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Abstract

Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory
stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus
is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside
tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as
‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of
spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of
the missing fundamental component.

Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their
respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid
counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus
onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in
early auditory cortex.
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Introduction

Pitch is the perceptual correlate of the fundamental periodic

component of an auditory signal (F0). An accurate encoding of the

information carried in the fundamental component is required for

the successful perception of various kinds of linguistic and

paralinguistic information (e.g., lexical tone, intonation, voicing,

and speaker identification and emotional state) and non-linguistic

auditory input (e.g., music perception). Listeners are adept,

however, at recovering the fundamental component from

alternative regions of frequency space when the fundamental

component itself is missing or masked [1–4]. One everyday

example of this effect can be observed with adult voices

transmitted telephonically: the fundamental component of the

voice is typically below 300 Hz, but narrowband digital telephony

transmits only between 300–3400 Hz. Consequently, the listener

must reconstruct the pitch from the signal in the passband. Given the

relative importance of its contribution, recovering the pitch of a

signal is integral for constructing a holistic percept for a given

auditory stimulus and ultimately arriving at the recognition of an

auditory object. The present study uses magnetoencephalography

(MEG) to measure an early, automatic evoked auditory response,

the M100 (or N1m), building on and extending some previous

studies that required some clarification. We find that the M100

latencies of the inferred pitch stimuli match those evoked by actual

sinusoidal tones with the same frequencies, suggesting that inferred

pitch is recovered by 100 ms and, moreover, that the M100

encodes computations performed over the input and not just

transparent spectral properties of the stimulus.

The neural mechanisms that reconstruct the lower end of the

frequency spectrum and reconstitute information present in the

fundamental component are still largely unknown (see [5,6] for

models). Listeners’ ability to reconstruct this spectral information,

and in particular, to recover the fundamental component (F0), has

been termed fundamental restoration, also known as inferred pitch,

the missing fundamental phenomenon or virtual pitch [6]. This

phenomenon has also been observed in non-human mammals

[7–10]. From a neurophysiological perspective, understanding the

time course of fundamental restoration is a prerequisite to

identifying the range of neurobiological mechanisms potentially

responsible for the reconstruction of the fundamental component.

Recently, the temporal and spatial dynamics of fundamental

restoration have been explored using electrophysiology [11–14].

The focus of this work has been on determining the neuroana-

tomical basis of fundamental restoration. In particular, by

employing source-localization analysis of the M100, the funda-

PLoS ONE | www.plosone.org 1 August 2008 | Volume 3 | Issue 8 | e2900



mental restoration has been localized to the transverse temporal

gyrus and the superior temporal gyrus [13]. Moreover, indepen-

dent neural generators appear to underlie the perception of pure

sinusoids and their inferred fundamental counterparts [11]. In an

attempt to understand the temporal dynamics of fundamental

restoration, Winkler and colleagues found no latency or amplitude

differences using EEG in the N1 between spectral and restored

fundamental stimuli [14]. The only differences they found were to

tokens with long durations (500 ms, as opposed to 150 ms in

duration) in a mismatch negativity paradigm.

Perhaps most notably, Pantev and colleagues used MEG and

compared the neuromagnetic responses to two sinusoids (250 Hz

and 1000 Hz) and a tone complex with an inferred pitch of

250 Hz (1000 Hz, 1250 Hz, 1500 Hz and 1750 Hz) [12].

Presenting a source-based analysis of the MEG responses, they

concluded that the neural generators of the M100 reflect the

processing of the subjective perception of the pitch of a stimulus

and not the actual stimulus properties. In other words, the

neuronal computations required to reconstruct the fundamental

component are performed within 100 ms post onset of the target

and reside in early auditory cortex. While the evidence we present

here is consistent with this conclusion, there are some caveats that

should be noted regarding their findings. First, for the tone

complex used in their study, they inserted a continuous band-pass

noise centered at 250 Hz, essentially building an equivalent actual

pitch into the stimulus that was intended to elicit an inferred pitch.

The findings would have been much more convincing had they

used a broader band of noise as a spectral masker, say from DC to

500 Hz. Second, the sampling rate for the early MEG equipment

was coarse (250 Hz), thereby making it difficult to assign an

interpretation to the latency data. The reported latency differences

were 4 ms, or one sample at this sampling rate.

