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ReVIEW

INTRODUCTION
Low back pain (LBP) is one of the most prevalent 
musculoskeletal disorders encountered in worldwide clinical 
practice. It is characterized by pain, muscle tension, or stiffness 
localized below the costal margin and above the inferior 
gluteal folds, with or without referred leg pain (lumbosacral 
radiculopathy). Lifetime prevalence is approximately estimated 
to be 70–80% in industrialized countries,1 and a recent study 
has shown that up to 5.0–10.0% of the cases will suffer from 
chronic LBP.2 Various spinal structures may be responsible of 
chronic LBP, including lumbar intervertebral discs, sacroiliac 
joints, lumbar facet joints, muscles, nerve roots and peripheral 
nerve tissue. The facet joint-related pain has been recognized 
as a potential cause of chronic spinal pain from 15% in 
younger patients to 40% in older patients.3,4 The most frequent 
form of facet pathology is facet joint osteoarthritis, and its 
estimated prevalence increases with age.5 Medical history, 
referred pain patterns, physical examination, and diagnostic 
imaging studies (standard radiographs, magnetic resonance 
imaging and computed tomography) may suggest but not 
confirm facet joint syndrome as a source of chronic LBP. In 
clinical practice, diagnostic blocks are the most accepted and 
reliable tool for diagnosing pain arising from the lumbar facet 
joints.6 Diagnostic blocks commonly include low-volume 
intraarticular injections of local anesthetic (lidocaine and/or 
bupivacaine), with or without steroids.7 A diagnostic positive 
facet joint block allows to identify patients may benefit from 
specific minimally invasive modalities of intervention7 such as 

intra-articular steroid injections and medial branch neurolysis, 
by radiofrequency denervation or cryoablation.8,9 These 
interventions are used after failure of conservative multimodal 
management, including drug therapy (acetaminophen, 
nonsteroidal anti-inflammatory drugs, skeletal muscle 
relaxants, antidepressants), physiotherapy and acupuncture.7 
Oxygen-ozone (O2–O3) has been shown to have positive results 
in acute and chronic spinal-degeneration diseases and it could 
be a safe and efficacious alternative to failed traditional facet 
joint conservative treatments.10,11 The primary purpose of this 
review article is to describe a specific interventional facet joint 
management with ultrasound-guided O2–O3 therapy, providing 
an anatomy and sonoanatomy overview of lumbar facet joints. 
At last, although the mechanism of action of O2–O3 therapy 
is not fully understood, this review underlines its potential 
biological effects in the treatment of facet joint osteoarthritis. 

The authors have conducted between April and June 2020 a 
comprehensive literature search in PubMed/Medline (NLM), 
Cochrane Library, Scopus and PEDro databases. The search 
was performed using the following key words: “facet joint,” 
“facet joint syndrome,” “zygapophyseal joint,” “facet joint 
injection,” “facet joint management,” “imaging-guided 
injections,” “interventional spinal procedures,” “low back 
pain,” “ozone,” “oxygen-ozone,” “oxygen-ozone therapy,” 
“ultrasound-guided oxygen-ozone therapy.” Among the 
reference list of most relevant studies, additional studies were 
identified in order to achieve the greatest number of available 
studies on the scientific literature.
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LUMBAR FACET JOINT ANATOMY
Facet joints, otherwise known as zygapophyseal or apophyseal 
joints, are the only true synovial joints in the spine. They are 
formed by a hyaline cartilage covering subchondral bone, a 
synovial membrane, a tough fibrous capsule with a capsular 
ligament and a meniscoid structure.12 The volume of the joint 
capsule is small, typically of 1–2 mL.13

Each vertebra has two facet joints. They form the postero-
lateral articulation connecting the superior articular process 
of a vertebra with the inferior articular process of the vertebra 
above. The morphometry of the facet joints surfaces differs 
between the region of the spine and it is linked to their biome-
chanical function. The superior facet of the inferior vertebra 
is roughly planar in the cervical and thoracic regions; instead 
it is less planar and more convex in the lumbar region. The 
opposing inferior facet of the superior vertebra is concave at 
each level.14,15

