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Abstract: The feasibility of joining material extrusion (MEX) 3D-printed acrylonitrile butadiene
styrene (ABS) plates with the friction stir welding (FSW) process was investigated herein as a
promising topic of hybrid additive manufacturing (HAM). The influence of three process parameters
on the mechanical strength of the joints was thoroughly examined and analyzed with a full factorial
experimental design and statistical modeling. Hereto, the welding tool pin geometry, travel speed,
and rotational speed were investigated. The joint’s efficiency and quality are evaluated through
tensile tests and morphological characterization. More specifically, specimens’ areas of particular
interest were investigated with stereoscopic, optical, and scanning electron microscopy. Throughout
the FSW experimental course, the welding temperature was monitored to evaluate the state of
the ABS material during the process. The majority of the welded specimens exhibited increased
mechanical strength compared with the respective ones of non-welded 3D printed specimens of the
same geometry. Statistical modeling proved that all processing parameters were significant. The
feasibility of the FSW process in 3D printed ABS workpieces was confirmed, making the FSW a
cost-effective process for joining 3D printing parts, further expanding the industrial merit of the
approach.

Keywords: friction stir welding (FSW); acrylonitrile butadiene styrene (ABS); material extrusion
(MEX); hybrid additive manufacturing; 3D printing

1. Introduction

FSW is an autogenous continuous solid-state welding method performed with a
rotating welding tool that heats the welding parts through friction. It was developed
primarily for metals that are difficult to weld [1]. Aluminum sheets are thoroughly studied
in the literature for different grades, such as AA1050 [2,3], AA7075 [4–6], and AA6013 [7].
Research in FSW for polymers is still very poor [8]; still, specific parameters have been
investigated in the literature [9]. The aim was to find the optimal conditions [10] for
the FSW process. FSW for 3D printed parts, according to the authors’ knowledge, is
still marginal. Different polymers and their composites have been studied [11–13]. The
parameters for welding polyethylene through the FSW process have been reported in
the literature [14,15], and research has also been carried out on the fracture of the welded
parts [16]. The performance of Poly(methyl methacrylate) (PMMA) sheets welded with FSW
has been investigated, too [17]. Nylon 6 has been processed with FSW on a heat-assisted
experimental setup [18]. The performance of its fiber-reinforced composites has also been
studied, aiming to improve the process [19]. Joining different polymers with FSW has been
investigated for various polymers, for example, PMMA welded with acrylonitrile butadiene
styrene (ABS) [20]. Additionally, polymers have been welded with other materials as well,
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such as wood–plastic composites [21], aluminum [22], or metals [23,24], with the FSW
process. The welding tools’ performance has also been investigated, as their effect on the
result of the process is critical [25].

Statistical modeling tools have been introduced for the analysis and optimization of
material extrusion (MEX) 3D printing parameters for materials, such as Polyamides [26]
and Thermoplastic Polyurethane (TPU) [27]. Additionally, such modeling tools have
been used for the optimization of the surface quality of 3D printed parts of different
materials [28], and in hybrid additive manufacturing (HAM), for laser cutting of polymers
3D printed with MEX, such as polylactic acid (PLA) [29], and polyethylene terephthalate
glycol (PETG) [30]. These modeling tools revealed the critical parameters in each case,
leading to useful conclusions for the improvement of the results of these processes. In FSW,
arithmetical modeling tools, such as Finite Element Analysis (FEA), have been applied [31],
with research also focusing on the simulation and the investigation of volumetric defects
during the FSW process [32]. Various computational or statistical models have also been
introduced for the study of process performance. The research concluded that the process
parameters have a substantial effect on the welding grade [33], with the rotational tool
being the dominant parameter in the process [34].

The key parameters of the hybrid MEX/FSW process are depicted in Figure 1 be-
low through a cause-and-effect diagram. The produced weld quality and the overall
performance of the joints are affected by the 3D printing parameters used to fabricate the
workpieces and the FSW parameters applied to joint them.
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Figure 1. MEX 3D printing and FSW process parameters and the welding performance features.