Independent research on the M100 suggests that its latency is

modulated by spectral characteristics of auditory input. In

particular, M100 response latencies are shortest to sinusoids with

a frequency of 1000 Hz and longer to frequencies both above and

below 1000 Hz (i.e., forming a parabola centered near 1000 Hz)

[15]. Therefore, if the neuromagnetic signal was, indeed, primarily

reflecting the reconstruction of a fundamental component, then we

should expect the latencies for the 250 Hz sinusoid and the tone

complex with a 250 Hz inferred pitch to have roughly the same

latency, and both should be significantly longer than the M100

response to the 1000 Hz sinusoid. This straightforward prediction

is only borne out in two of the six participants reported in the

Pantev study [12]. In a more recent electrophysiological study

investigating the neurobiological properties of fundamental

restoration, Fujioka and colleagues [11] compared neuromagnetic

responses to tone complexes with inferred fundamentals of

250 Hz, 500 Hz and 1000 Hz composed of their 2nd through

5th harmonics, 6th through 9th harmonics and 10th through 13th

harmonics. They report that all stimulus parameters (periodicity,

harmonic order level, stimulus type (pure tone, inferred funda-

mental inducing tone complex)) affected M100 latency.

It is also known that the M100 response latency is sensitive to

the spectral center of gravity of auditory stimuli [16]. In the

Fujioka et al. study, however, unfortunately the conditions are

confounded, and therefore any differences in auditory evoked

latencies could be attributed to significant differences in the

spectral center of gravity. Therefore, to control for differences in

the spectral center of gravity, while systematically modulating the

induced fundamental component, we synthesized sinusoidal tone

complexes with side bands that were kept constant across the

different tokens (1200 Hz and 2400 Hz) and two additional

sinusoids within these sidebands. This allowed us to systematically

control the spectral center of gravity, while the internal sinusoids

contributed the frequency of the inferred fundamental.

Materials and Methods

Subjects
Nine (7 female; age range = 20–59; mean age = 26.3) healthy,

right-handed adult volunteers with normal hearing participated in

this study. All tested strongly right-handed on the Edinburgh

Handedness Survey [17] and were compensated $10/hr for their

participation. Each session lasted approximately 1K to 2 hours.

Participants provided written informed consent. The involvement

of human participants in the reported experiment was approved

by the University of Maryland, College Park Institutional Review

Board (IRB).

Stimuli
Two different sets of auditory stimuli were synthesized using

Praat [18] at a sampling frequency of 44.1 KHz. Each stimulus

was 70 ms in duration with 10 ms linear rise and decay ramps.

The first set were pure sinusoids at 100 Hz, 200 Hz, 300 Hz,

400 Hz, 600 Hz, 1200 Hz and 2400 Hz. The second set of stimuli

consisted of sinusoidal complexes. Each complex was composed of

up to four component sinusoids. Two of the four sinusoids for all

tone complexes were shoulder tones at 1200 Hz and 2400 Hz; the

two other sinusoids were placed between the shoulder tones. The

frequency of these two internal sinusoids varied to produce

inferred fundamentals corresponding to the frequencies of the pure

tone sinusoids. For example, the tone complex with an inferred

fundamental component of 400 Hz was composed of equal

amplitude sinusoids at 1200 Hz, 1600 Hz, 2000 Hz and

2400 Hz. One additional complex contained only the shoulder

tones (i.e., 1200 Hz and 2400 Hz). The amplitudes of the sounds

were chosen as a compromise between matching the physical

sound level and the psychophysical intensity (i.e., from a hearing

threshold curve). The complex stimuli had an average intensity of

84 dB SPL, and the pure sinusoids had an average intensity of

90 dB SPL, these values appeared to be relatively well-matched

for listeners.

The particular nature of the structure of the tone complexes is

important. First, by placing shoulder tones at 1200 Hz and

2400 Hz and successively moving the internal tones closer to the

midpoint (i.e., 1800 Hz) in 100 Hz steps, we ensured that the

spectral center of gravity (the first spectral moment, M1) would

remain constant across the tone complexes. This is evident in

Table 1, where it is shown that the spectral center of gravity, M1, is

1800 Hz across all tone complexes. Again, this is important given

that the latency of the M100 has been found to be sensitive to this

property of the stimulus [16], a potential confound in some of the

previous electrophysiological studies on the perception of the

inferred fundamental (e.g., [11]). Constructing the sinusoidal

complexes in this manner also controls for skewness (the third

moment, M3) and kurtosis (the fourth moment, M4). Thus, we can

be confident in attributing the response profile of the M100 of

these tone complexes solely to the inferred fundamental and not to

some overall spectral shape property of the stimuli. Figure 1

presents a spectrogram showing all seven four tone complexes.