At every vertebral level, except for C1–2, zygapophyseal 
joints and intervertebral disk form an entity defined the three-
joint complex which stabilizes the spine, allowing for flexion 
and extension of the spine, limiting rotation and preventing 
the vertebrae from slipping over each other.14,16

The pattern orientation of the articular surface changes 
throughout the spine as well, and it guides and limits the 
excursion of the motion segments. In the cervical region, the 
inclined angle of the articular surface is approximately 45° 
in the sagittal plane and 70°–96° in the axial plane. In the 
thoracic spine, the joint orientation is approximately at an 
angle of 60° to the horizontal plane and roughly at an angle 
of 20° to the axial plane. In the lumbar region, the facet joints 
gradually become more vertically-oriented, the inclination 
angle is 82°–86° in the sagittal plane and an average of only 
8° rotation is allowed. This orientation in the lower thoracic 
and lumbar regions limits the flexibility in both lateral bending 
and rotation, protecting the spinal cord and neural structures 
from injury.14,15

Two adjacent vertebrae, the intervertebral disc, spinal liga-
ments (flavum, supraspinous, interspinous, anterior and pos-
terior longitudinal) and facet joints between them constitute 
functional spinal unit or spinal motion segment, the smallest 
motion segment of the spine that reflects the biomechanical 
properties of the entire vertebral column.17

The vertebral body and the intervertebral discs are main 
load bearing structures in each motion segment, transmitting 
approximately 70% of applied axial compression, and instead 
the remaining 30% of the load is distributed through the facet 
joint, especially when the spine is extended.14,17

Each facet joint receives dual innervation from the medial 
branch of the dorsal ramus of the nerve arising at the same level 
and also the medial branch of the nerve one level above.18 In 
the facet joints there are also mechanoreceptors lining the facet 
capsule, so they may also have proprioceptive functions. Noci-
ceptive and autonomic nerve fibers have been identified in the 
capsule of the facet joints, subchondral bone and synovium.19

LUMBAR FACET JOINT SONOANATOMY
During scanning of the lumbar spine, the patient is placed in a 
prone position with a pillow under the abdomen to compensate 

for the lumbar lordosis. A convex probe with a low-frequency 
(3–8 MHz) is required to provide better penetration of soft 
tissue and wide field of view in order to visualize spine ana-
tomical structures located deeper. Ultrasound parameters, such 
as reducing the beam frequency, adjusting the depth, focus, 
and gain settings, should be optimized to produce an optimal 
image and improve recognition of anatomy. 

An accurate ultrasound evaluation of the lumbar facet joints 
can be performed in combination with the anatomical informa-
tion obtained by sagittal and transverse scans. The ultrasound 
probe is placed over the lower lumbar spine approximately 
3–4 cm lateral to the midline, in a parasagittal orientation 
(paramedian sagittal transverse process view). The transverse 
processes appear as hyperechoic curvilinear structures with 
finger-like acoustic shadowing beneath, separated by the stri-
ated psoas major muscle. This sonographic pattern has known 
as the “trident sign” (Figure 1A). 

Maintaining a sagittal orientation, the transducer is moved 
medially until to observe the facet joint column, which appears 
as a continuous hyperechoic wavy line with acoustic shadow-
ing beneath (paramedian sagittal articular process view). In this 
view, the typical sonographic appearance resembles a series of 
camel humps (“camel-hump sign”), where each hump repre-
sents the facet joint formed by superior and inferior articular 
processes of the consecutive vertebrae (Figure 1B). An accu-
rate identification of different spinal levels can be determined 
by counting the facet joints from the lumbosacral facet joint 
toward cranial direction up to the first lumbar spine vertebrae 
(counting-up approach) or by a “counting-down approach” 
from the lower thoracic vertebrae or the upper lumbar spine, 
using the 12th rib as a landmark.20 

The probe can be tilted softly toward the midline, perform-
ing a paramedian oblique sagittal scan, to improve the accu-
racy of ultrasound to identify spinal segments. A succession 
of “sawtooth” hyperechogenic lines visualized in this view, 
corresponding to vertebral laminae, allows identifying the 
intervertebral spaces from L5/S1 to L1/L2 (Figure 1C). The 
facet joints lie in approximately the same transverse plane as 
the interlaminar space. Marking on the skin the intervertebral 
reference levels, an ultrasound view of the lumbar facet joint 
can be obtained turning the probe by 90° into a transverse 
orientation (transverse interlaminar view).