Herein, the feasibility of joining 3D printed ABS parts was investigated. Although ABS
has been thoroughly investigated in MEX 3D printing [35–38] and hybrid AM, combining
3D printing with laser cutting [39], no study is yet available on the feasibility and the effect
of FSW on MEX 3D printed ABS. A deeper insight into the main difference between FSW on
polymer-based parts produced by mainstream processes (extrusion, rolling, etc.) and FSW
on polymer-based parts produced by 3D printing was presented in this work. Statistical
tools, such as the design of experiment (DOE) and quadratic regression models (QRM)
were employed to specify the result of the FSW processing variables on the weld result. No
similar study is yet available in the literature for the FSW of MEX parts. Although joining
polymeric parts with FSW has been presented in the literature, welding MEX polymeric
parts is a challenging process, due to the parts’ built structure, their porosity, and the
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anisotropy in their behavior. This was achieved herein for the first time and a first attempt
to assess the effect of the FSW variables on the weld result was made. Joining 3D polymeric
parts has great potential, since parts that cannot be built with conventional manufacturing
methods, due to their geometry or other factors, can be 3D printed and welded with the
process. Additionally, large-scale parts that cannot be 3D printed as one part with polymeric
materials, due to their size, can also be 3D printed and joined with FSW. Such manufacturing
capabilities can be useful in different industries, such as packaging, shipbuilding, aerospace,
automotive, and electronics [9,40–43]. Statistical modeling tools also revealed the dominant
parameters in the process, among the ones studied. The parameters investigated were the
welding tool pin geometry (PPA, PPB), the tool rotational speed (RS; 3 values), and the travel
speed (TS; 3 values), while all the other parameters (FSW and MEX) were kept constant, for
comparison purposes. Preliminary calibration experiments were implemented to verify the
test setup’s operation and determine the parameter ranges for the full factorial experimental
course that followed. The weld results were evaluated with tensile testing to determine
the mechanical response of the welded specimens for all the different cases studied. The
morphology of the produced weld was evaluated with images taken with a stereoscope,
optical, and SEM microscope. The temperature developed during the welding experiments
was also monitored and recorded to verify whether the solid state on the specimens, which
is required for the FSW process, was maintained. The effect of this parameter on the
weld result was also evaluated. Overall, all processing parameters affected the mechanical
performance of the welded specimens, with travel speed dominating in the tensile modulus
(E) and welding temperature (WT), while rotational speed (RS) dominated in the tensile
strength (sB) of the specimens. The mechanical performance of the welded specimens was
generally better than the non-welded specimens 3D printed with the same conditions and
geometry, owing to the reduced porosity of the welded area the FSW process induces to
the welded samples. This agrees with similar findings in the literature [44].

2. Materials and Methods

In this work, the ability to join 3D-printed parts made of ABS with the FSW process
was experimentally investigated. Figure 2 presents the flow chart of the current research.
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Figure 2. (a) Raw material drying, (b) filament extrusion, (c) filament drying, (d) workpieces 3D
printing, (e) workpieces for the FSW process, (f) FSW experimental setup, (g) FSW experiments,
(h) FSW process weld seam, (i) workpiece cutting in the milling machine, (j) workpieces dismounted
from the fixture, (k) tensile testing, and (l) SEM morphological characterization.
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ABS was selected as it is the second-most popular material in MEX 3D printing [45].
For the preparation of the experiments’ workpieces, industrial-grade Terluran Hi-10 ABS
in powder form was procured from INEOS Styrolution (INEOS AG, Frankfurt, Germany).
The raw material was initially dried at 70 ◦C for 24 h and then used to fabricate filament,
with a thermomechanical extrusion process, on a single-screw extruder (3D Evo Composer;
1.75 mm filament diameter). The filament was used to manufacture the workpieces for
the FSW process on a Zortrax M300 Dual 3D printer (Zortrax, Olsztyn, Poland). The 3D
printing settings used are shown in Table 1.

Table 1. MEX-FSW parameters.

Abbr. Units Values

3D-printing parameters (constant)

Nozzle Diameter: ND Mm 0.4
Layer Thickness: LT Mm 0.20

Infill Density ID % 100 (Solid)
Printing Temperature PT ◦C 275
Platform Temperature PT ◦C 90

FSW parameters (variable)

Rotational Speed RS Rpm 600, 1000, 1400
Travel Speed TS mm/min 3, 6, 9

Pin Profile PP_ A: cylinder, B: taper PPA, PPB

The geometry and the infill pattern on the workpieces are shown in Figure 3b. Their
dimensions were selected to be suitable for the fixture used in the work, which is presented
in Figure 3a. In this Figure the assembly of the experimental setup is presented, featuring
the operating principle of the conducted FSW experiments. In each experiment, a straight-
line joint was created between two identical workpieces, in their contact surface along their
length direction. In each FSW round, with the fixture and the workpieces used, twelve
specimens with 10 mm width for tensile testing were produced. These were automatically
cut in the milling machine after the welding process. It was chosen to have three different
welding conditions in each round, so the travel speed was changed three times in equal
lengths, producing three sets of four specimens, welded with identical FSW parameters.
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For the FSW process, two different welding tools were used to evaluate the effect
of their geometry on the weld result. Their dimensions were selected based on generic
information from the literature (same shoulder, cylindrical, and frustum pin respectively)
and are shown in Figure 3d (Profile Pin A, PPA) and Figure 3f respectively (Profile Pin
B, PPB) [46]. The tools were manufactured in a Haas SL20 lathe (Haas automation Inc.,
Oxnard, CA, USA), from AISI304L stainless steel bars, and they were post-processed with
st3000 sandpaper, for polishing of their surfaces, to achieve average surface roughness Ra
0.05 µm.

