–31, our results complement with them representing that 
high-gamma bands have had a lower contribution in the force decoding in comparison to low-gamma content of 
LFPs. Therefore, it is unlikely that the obtained results in this study have been merely resulted from the spiking 
activities. This inference is in agreement with a study by4 showing that the decoding of movement parameters 
from LFPs has remained stable regardless absence of spiking activities in the same electrode selected for decoding.

We investigated how the decoding performance may change with the smaller number of channels. The results 
showed that by selecting 2 ×  2 or 3 ×  3 configuration the force parameter can be decoded with performance almost 
equal to considering all the channels. However, it is also important to notice that the decoding performance is 
more dependent on the density of channels in the desired region than the number of electrodes. For example, in rat 
2 (Fig. 7), with only one electrode it is possible to decode the force parameter with performance not significantly 
different from considering all the channels. Achieving high performance with a small number of channels can be 
considered as an important achievement, specifically in the wireless BMI systems due to lower power consumption.

We also investigated the stability of force decoding performance through the time. The results showed that, 
although the interval between the trials in the first sessions related to 15–30 days after array implantation and the 
last sessions related to > 45 days (Fig. 8) has been at least 15 days, the decoding performance has not significantly 
changed. Thus, we can conclude that the decoding performance will remain stable through the time by calibration 
of decoder for each session. Furthermore, we performed an analysis to investigate the stability of kinetic informa-
tion in LFPs by training PLS decoder with the trials related to 15–30 days after array implantation and testing with 
the trials related to > 45 days. Although, the obtained results based on this analysis were acceptable in comparison 
to other studies, calibrating the decoder at the beginning of each session would increase the decoding performance.

As a future work, we plan to control an external device like the mechanical lever using the decoded force from 
LFPs. On that stage, the animal presses the force sensor, but the lever will be rotated based on the decoded force 
from LFPs. It would be interesting for us to investigate if the decoding performance can be changed in real time 
brain control. Based on the results obtained from other studies32,33, we expect that the force decoding perfor-
mance amplify when the rats learn to control the lever using their brain in online mode.

Conclusion
In conclusion, this study is the first step towards an online decoding of force from LFP signals. Our study presents 
two important novelties with respect to other studies in BMI systems. Firstly, we used only 16 channels of LFPs for 
continuous decoding of force in comparison to other invasive BMI studies that use high density of electrodes (> 64)  
for decoding of kinematic or kinetics parameters. Secondly, we tried to design a task similar to real-life BMIs as 
animals can move freely during performing the task.

References
1. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).
2. Truccolo, W., Friehs, G. M., Donoghue, J. P. & Hochberg, L. R. Primary motor cortex tuning to intended movement kinematics in 

humans with tetraplegia. J. Neuroscience 28, 1163–1178 (2008).
3. Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).
4. Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E. & Slutzky, M. W. Accurate decoding of reaching movements from field 

potentials in the absence of spikes. J. Neural Eng. 9, 046006 (2012).
5. Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local field potentials allow accurate decoding of muscle activity.  

J. Neurophysiol. 108, 18–24 (2012).
6. Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. Nat. Neurosci. 6, 1253–1254 

(2003).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:35238 | DOI: 10.1038/srep35238

7. Markowitz, D. A., Wong, Y. T., Gray, C. M. & Pesaran, B. Optimizing the decoding of movement goals from local field potentials in 
macaque cortex. J. Neuroscience 31, 18412–18422 (2011).

8. Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking 
activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J. Neurophysiol. 105, 
1603–1619 (2011).

9. Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neuroscience 
25, 8815–8824 (2005).

10. Mehring, C. et al. Comparing information about arm movement direction in single channels of local and epicortical field potentials 
from monkey and human motor cortex. J. Physiol. Paris 98, 498–506 (2004).

11. Zhuang, J., Truccolo, W., Vargas-Irwin, C. & Donoghue, J. P. Decoding 3-D reach and grasp kinematics from high-frequency local 
field potentials in primate primary motor cortex. IEEE Trans. Biomed. Eng. 57, 1774–1784 (2010).

12. Gupta, R. & Ashe, J. Offline decoding of end-point forces using neural ensembles: application to a brain–machine interface. IEEE 
Trans. Neural Syst. Rehabil. Eng. 17, 254–262 (2009).

13. Chen, C. et al. Decoding grasp force profile from electrocorticography signals in non-human primate sensorimotor cortex. Neurosci. 
Res. 83, 1–7 (2014).