In this view, the interspinous ligament appears as a hy-
poechoic midline vertical stripe, and deeply, two parallel hy-
perechoic lines of the posterior and anterior complex separated 
by the hypoechoic intrathecal space are visible. The articular 
processes of the facet joints and the transverse processes can 
be laterally recognized (Figure 1D). Normally, the articular 
processes should be symmetrically located on either side. An 
asymmetry should make us suspect the presence of a rotational 
deformity of the vertebral column, such as scoliosis.

OXYGEN-OZONE ULTRASOUND GUIDED FACET JOINT
INJECTION
Ultrasound-guided facet injections are performed by a spe-
cialist experienced in the musculoskeletal ultrasound using a 
low-frequency curvilinear probe (3–8 MHz). 

The procedure is performed under strict sterile conditions: 
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patient’s skin is cleansed with antiseptics solutions, ultrasound 
probe is covered with a sterile sheath, and sterile ultrasound 
gel and sterile gloves are used. As described above, the patient 
is placed in prone position with the abdomen supported by the 
pillows to reduce the lumbar lordosis. 

Lateral to medial approach
Once the appropriate lumbar spine level is visualized in the 
parasagittal views during the exploration technique previ-
ously described, the probe is rotated to obtain a transverse 
sonogram of the facet joint. Adjustments of the transducer 
alignment could be performed to identify the entrance to 
the facet joint between the inferior and superior articular 
processes. The target point is the middle portion of the joint, 
visible as hypoechoic space in the transverse sonogram. 
Under real-time sonographic guidance, a spinal needle (22 
Gauge, 90 mm) is inserted 3–4 cm laterally from the midline 
on the lateral end of the transducer in-plane technique. The 
insertion angle is approximately 45° to the axial plane, and 
the needle advances in a lateral to medial trajectory. The 
needle is directed down to the junction between the medial 
aspect of the inferior articular process and the lateral aspect 
of the superior articular process. The in-plane approach al-
lows visualizing throughout the entire procedure the complete 
needle path, which appears as a bright line in the transverse 
view. This technique provides real-time monitoring and al-
lows accurate repositioning of the needle. 

After the needle tip reaches the bone surface of the facet 
joint (intraarticular bone contact) (Figure 1E), 2–3 mL of 
O2–O3 mixture are injected in intra-articular space until resis-
tance is encountered, subsequently 8 mL of O2–O3 mixture are 
administered in periarticular region around the posterior facet 
joint capsule, at 15–20 μg/mL concentration. O2–O3 mixture 
appears as hyperechoic area in the peri-facet joint soft tissue 
with a well-defined shadow beneath (Figure 1F and G). The 
same procedure can be repeated in other lumbar segments.

The intra-articular injection of the facet joint is not always 
possible: the joint opening might be obscured by the bony 
spurs (facet joint hypertrophy) and the great tension between 
its ligaments and its capsule could make difficult to access 
into the narrow joint. In this case, periarticular injection is 
an acceptable alternative and only the periarticular area will 
be reached,21 exploiting the muscle relaxant action of ozone. 

The lateral to medial approach was for the first time pro-
posed by Galiano et al.22,23 and the feasibility and accuracy 
of this ultrasound-guided facet joint approach have been 
validated by computed tomography images in an experimen-
tal setting22 and in a prospective randomized clinical trial.23