FSW experiments were conducted on a Haas TM-1P CNC machine (Haas automation
Inc., Oxnard, CA, USA). The G-code for the process was programmed directly in the
machines’ MCU. During the FSW process, the temperature was monitored and recorded
with a Flir One Pro thermal imaging camera.

Additionally, TGA and DSC were utilized to examine the thermal properties of the ABS
material of the study, for evaluating its state during the experiments. TGA measurements
were carried out using a Perkin Elmer Diamond TGA apparatus (Perkin Elmer Corp.,
Waltham, MA, USA) (heating cycle: 30–550 ◦C, heating step: 10 ◦C/min). The DSC
measurements were performed using a TA Instruments DSC 25 apparatus (Waters Corp,
New Castle, DE, USA) (heating cycle: 25–220–25 ◦C, heating step: 15 ◦C/min).

Initial trials for the proof of concept and the calibration of the procedure were con-
ducted with the experimental setup described above. Workpieces with two different colors
were used in each test in an attempt to show the mixing of the materials during the FSW
process. The FSW parameters at this stage were selected from the literature [47,48]. At this
point, the process feasibility was confirmed. In these prescreening experiments before the
full factorial experimental design selection (parameters and their levels selection), the aim
was to document the weldability of the layered workpieces and determine the range of
the control parameters that produce acceptable results (seam quality, thickness decrease,
etc.). This approach was decided mainly due to the anisotropic properties of the welded
plates, which makes it difficult to make inferences and hypotheses for the FSW 3D printed
materials. So, after the experimental results and having appropriate welding efficiency, the
authors concluded that the optimization followed here was reasonable.

So, after this preliminary extensive work and literature review, the designated vari-
ables and their values were (see Table 1): (i) the tool pin profile (PPA, and PPB), (ii) the
tool RS (600, 1000, 1400 rpm), and (iii) the tool TS (3, 6, 9 mm/min). The measured output
parameters were the following: (i) the tensile strength (sB: MPa) on welded area, (ii) the ten-
sile modulus of elasticity (E: MPa), and (iii) the maximum welding temperature (WT: ◦C).
Based on this parameter design, the full factorial experimental approach was decided
with three repetitions for each discrete combination resulting in fifty-four experiments
(2 × 3 × 3 × 3 = 54). Regarding the WT, it should be noted that although there is sufficient
analytical and numerical work in the literature for the temperature course throughout the
steady-state (quasi-static approaches) part of the FSW process for metals and/or metal
alloys, the corresponding works for polymeric-based parts are rather limited (mainly by
Derazkola et al., for PMMA [49] and PC [50] sheets welding), which extend forward ex-
isting sophisticated and well-established FEA models for metals and metallic alloys. The
basic assumption of these models is that the workpieces (specimens to be welded) are
bulky in behavior, i.e., they are made of homogeneous and isotropic materials (e.g., the
intrinsic material properties, such as physical properties, mechanical properties, thermal
conductivity, and other thermal properties, viscosity, etc., are identical to all three dimen-
sions). This assumption is well based for metals and metal alloys and quite acceptable for
polymer-based materials if they are “fully solid” and non-layered (or without any internal
macro-pattern). In the case of MEX 3D printed parts, such as the ones in our work, neither
homogeneity nor isotropy occurs [51]. MEX 3D printing is well known for its flexibility
to control several building parameters, such as layer height, strands’ width, infill density,
raster pattern, etc., which all imply high inhomogeneity and anisotropy to the outcome,
in a stochastic manner. On the other hand, the porosity (even for 100% infill density),
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the surface roughness, and the dimensional inaccuracy are unavoidable, especially when
compared with other fabrication processes [28]. Therefore, the adoption of the aforemen-
tioned analytical and/or numerical thermo-mechanical models will not produce reliable
or somehow acceptable results. Even the differences in quality of commercial filaments
induce significant variations in “identical” experiments with different filaments of the same
materials, produced by different vendors. The inhomogeneity and anisotropy of the 3D
printed samples are more than evident in several micrographs and SEM photos throughout
the figures presented below in this work.

The output values were utilized to construct the main effect plots (MEP) of the vari-
ables against the three outputs and then decompose the interactions between parameters
vs. WT, sB, and E. Finally, three QRMs were adopted to predict the output values according
to the input values. The linear, cross, and quadratic products of the QRMs were evaluated
by Analysis of variance (ANOVA) analysis to characterize their predicting accuracy by the
R-square indexes.