Procedure
Magnetoencephalographic recordings were made using a 157-

channel whole-head axial gradiometer MEG system (Kanazawa

Institute of Technology, Kanazawa, Japan). Participants lay supine

in a magnetically shielded room. Auditory stimuli were delivered

binaurally via Etymotic ER3A insert earphones. Earphones were
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calibrated to have a flat frequency response between 50 Hz and

3100 Hz within the shielded room. The inter-stimulus interval

(ISI) varied pseudo-randomly between 700 ms and 1500 ms. All

auditory stimuli were presented 150 times each. Stimulus-related

epochs of 700 ms (200 ms pre-trigger) were averaged according to

stimulus type to improve the signal-to-noise ratio. The neuromag-

netic signal was sampled at 1 KHz with an online 200 Hz LPF

and 60 Hz notch filter. Offline, the data were noise reduced using

a multi-shift PCA noise reduction algorithm [19] and was band-

pass filtered by a Hamming-window digital filter with frequency

cut-offs at 0.03 Hz and 14 Hz. For each complex and each pure

tone (corresponding to the missing fundamental), the same five

source and five sink channels from the magnetic contour map that

provided the strongest detected signal were selected from each

hemisphere (20 total channels). M100 latency was defined as the

root-mean-square (RMS) peak across these channels within a post-

stimulus window of 90–180 ms and recorded, along with field

strength (measured in fT), for each stimulus type. A 70 ms burst of

broadband noise was presented as part of a distracter task. The

noise burst was presented independently, occurring 150 times at

pseudo-random intervals over five blocks of approximately

9 minutes.

Results

Figure 2 illustrates the RMS of a typical neuromagnetic

response to both the pure sinusoid and its corresponding tone

complex. Figure 3 shows mean M100 latency as a function of the

fundamental frequency or missing fundamental. Statistical anal-

yses were done using mixed-effects ANOVAs with Subject as a

random effect, excluding the 12-17-19-24 complex tone to

maintain a balanced design. Analysis of the latencies of the

M100 responses showed main effects of frequency (F(5,88) = 11.15;

p,0.0001) and signal type (pure sinusoid vs. tone complex;

F(1,88) = 6.00; p = 0.016), but crucially, there was no interaction

between signal type and frequency (F(5,88) = 1.02; p = 0.41). In

planned post-hoc comparisons, we found no significant differences

at each frequency between the M100 latency to the pure sinusoid

Figure 1. A composite spectrogram of the seven complex tones used in the experiment. The duration of each complex tone was 70 ms,
including 10 ms rise and decay time. Each complex tone included shoulder tones of 1200 Hz and 2400 Hz. Internal sidebands were synthesized in
100 Hz steps inward from the shoulder tones in six of the seven stimuli to induce the inferred fundamental components.
doi:10.1371/journal.pone.0002900.g001

Table 1. Spectral values of the auditory stimuli.

FInf F1 F2 F3 F4 M1 M2 M3 M4

Pure sinusoids

100 100 8.82 0.82 37

200 200 9.14 0.78 65

300 300 9.24 0.76 94

400 400 9.30 0.75 123

600 600 9.35 0.74 179

1200 1200 9.40 0.73 337

2400 2400 9.43 0.72 606

Tone Complexes

100 1200 1300 2300 2400 1800 552 20.000020 21.97

100 1200 1700 1900 2400 1800 430 0.000020 21.10

200 1200 1400 2200 2400 1800 510 20.000010 21.85

300 1200 1500 2100 2400 1800 474 20.000002 21.64

400 1200 1600 2000 2400 1800 447 0.000009 21.36

600 1200 1800 1800 2400 1800 490 20.000002 21.50

1200 1200 2400 1800 600 20.000002 22.00

FInf = Inferred Fundamental (in Hz); F1 = First Harmonic (in Hz); F2 = Second
Harmonic (in Hz); F3 = Third Harmonic (in Hz); F4 = Fourth Harmonic (in Hz);
M1 = Spectral Centre of Gravity (in Hz); M2 = Standard Deviation (in Hz);
M3 = Skewness; M4 = Kurtosis.
doi:10.1371/journal.pone.0002900.t001
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Figure 2. Comparison of the MEG waveforms to a pure sinusoid (in this case, 600 Hz) and tone complex with the corresponding
inferred fundamental (in this case, 12-18-24) for a representative subject. Data is the RMS from 10 channels (five sink, five source) in the left
hemisphere. The peak around 100 ms post-onset of the target (0 ms represents the onset of the target) is the M100. The peak latency of the M100 to
the pure sinusoid and its corresponding tone complex were closely matched. The head-models represent the magnetic field contours for the M100.
The red regions represent the source of the dipole and the blue regions represent the sink of the dipole.
doi:10.1371/journal.pone.0002900.g002