Caudal to cranial approach
Another ultrasound-guided approach for facet joint injection 
with O2–O3 therapy can be performed in the paramedian sagit-
tal process articular views. The articular processes are visible 
as a continuous hyperechoic line of “humps” with acoustic 
shadowing beneath, and the bony contour of the superior 
articular process is usually more superficial than the inferior 
articular process. The target point is the space between the 
articular lines of the superior articular process and inferior 

articular process (Figure 1H). Under real-time sonographic 
guidance, a spinal needle (22 Gauge, 90 mm) is introduced 
on the inferior end of the probe in-plane technique. The in-
sertion angle is slightly lower 45° respect to the longitudinal 
plane, and the needle advances in a caudal to cranial direc-
tion. After the needle tip reaches the target area, the probe 
can be turned 90° to further confirm its position inside the 
facet joint space. If the needle position is correct, back in the 
longitudinal view, O2–O3 mixture is injected and the spread of 
the gaseous mixture is observed under ultrasound monitoring. 
The mixture should be administered very slowly with gentle 
pressure, avoiding the rupture of the joint capsule and pain. 

The caudal to cranial approach allows performing the 
facet joint injection at various levels at the same time, with 
a single-needle insertion. Moreover, L5–S1 facet joint injec-
tion, harder to perform in lateral to medial technique owing 
to the proximity of the iliac crest, can be easily performed 
without obstacle the needle advancement.

OXYGEN-OZONE THERAPY IN FACET JOINT
OSTEOARTHRITIS: POTENTIAL MECHANISMS OF
ACTION
Facet joint degenerative osteoarthritis is the most common 
source of facet joint pain. The facet joints develop degenera-
tive changes, reflecting the progressive stresses placed upon 
the joint after overuse and injury.24 The earliest osteoarthritic 
changes involve the articular cartilage, joint space and capsule. 
The cartilage damage begins with fibrillation and shallow pit-
ting in focal locations of the joint, especially at the superior 
and inferior poles where the articular processes are in contact 
during flexion and extension; followed by deeper fibrillation, 
fissuring and flaking.25 The joint space is narrowed, while 
joint capsule show fibrosis and increased vascularization, with 
multiple inflammatory mediators.26 In later stages, there is joint 
hypertrophy, osteophytosis and progressive subchondral bone 
thickening until to sclerosis and erosions. Similar to synovial 
peripheral joint osteoarthritis, facet joint osteoarthritis is a 
continuum between joint space narrowing, loss of synovial 
fluid, loss of cartilage and bony overgrowth.24,27-29 Several 
studies have shown an increase of immune cell infiltration and 
pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), 
interleukin (IL)-1β, IL-6, and prostaglandins),30,31 as well as 
cartilage-degrading enzymes,26 suggesting an important role of 
these molecules in structural and molecular changes observed 
in degenerative face joint tissues. Nevertheless, also anti-
inflammatory cytokines and inhibitors of cartilage-degrading 
enzymes are upregulated in parallel (IL-10, IL-13, tissue 
inhibitor of metalloproteinase-2 and tissue inhibitor of metal-
loproteinase-3), in a vain attempt of reparative response.32-34

In addition to multiple inflammatory mediators, the tissues 
harvested from degenerative lumbar facet joint show higher 
levels of angiogenic factors.26 Previous studies35,36 have under-
lined that the angiogenesis is involved in the joint degenerative 
disease and pain through the development of inflammation and 
neurogenesis. Through the release of vasoactive substances, 
the angiogenesis facilitates the influx of inflammatory cells 
into the joint, and promotes the growth of new afferent pain 
fibers and the upregulation of pain mediators (substance P, 
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inducible nitric oxide synthase, cyclooxygenase-2).37,38

The development and progression of osteoarthrosis, as 
with other degenerative diseases, are significantly associated 
with the oxidative stress and the overproduction of reactive 
oxygen species (ROS).39,40 ROS are short-lived, unstable and 
highly reactive radicals containing oxygen molecules, such 
as hydroxyl radical (OH–), superoxide anion (O2

–), hydrogen 
peroxide and nitric oxide, recognized as a major factor in 
progressive cartilage degradation. 