After the completion of the FSW process, the welded workpieces were evaluated for
their mechanical performance in tensile testing and their morphological characteristics.
Tensile trials were carried out in an Imada MX2, at room temperature with an elongation
speed of 10 mm/min. A not-welded 3D-printed ABS specimen was also tested for com-
parison purposes. In this way, both the performance of the weld and the weld parameters
could be compared and evaluated. For the morphological characteristics, a stereoscope
(KERN OZR5, KERN & SOHN GmbH, Balingen, Germany), an optical microscope (Kern
OKO 1, KERN & SOHN GmbH, Balingen, Germany), and an SEM (JEOL JSM 6362LV, Jeol
Ltd., Tokyo, Japan) were employed. Images at the stereoscope and the optical microscope
were captured using a KERN ODC 832 5MP camera (KERN & SOHN GmbH, Balingen,
Germany). SEM images were captured on sputter-coated gold (Au) specimens in high-
vacuum mode with a 20 kV acceleration voltage. Images were taken at various areas, with
various magnifications in the Heat Affected Zone (HAZ) and the transitional area of the
weld, to thoroughly investigate any phenomena in the regions.

3. Results and Discussion

The proof of concept stage of the work is presented in Figure 4. In these welding
tests, a black and a white 3D-printed ABS specimen (Figure 4a) were welded with the
experiment setup of the work, in an attempt to visualize and inspect the mixture of the
materials during the process. Figure 4b shows such an FSW experiment. Each FSW round
used three different sets of weld conditions, and four specimens were created for each set
of parameters, as previously stated. The parameters used in these experiments along with
the temperature recorded in each region welded with the same parameters are shown in
Figure 4c. The weld seam produced in one of the calibration stage experiments is presented
in Figure 4d. Figure 4e shows a detail of the weld seam, in which the retreating side (RTS)
and the advancing side (AS) are indicated. The width of the weld seam and the HAZ, in
general, are affected by the shoulder diameter and in this case were in good agreement, as
is shown in the image.

Figure 5 shows typical stereoscopic and optical microscopy images from the work-
pieces welded during the proof of concept stage. Figure 5a indicates the different areas
examined in the specimens during the inspection with microscopy. The AS and RTS
sides in the diagram are defined by the TS direction and the RS orientation, respectively
(Clockwise—CW, Counterclockwise—CCW). The AS is on the side of the white workpiece
in this Figure, whereas the RTS is on the side of the black workpiece. A stereoscopic image
of the joint obtained from the upper side of the specimen is shown in Figure 5b. The
different zones are visible in the image, along with the characteristic onion ring pattern
of the FSW process. Figure 5c,f show in different magnifications the AS. In the lower-
magnification image (Figure 5c) the strands outside the HAZ are visible. Figure 5d shows
the HAZ from the side. The circular movement of the material during the mixing process is
visible in the image, with the material of the RTS (black material) moving to the side and
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the material from the AS (white) moving towards the center of the HAZ. Figure 5g shows a
detail of the welding zone, in which the flow of the material is shown. Figure 5e,h show
different magnifications the RTS. Similar observations to the AS can be made, while more
rough surface patterns are presented.
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After the proof of concept stage, the final FSW parameters were determined. With
these parameters, a full factorial experimental design was implemented. All the com-
binations of the parameters were experimentally tested. Figure 6a shows the welding
seam of workpieces welded with the PPA tool (cylindrical pin), while Figure 6c shows the
corresponding welding seam with the PPB tool (frustum pin). As described above, after
the completion of the FSW, the welded workpiece was automatically cut in the milling
machine into specimens that were tested for their mechanical performance in tensile tests.
Figure 6b shows typical stress–strain curves for specimens welded with various TS values
with the PPA tool and Figure 6d shows the corresponding graphs for the PPB welding tool.
A similar pattern was observed with the workpieces welded with 6mm/min TS exhibiting
higher mechanical response. For comparison purposes, a not-welded ABS MEX 3D-printed
specimen (manufactured with the same settings and the same dimensions) was tested as
a reference. Specimens welded with the PPA tool showed adequate strength, but it was
lower than the reference specimen. Specimens welded with the PPB tool showed similar
or higher strength than the reference specimen. This verifies that the welding tool affects
the result of the process and it can lead to an enhancement of the mechanical properties of
the MEX parts. The reference specimen showed overall a more ductile behavior than the
welded specimens.
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One of the measures of the performance of a weld is the welding efficiency, which
is defined as the ratio of the tensile strength of the weld and the tensile strength of the
original, not welded, material [52]. In this work, in several cases, the welding efficiency
was higher than 1, showing that the weld has higher strength than the original 3D-printed
part.

The mechanical strength of the welded specimens can be attributed to the reduction
of the porosity in the material structure in the HAZ. The process produces a more solid
structure in the material in the welded area. This was also verified by the fact that most of
the specimens failed outside the HAZ in the tensile tests, showing the enhanced strength
of the mixed material developed in the region, due to the reduction or absence (optically
observed) in some cases of porosity.