Figure 3. M100 RMS latencies to single sinusoid tones, tone complexes (plotted by their inferred fundamental component), and the
12-17-19-24 kHz tone complex, whose fundamental component is 100 Hz. Error bars refer to 61 standard error of the group mean.
doi:10.1371/journal.pone.0002900.g003
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and the M100 latency to the tone complex, though the difference

between the M100 response latency to the 100 Hz sinusoid and

the 100 Hz inferred pitch tone complex (12-13-23-24) was

marginally significant (t(8) = 2.48; p = 0.015, n.s. due to multiple-

comparisons correction, all others p.0.12). Analysis of the M100

amplitudes revealed a weakly significant main effect of frequency

in which higher frequencies have larger amplitudes (F(5,88) = 2.79;

p = 0.022), no main effect for signal type (F(1,88) = 0.54; p = 0.46),

and a significant interaction between frequency and signal type

(F(5,88) = 5.82; p,0.0001). Post-hoc comparisons (Tukey-Kramer

honestly significant differences) found only one significant contrast:

the amplitude of the sinusoidal 100 Hz response is significantly

weaker than the amplitude of the sinusoidal 1200 Hz response.

The significant interaction effect is due to a cross-over between the

sinusoidal responses (which have increasing amplitudes with

increasing frequency) and a generally level amplitude response

to all of the tone complexes.

On a model that supposes that the M100 reflects just the

physical properties of the stimulus, we would expect that the

latencies to all tone complexes to be around 115 ms (the latency of

the M100 to the 12–24 tone complex). In other words, we would

anticipate that the 1200 Hz component present in each tone

complex to drive a considerably faster M100 latency. This,

however, is not the case. Instead, our findings suggest that the

M100 is reflecting contributions of the inferred pitch of the

stimulus and not solely the surface properties of the stimulus.

Discussion

Using stimuli that incorporate a specific improvement over

earlier materials, we replicated the M100 latency curve previously

found [15]. Moreover, we found no latency difference between

M100 responses to pure sinusoids versus tone complexes across

frequencies. Our findings suggest that listeners are reconstructing

the inferred pitch by roughly 100 ms after stimulus onset and are

consistent with previous electrophysiological research suggesting

that the inferential pitch is perceived in early auditory cortex [11–

14]. Moreover, the nature of the stimuli in the present study

suggest that it is not necessary for a tone complex to be comprised

of adjacent harmonics for pitch to be inferred (cf., [13]).

These results provide information about the relative timing of

when listeners reconstruct inferred pitch. In other words, whatever

computations are germane to inferred pitch must be carried out in

the initial stages of auditory processing. Understanding the time

course of the perception of inferred pitch helps us to delimit the

types of neurobiological computations involved. These findings do

not allow us to decide between differing models of inferential pitch,

but they do suggest that any model of pitch perception must place

this reconstruction effect early in auditory processing. This

conclusion is consistent with recent modeling research that

proposes sub-cortical involvement in the reconstruction of virtual

pitch via coordinated processing in populations of neurons [20],

which is what MEG measures. Research on the integration time of

the M100 shows that the M100 integrates over the first 40 ms of

signal [21–23]; therefore the computations we are seeing here

must be executed over no more than that amount of input (see

Chait, et al. [24] for discussion of the spatial and temporal

dynamics of pitch perception using MEG).

In addition to new information about inferred pitch, this study

yields further insight into the nature of the M100 response itself.

M100 latencies recorded in this study have been shown to co-vary

with stimulus frequency when the stimuli were pure sinusoids, just

as they were in Roberts and Poeppel [15]; but they have also been

shown to vary with the inferred fundamentals of tone complexes. It

is possible, then, to build on the findings in Roberts and Poeppel

[15] and conclude that the M100 reflects computations that are

performed over the whole spectrum of the signal, and not simply

an index of the transparent spectral properties of a stimulus.

Conclusion
MEG results suggest that listeners reconstruct the fundamental

component of a complex tone early in auditory perception. In

particular, by the time the neural generators of the M100 have

been activated, we find evidence that listeners have reconstructed

the fundamental component, indicating that some amount of

abstract computations have been performed, in this case, the

restoration of the fundamental component, early in auditory

perception.
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