14. Flint, R. D. et al. Extracting kinetic information from human motor cortical signals. NeuroImage 101, 695–703 (2014).
15. Milekovic, T., Truccolo, W., Grün, S., Riehle, A. & Brochier, T. Local field potentials in primate motor cortex encode grasp kinetic 

parameters. NeuroImage 114, 338–355 (2015).
16. s nrzd Chnrles, G. P.-i. o. The Rat Brain in Stereotaxic Coordinates. Biol 105, 33–58 (1984).
17. Neafsey, E. et al. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. Rev. 11, 77–96 (1986).
18. Hyland, B. Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex. Behav. Brain Res. 94, 

255–269 (1998).
19. Ludwig, K. A. et al. Using a common average reference to improve cortical neuron recordings from microelectrode arrays.  

J. Neurophysiol. 101, 1679–1689 (2009).
20. Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 

(1964).
21. Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Analytica chimica acta 185, 1–17 (1986).
22. Li, B., Morris, J. & Martin, E. B. Model selection for partial least squares regression. Chemometr. Intell. 64, 79–89 (2002).
23. Guo, Y., Foulds, R. A., Adamovich, S. V. & Sahin, M. Encoding of forelimb forces by corticospinal tract activity in the rat. Front. 

Neurosci. 8 (2014).
24. Galán, F., Baker, M. R., Alter, K. & Baker, S. N. Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback. 

Hum. Brain Mapp. 36, 643–654 (2015).
25. Naito, E., Ehrsson, H. H., Geyer, S., Zilles, K. & Roland, P. E. Illusory arm movements activate cortical motor areas: a positron 

emission tomography study. J. Neuroscience 19, 6134–6144 (1999).
26. Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C. & Ball, T. Decoding natural grasp types from human ECoG. Neuroimage 

59, 248–260 (2012).
27. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A. & Mehring, C. Prediction of arm movement trajectories from ECoG-recordings 

in humans. J. Neurosci. Methods 167, 105–114 (2008).
28. Mollazadeh, M. et al. Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous 

reach-to-grasp movements. J. Neuroscience 31, 15531–15543 (2011).
29. Waldert, S., Lemon, R. N. & Kraskov, A. Influence of spiking activity on cortical local field potentials. J. Physiol. 591, 5291–5303 (2013).
30. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in 

macaque local field potentials and their potential implications in electrocorticography. J. Neuroscience 28, 11526–11536 (2008).
31. Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-neuron activity in humans.  

J. Neuroscience 27, 3839–3844 (2007).
32. Taylor, D. M., Tillery, S. I. H. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).
33. Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

Acknowledgements
This work has been supported by a grant from the Cognitive Sciences and Technologies Council of Iran (CSTC) 
(grant number: 119).

Author Contributions
A.K., V.S. and M.R.D. designed the study. A.K. and N.H.B. trained the animals and recorded the data. A.K., 
N.H.B., V.S. and M.R.D. performed the data analysis. A.K., N.H.B., V.S. and M.R.D. wrote the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Khorasani, A. et al. Continuous Force Decoding from Local Field Potentials of the 
Primary Motor Cortex in Freely Moving Rats. Sci. Rep. 6, 35238; doi: 10.1038/srep35238 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats
	Materials and Methods
	Behavioral task. 
	Micro-array implantation. 
	Neural and force data recording. 
	Continuous decoding of force signal from LFPs. 
	Performance criteria. 
	Contribution of each frequency band and time lag in the force decoding. 

	Results
	Discussion
	Conclusion
	Acknowledgements
	Author Contributions
	Figure 1.  Schematic of force decoding from multichannel LFP data.
	Figure 2.  The analysis of the CAR filtering effect on the LFP signals in time and time-frequency domain.
	Figure 3.  Result of force decoding from 16 channel LFPs in test folds with maximum value of R2 for all the rats.
	Figure 4.  Selecting the optimal number of PLS components based on the Wold’s R criterion for all 7 folds in each rat dataset.
	Figure 5.  Contribution of each frequency band in force decoding.
	Figure 6.  The contribution of each time lags in force decoding.
	Figure 7.  The analysis of force decoding performance corresponding to different channel groups.
	Figure 8.  The analysis of stability of force decoding performance in different sessions.
	Table 1.   Details of the trials in each rat experiment.
	Table 2.   Results of force decoding in all 7 test folds for all rats.



 
    
       
          application/pdf
          
             
                Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35238
            
         
          
             
                Abed Khorasani
                Nargess Heydari Beni
                Vahid Shalchyan
                Mohammad Reza Daliri
            
         
          doi:10.1038/srep35238
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep35238
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep35238
            
         
      
       
          
          
          
             
                doi:10.1038/srep35238
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35238
            
         
          
          
      
       
       
          True
      
   