Figure 7 shows microscope images from the side surface of a welded specimen. A
minor decrease in the height of the specimen is observed in Figure 7a, attributed to material
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filling the voids and thus reducing porosity in the weld area. In Figure 7a,b, defects in
the specimens are present in the form of surface pits and cavitations. Surface pits can be
attributed to the FSW process, while cavitations can be attributed to the cut process of
the specimen in the milling machine. Figure 7d shows the regions in which Figure 7c,e
were taken. Figure 7c was taken outside the HAZ and filament strands are visible from
the 3D-printed structure in the specimens. Figure 7e shows a corresponding image within
the HAZ and the material is solid, without any porosity. This effect of the FSW process, as
mentioned above, led to the failure of the specimens outside the HAZ in most cases and
the increase in the mechanical strength of the welded specimens in specific cases when
compared with the not-welded ones.
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welding zone.

Figure 8 shows stereoscopic and SEM images from the gold-sputtered tensile test
specimens (one welded with the PPA tool, Figure 8a–c and one welded with the PPB
tool, Figure 8d–f), after they fail in the test, to evaluate their morphology and the fracture
mechanism during the tests. Figure 8a,d are stereoscopic images from the top of the
specimens at the fracture area. As it is shown, both specimens did not fail in the weld area,
but in the transitional area between the welded and the non-welded area. The fracture
profile from the top can be evaluated in the images. The RTS (Figure 8a) and the AS
(Figure 8d) are shown, respectively. Figure 8b,e show SEM images from the HAZ of the two
specimens. The FSW onion rings are visible in the PPB specimen (Figure 8e), while they are
not so obvious in the PPA specimen (Figure 8c), although material flow can be observed.
Figure 8c,f show SEM images from the fracture surface of the specimens after the tensile
tests. The specimen welded with the PPA tool showed a more brittle behavior than the
specimen built with the PPB tool. Additionally, the PPA specimen failed in the transitional
region of the HAZ, while the PPB specimen failed outside the weld region; hence, the
3D-printing structure is visible in the SEM image of the fracture area. Overall, specimens
welded with the PPA tool showed more rough surfaces than the specimens built with
the PPB tool, which show a more ductile response. These differences presented in all the
corresponding images show that the welding tool affected the results of the FSW process.
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This was verified in the results of the mechanical tests as well, in which PPB specimens
showed an overall higher mechanical response than the corresponding specimens welded
with the PPA tool.
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image of the fractured cross-section of the joint; PPB tool: (d) top view of seam, (e) SEM top view at
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The thermal properties of the ABS material used in this work were investigated with
TGA (Figure 9a) and DSC (Figure 9c) measurements on the material to determine whether
the experiment conditions affect its thermal stability. The TGA graph verified that the
filament extrusion and the 3D printing temperature used in this work did not cause any
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degradation of the material. The produced DSC curve revealed the melting point of the
specific ABS material.
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Figure 8c shows the maximum recorded temperature in each one of the fifty-four FSW
experiments conducted throughout the full factorial design course. The experimentally
derived temperatures were measured in this work to ensure that the FSW experiments
conducted were fully in the solid-state of the workpiece without melt occurring and to be
able to correlate the temperatures and the mechanical properties of the specimens versus the
various control paraments (Tool geometry, Travel Speed, and Rotational Speeds) through
stochastic analysis and metrics.

As it is shown in Figure 9b, the maximum temperature recorded among all the ex-
periments was about 150 ◦C, which is still much lower than the material’s melting point
(262 ◦C), as was determined in the DSC measurement. So, this verifies that the ABS was in
a solid-state during the welding experiments, which agrees with the process specifications
and also verifies the reliability of the produced results during the experiments. Figure 10
presents the temperature course from the beginning to the end of the weld seam during
the welding process for specimens welded with the PPB tool, for every combination of the
examined TS and RS. The variation of the temperature measurements (nine measurements
per specimen) proves the strong stochastic nature of the temperature parameter, owing
mainly to the inhomogeneity and anisotropy of the 3D printed samples, which is evident
in the micrographs and SEM the photos captured in this work. Hereto, the further model-
ing assumption, i.e., that the FSW process at its steady-state could be approached with a
quasi-static analytical or FEA analysis is, rather, a long shot that does not seem to fit in the
case of 3D printed parts.

As explained in the parameter design section, the variable factors consisted of one
categorical type (Tool: PPA and PPB), and two parameters with continuous values (RS and
TS). With this parameter design, the full factorial design yielded eighteen combinations
resulting in fifty-four final experiments after three repetitions (see Table 2). Note here
that the variability of the sB(MPa) and E(MPa) values showed high variability, i.e., the
maximum-minus-minimum values of E and sB were about the same as their mean values.
Therefore multi-parameter optimization is vital to increase the process efficiency.
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Figure 10. Temperature course for each specimen made with the PPB tool. Specimen welded with 3,
6 and 9 mm/min TS and (a) 600 rpm, (b) 1000 rpm, (c) 1400 rpm.