In normal cartilage, chondrocytes produce low levels of 
ROS and show a subtle equilibrium between free radical pro-
duction and their scavenging mechanism, such as superoxide 
dismutase, catalase, glutathione peroxidase, glutathione, 
nicotinamide adenine dinucleotide phosphate ubiquinone 
oxidoreductase, ascorbic acid (vitamin C) and α-tocopherol 
(vitamin E). ROS regulate intracellular signaling processes 
contributing to the maintenance of cartilage homeostasis, and 
modulate chondrocyte senescence and apoptosis, extracel-
lular matrix synthesis and degradation, gene expression and 
cytokine production.41,42

In osteoarthritic cartilage, excessive generation of ROS 
and oxidative stress have been found.43-45 Abnormal levels of 
ROS, mainly catalyzed by nicotinamide adenine dinucleotide 
phosphate oxidase, are produced in articular chondrocytes in 
response to partial oxygen pressure fluctuations, high degree 
of mechanical stress and immunomodulatory mediators (IL-1β, 
TNF-α, interferon-γ, IL-17).42 Simultaneously, important anti-
oxidant enzymes (superoxide dismutase, catalase, glutathione 

peroxidase) are decreased, confirming the role of oxidative 
stress in the development and progression of osteoarthritis.46-48 
In human articular cartilage, the over-produced ROS cause 
oxidative damage of cellular lipids, proteins and DNA, impair-
ing cell biological functionality and leading to cytotoxicity.42 
Oxidative stress-induced dysfunctions induce apoptosis and 
premature senescence of synoviocyte and cartilage chondro-
cytes, activating apoptotic pathways mediated by caspase-3 
and caspase-9, suppressing pro-survival Akt kinase activity 
and through mitochondrial injury.49,50 ROS may also contribute 
to the loss of chondrocyte responsiveness to growth factors. 
Moreover, the increased oxidative stress activates the nuclear 
factor-κB (NF-κB), a redox-sensitive transcription factor, 
contributing to the proinflammatory phenotypic alterations 
in osteoarthritic tissue. 

O2–O3 therapy has been widely used in the field of musculo-
skeletal disorders and has shown therapeutic and biological ef-
fects owing to its antalgic, anti-inflammatory, antioxidant and 
immunomodulatory properties.11 O2–O3 has shown positive 
results in spinal-degeneration diseases due to lumbar-disk her-
niation or facet joint syndrome.10,11,51,52 The clinical efficacy of 
O2–O3 are mediated by: i) activating the cellular metabolism, 
ii) reducing proinflammatory cytokines and prostaglandins
synthesis, iii) increasing immunosuppressor cytokines, iv) 
reducing oxidative stress as an adaptive response of chronic 
oxidative stress, and iv) ameliorating the tissue O2 supply.53-56

In osteoarthritis, O2–O3 therapy acts as a bioregulator of 
the inflammatory response, coordinating the expression of a 
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Figure 1: Imaging results of effect of facet joint injection with oxygen-ozone (O2–O3).
Note: (A) Paramedian sagittal transverse processes view. The hyperechoic reflections of the transverse processes (TP) with their acoustic shadow produce the “trident 
sign.” The psoas muscle (PM) with its typical hypoechoic and striated appearance, is visible between the transverse processes. The erector spinae muscle (ESM) 
lies superficially to the transverse processes. (B) Paramedian sagittal articular process view. The articular processes are visible as a continuous hyperechoic line of 
“humps” with acoustic shadowing beneath, and the bony contour of the superior articular process (SAP) is usually more superficial than the inferior articular process 
(IAP). The facet joint space (arrowhead) is situated between the articular lines of the SAP and IAP. The ESM lies superficially to the articular processes. (C) Paramedian 
sagittal oblique view. The sacrum (arrowhead) is recognizable as a horizontal hyperechoic curvilinear structure, the L3–5 laminae (arrows) have the typical “sawtooth” 
appearance, and the erector spinae muscles (asterisk) are hypoechoic and lie superficial to the laminae. (D) Transverse interlaminar view. Interspinous ligament (ISL) 
is visible in the midline. The articular process (AP) and the TP are visible laterally on either side of the midline. (E) Ultrasound-guided facet joint injections in lateral to 
medial approach. The asterisk indicates the entry zone (hypoechoic space) into the lumbar facet joint between the medial aspect of the IAP and the lateral aspect of 
the SAP. The arrowheads indicate the needle trajectory. (F, G) Facet joint injection with O2–O3 in transverse sonogram. (F) The medial aspect of the IAP and the lateral 
aspect of the SAP is easily recognizable. (G) The O2–O3 mixture (arrowheads) appears as hyperechoic area in the peri-facet joint soft tissue with a well-defined shadow 
beneath. The O2–O3 mixture was produced by means of a Multiossigen Medical 99IR generator (Multiossigen S.p.A., Gorle, Italy). (H) Ultrasound-guided facet joint 
injections in caudal to cranial approach. The articular processes are visible as a continuous hyperechoic line of “humps” with acoustic shadowing beneath. The needle 
(arrowheads) is directed to the space (asterisk) between the articular lines of the SAP and IAP. A–D were obtained by means of a Mindray DC-60 Ultrasound (Mindray 
Medical S.R.L, Milano, Italy). E–H were obtained by means of a ESAOTE MyLab OMEGA Ultrasound (Esaote S.p.A, Genova, Italy).
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wide range of genes and cytokines. It increases transforming 
growth factor-β, which is an essential factor in tissue remodel-
ing, while reduces proinflammatory cytokine concentrations 
(TNF-α and IL-8) involved in the development and progression 
of osteoarthritis.57