MEP plots, which graphically show the effects of each input parameter level (Tool, RS,
and TS) on output (E, sB and WT), can be constructed by the results presented in Table 2.
For example, the MEP plots (Figure 11) reveal the following:

• Tool PPB (frustum pin) yielded better E and sB and higher temperatures (WT). This
can be because the conical surface of PPB is larger than the cylindrical of PPA (see
Figure 3d,e). Therefore, the side contact surface with the plasticized material was
bigger and transferred a higher mass between the tool’s leading and trailing, resulting
in better mixing and homogenization. Moreover, the heat produced by the contact
frustum pin surface was higher, too, resulting in higher WTs in the welded area. It will
be interesting to see these results in future work utilizing the Finite Element Method
(FEM) and validate these observations.

• The rotational speed (RS) increases all outputs, i.e., the tensile strength, the modulus
of elasticity, and the welding temperatures highly from 600 to 1000 rpm and then
from 1000 to 1400 rpm, yielding higher values for the modulus of elasticity and about
the same for ultimate tensile strength and welding temperature. The mixing and the
homogenization of the specimens’ material on the welding seam area are caused by
the tool’s rotational speed. The two welded materials shaped a lattice structure, which
is highly affected by the rotational speed. More, the explanation of these observations
is connected with the thermal dependence of the wear coefficient of the pin contact
surface. An elevated-value frictional heat was induced and transmitted to the material
during the FSW process, resulting in higher welding temperatures and improved sB
and E values.
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• Finally, travel speed increased from 3 to 6 mm/min and resulted in a weld with a
better mechanical response (tensile strength and modulus of elasticity) and higher
welding temperatures. Then, higher than 6 mm/min TS resulted in lower sB, higher
E, and about the same negligible higher WT. It seems that between 3 and 9 mm/min,
the TS influenced the effects of the RS in E and WT positively, while for the sB, the
effect was initially positive and then negative. The friction coefficient between the tool
surface and the weld material is probably the reason for the observed results. The
increase of friction coefficient resulted in a higher tangential force exerted on the ABS
and consequently caused the pouring of the melt material out of the welding area.

Table 2. Experimental measurements.

Input Output
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1 1 600 3 29.2 9.7 194.6 30.2% 67.1%
2 1 600 3 29.0 10.5 207.4 32.5% 71.6%
3 1 600 3 31.7 13.3 243.4 41.3% 84.0%
4 1 600 6 53.2 23.1 295.5 71.3% 102.0%
5 1 600 6 50.8 22.5 288.7 69.7% 99.6%
6 1 600 6 49.2 21.3 282.3 65.9% 97.4%
7 1 600 9 56.3 23.6 323.7 73.0% 111.7%
8 1 600 9 55.5 22.4 337.4 69.3% 116.4%
9 1 600 9 53.8 21.6 297.8 66.7% 102.8%

10 1 1000 3 68.1 26.9 322.7 83.4% 111.4%
11 1 1000 3 67.1 25.3 313.5 78.2% 108.2%
12 1 1000 3 70.0 27.0 300.8 83.6% 103.8%
13 1 1000 6 107.3 35.90 336.1 110.9% 116.0%
14 1 1000 6 114.5 33.6 309.1 104.0% 106.7%
15 1 1000 6 109.5 34.6 298.5 107.0% 103.0%
16 1 1000 9 112.4 31.5 352.9 97.3% 121.8%
17 1 1000 9 115.0 32.7 340.1 101.0% 117.3%
18 1 1000 9 111.3 33.7 363.1 104.1% 125.3%
19 1 1400 3 33.9 36.1 299.4 111.7% 103.3%
20 1 1400 3 37.5 38.7 314.2 119.6% 108.4%
21 1 1400 3 41.7 34.3 301.7 106.0% 104.1%
22 1 1400 6 111.9 34.1 349.1 105.4% 120.5%
23 1 1400 6 112.0 34.5 339.5 106.8% 117.1%
24 1 1400 6 123.8 32.5 364.5 100.6% 125.8%
25 1 1400 9 142.3 30.9 393.8 95.8% 135.9%
26 1 1400 9 136.3 29.0 381.7 89.8% 131.7%
27 1 1400 9 124.2 32.2 397.8 99.6% 137.3%
28 2 600 3 71.2 27.0 339.7 83.6% 117.2%
29 2 600 3 69.3 25.9 331.4 80.0% 114.3%
30 2 600 3 66.3 26.1 320.8 80.6% 110.7%
31 2 600 6 99.4 27.0 347.3 83.5% 119.8%
32 2 600 6 102.2 24.7 319.5 76.4% 110.2%
33 2 600 6 103.9 26.7 321.3 82.6% 110.9%
34 2 600 9 112.9 25.0 342.8 77.5% 118.3%
35 2 600 9 116.4 26.1 335.5 80.7% 115.8%
36 2 600 9 109.1 23.6 326.6 73.0% 112.7%
37 2 1000 3 73.1 35.3 323.9 109.1% 111.8%
38 2 1000 3 69.2 33.7 333.1 104.3% 114.9%
39 2 1000 3 75.9 37.5 340.4 116.0% 117.5%
40 2 1000 6 117.7 35.5 349.3 109.8% 120.5%
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Table 2. Cont.

Input Output

No To
ol

R
S

(r
pm

)

T
S

(m
m

/m
in

)

W
T

(◦
C

)

sB
(M

Pa
)

E
(M

Pa
)

sB
/s

B
1

(%
)

E/
E

2
(%

)

41 2 1000 6 110.3 36.5 333.7 112.7% 115.1%
42 2 1000 6 122.5 35.6 330.6 110.1% 114.1%
43 2 1000 9 122.9 29.9 348.7 92.7% 120.3%
44 2 1000 9 136.3 31.2 374.7 96.5% 129.3%
45 2 1000 9 127.6 29.1 374.2 90.0% 129.1%
46 2 1400 3 57.5 33.7 329.1 104.3% 113.6%
47 2 1400 3 74.2 34.2 327.7 105.8% 113.1%
48 2 1400 3 66.3 35.1 341.1 108.7% 117.7%
49 2 1400 6 122.2 28.8 318.9 89.2% 110.0%
50 2 1400 6 119.2 31.1 338.7 96.3% 116.9%
51 2 1400 6 127.5 29.1 326.5 89.9% 112.7%
52 2 1400 9 127.1 24.4 348.6 75.6% 120.3%
53 2 1400 9 120.0 26.9 350.8 83.5% 121.0%
54 2 1400 9 118.1 26.7 363.6 82.8% 125.5%

Min 9.7 194.6
Max 38.7 397.8

Mean 28.9 327.6
1 sB reference (unwelded): 32.3 MPa. 2 E reference (unwelded): 289.8 MPa.
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The interaction plots were adopted to see inside the processing conditions and how
each parameter interacts with each other (see Figures 12–14).
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Figure 13. Interaction chart: Tool, RS, and TS vs. sB.

The trend lines between rotational speed and travel speed versus modulus of elasticity
increased smoothly without changing their directions. Furthermore, the same trends were
observed for the rotational speed and Tool and the travel speed and Tool versus modulus of
elasticity (Figure 12), indicating that the linear models with cross products or the quadratic
regression models (QRM) will be appropriate for modeling the E versus Tool, rotational
speed, and travel speed variable parameters.

Figure 13 shows interactions of all input parameters versus Tensile strength (sB/MPA).
In this case, the trend lines were slightly more complex, leading in some cases to a smooth
change of direction. So, non-linear models such as quadratic regression models are pro-
posed in this case.
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Finally, interaction trend lines between all input parameters versus weld temperatures
were in similar directions with synergistic interactions, meaning that linear or quadratic
regression models will be appropriate for fitting the observed experimental data (see
Figure 14).

Figure 14. Interaction chart: Tool, RS, and TS vs. WT.

Bellow the experimental data for modulus of elasticity (E/MPa), ultimate tensile
strength (sB/MPa), and weld temperature (WT, ◦C) outputs versus rotational speed and
travel speed are shown with surface plots (see Figure 15).
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where Yk is the output (Y1, Y2, Y3: E/MPa, sB/MPa, and WT/°C), b is the constant values, 

xi is the input parameters (x1, x2, x3: Tool, RS, and TS), and e is the process error. 

The analysis of variances (ANOVA) for the three quadratic regression models 

yielded F coefficients (Fisher values) greater than 28 and p-values lower than 0.05 for all 

outputs: E/MPa, sB/MPa, and WT/°C (see Tables 3–5). 

Table 3. Analysis of Variance—ANOVA: E versus Tool; RS; TS. 

Source DoF SoS MS F-Value p-Value 

Regression 8 61,908.8 7738.6 28.52 0.000 

Tool 1 22,037.4 22,037.4 81.20 0.000 

RS 1 7083.4 7083.4 26.10 0.000 

TS 1 1419.2 1419.2 5.23 0.027 

RS×RS 1 1864.9 1864.9 6.87 0.012 

TS×TS 1 183.2 183.2 0.68 0.416 

Tool×RS 1 10,357.1 10,357.1 38.16 0.000 
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Source DoF SoS MS F-Value p-Value 

Figure 15. Surfaces of processing parameters vs.: (a) E, (b) sB, and (c) WT.

After the above analysis utilizing descriptive statistical tools (MEP plots, interaction
charts, and surfaces plots), quadratic regression models were adopted for all outputs in the
following form:

Yk = b0,k +
n

∑
i=1

bi,kxi + ∑
i<j

bij,kxixj +
n

∑
i=1

bii,kx2
i ± ek (1)

where Yk is the output (Y1, Y2, Y3: E/MPa, sB/MPa, and WT/◦C), b is the constant values,
xi is the input parameters (x1, x2, x3: Tool, RS, and TS), and e is the process error.
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The analysis of variances (ANOVA) for the three quadratic regression models yielded
F coefficients (Fisher values) greater than 28 and p-values lower than 0.05 for all outputs:
E/MPa, sB/MPa, and WT/◦C (see Tables 3–5).