O2–O3 appears to inhibit the NF-κB pathway, known as 
one of the main signaling pathways interconnected with 
osteoarthritis. NF-κB signaling induces the expression of 
enzyme inducible nitric oxide synthase, prostaglandin E2, 
cyclooxygenase-2 and through a positive feedback loop the 
release of proinflammatory cytokines (IL-1β, IL-6, TNF-α).58 
These cytokines are implicated in the inhibition of extra-
cellular matrix components synthesis and in matrix metal-
loproteinase activation (matrix metalloproteinase-1, matrix 
metalloproteinase-8, matrix metalloproteinase-9, matrix 
metalloproteinase-13), causing cartilage damage, disturbance 
of the metabolic balance of the cartilage matrix, until apopto-
sis.59,60 NF-κB pathway can be activated directly by ROS or 
through other pro-inflammatory mediators such as TNF-α, a 
cytokine strongly associated with joint and bone injury.61 The 
ROS-mediated NF-κB activation is enhanced by the activity 
of tyrosine kinases through the phosphorylation of IκB, a 
subunit of the transcription factor NF-κB.53 O2–O3 can cause 
NF-κB inhibition directly by means of the decrease of ROS 
production or indirectly through the inhibition of TNF-α. In 
this context, O2–O3 therapy may interrupt the harmful NF-
κB pathway causing a reduction of the inflammation and an 
inhibition of apoptotic cell death (Figure 2). 

tory and moderate administration of O2–O3 mixture generates 
second messengers in various intracellular signaling pathways 
with activation of nuclear transcriptional factors and induc-
tion of antioxidant enzymes (superoxide dismutase, catalase 
and glutathione peroxidase). These upregulate the antioxidant 
defenses and promote an adaptation to chronic oxidative stress 
through the normalization of the cellular redox balance.55,56 
In this context, O2–O3 therapy can prevent the progressive 
cartilage damage mediated by overproduction of superoxides, 
involved in degenerative osteoarthrosis. O2–O3 also protects 
against cartilage damage due to overproduction of nitric oxide, 
reducing the expression of the enzyme inducible nitric oxide 
synthase at the transcriptional level due to NF-κB inhibition.62 
In addiction, O2–O3 therapy promotes effective oxygen utili-
zation in the mitochondrial respiratory chain, stimulating the 
production of adenosine triphosphate through the glycolysis 
enzymatic pathway in damaged cartilage cells, and prevent-
ing cell death. 

CONCLUSION
O2–O3 therapy is becoming an effective treatment option 
for musculoskeletal disorders and it could be an efficacious 
and valid alternative to traditional facet joint interventional 
treatments. Unlike traditional fluoroscopic or computed-
tomography guided procedures that are associated with 
radiation exposure, scarce availability and high costs, the 
ultrasound-guided O2–O3 is not expensive and easily available, 
without radiation exposure. The O2–O3 mechanism of action 
has not been fully understood; however it would seem to at-
tenuate inflammatory responses by inhibiting the activation 
of NF-κB pathway.
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