Table 3. Analysis of Variance—ANOVA: E versus Tool; RS; TS.

Source DoF SoS MS F-Value p-Value

Regression 8 61,908.8 7738.6 28.52 0.000
Tool 1 22,037.4 22,037.4 81.20 0.000
RS 1 7083.4 7083.4 26.10 0.000
TS 1 1419.2 1419.2 5.23 0.027

RS×RS 1 1864.9 1864.9 6.87 0.012
TS×TS 1 183.2 183.2 0.68 0.416

Tool×RS 1 10,357.1 10,357.1 38.16 0.000
Tool×TS 1 7279.6 7279.6 26.82 0.000
RS×TS 1 0.5 0.5 0.00 0.965
Error 45 12,212.2 271.4

Lack-of-Fit 9 6171.6 685.7 4.09 0.001
Pure Error 36 6040.6 167.8

Total 53 74,121.0

R-sq 83.52%
R-sq (adj) 80.59%

R-sq (pred) 76.17%
DoF: Degrees of Freedom. SoS: Sum of Squares. Mean Squares. F: F-value in statistics (also known as Fisher
value). p: p-value in statistics [53].

Table 4. Analysis of Variance—ANOVA: sB versus Tool; RS; TS.

Source DoF SoS MS F-Value p-Value

Regression 8 1963.18 245.398 61.28 0.000
Tool 1 490.16 490.158 122.41 0.000
RS 1 845.98 845.976 211.27 0.000
TS 1 285.78 285.779 71.37 0.000

RS×RS 1 362.64 362.640 90.56 0.000
TS×TS 1 63.62 63.621 15.89 0.000

Tool×RS 1 256.62 256.623 64.09 0.000
Tool×TS 1 181.90 181.902 45.43 0.000
RS×TS 1 212.79 212.789 53.14 0.000
Error 45 180.19 4.004

Lack-of-Fit 9 119.99 13.333 7.97 0.000
Pure Error 36 60.20 1.672

Total 53 2143.38

R-sq 91.59%
R-sq (adj) 90.10%

R-sq (pred) 87.69%

The very high R-square indexes values for all outputs strongly indicated that these
three QRMs give good predictions and can be used for processing optimization.
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Table 5. Analysis of Variance—ANOVA: WT versus Tool; RS; TS.

Source DoF SoS MS F-Value p-Value

Regression 8 54,643.5 6830.43 70.02 0.000
Tool 1 4920.6 4920.65 50.44 0.000
RS 1 4737.4 4737.38 48.56 0.000
TS 1 3388.4 3388.39 34.73 0.000

RS×RS 1 3403.7 3403.70 34.89 0.000
TS×TS 1 4351.0 4351.02 44.60 0.000

Tool×RS 1 3875.1 3875.06 39.72 0.000
Tool×TS 1 27.6 27.56 0.28 0.598
RS×TS 1 2595.8 2595.84 26.61 0.000
Error 45 4390.0 97.56

Lack-of-Fit 9 3581.5 397.94 17.72 0.000
Pure Error 36 808.5 22.46

Total 53 59,033.5

R-sq 92.56%
R-sq (adj) 91.24%

R-sq (pred) 89.05%

4. Conclusions

The feasibility of welding 3D printed ABS parts with FSW was confirmed in this study.
The effects of three different parameters of the process were also studied with statistical
modeling tools, highlighting travel speed (TS, mm/s) and rotational speed (RS, rpm) as
significant processing parameters affecting the mechanical performance of the welded
workpieces. A full factorial experimental design was carried out for the welding tools
RS and TS, while two different welding tool geometries were tested for their effect in
the process. The mechanical performance of the welded specimens was evaluated with
tensile testing. The effects of the three studied parameters on the sB, the E, and the WT
were evaluated. It was found that the FSW in 3D-printed ABS parts is not only feasible,
but it leads to an enhancement of the mechanical performance of the welded parts when
compared with the respective 3D-printed not-welded ones. The tool geometry, RS, and
TS processing parameters significantly influenced the quality of mixing and homogeneity
for the welded material. For example, frustum tools and higher RSs improved E, sB, and
WT, while higher TSs resulted in higher tangential forces and higher WT and E values and
about the same sB.

To further investigate the weld results, images were taken and evaluated. The solid-
state of the ABS material during the FSW was verified by monitoring the developed
temperature throughout the process in all conducted experiments.

The results of the work significantly enhance the industrial merit of 3D printing. The
use of the technology can be expanded in areas where it is not possible to be exploited
nowadays, such as the manufacturing of large-scale parts. In future work, additional FSW
parameters can be tested and studied, and parameters can be tested at different value
ranges.
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