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ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health
concern, as strains emerge that demonstrate resistance to almost all available treat-
ments. One factor that contributes to the crisis is the adaptive ability of bacteria,
which exhibit remarkable phenotypic and gene expression heterogeneity in order to
gain a survival advantage in damaging environments. This high degree of variability
in gene expression across biological populations makes it a challenging task to iden-
tify key regulators of bacterial adaptation. Here, we research the regulation of adap-
tive resistance by investigating transcriptome profiles of Escherichia coli upon adap-
tation to disparate toxins, including antibiotics and biofuels. We locate potential
target genes via conventional gene expression analysis as well as using a new analy-
sis technique examining differential gene expression variability. By investigating
trends across the diverse adaptation conditions, we identify a focused set of genes
with conserved behavior, including those involved in cell motility, metabolism, mem-
brane structure, and transport, and several genes of unknown function. To validate
the biological relevance of the observed changes, we synthetically perturb gene ex-
pression using clustered regularly interspaced short palindromic repeat (CRISPR)-
dCas9. Manipulation of select genes in combination with antibiotic treatment pro-
motes adaptive resistance as demonstrated by an increased degree of antibiotic
tolerance and heterogeneity in MICs. We study the mechanisms by which identified
genes influence adaptation and find that select differentially variable genes have the
potential to impact metabolic rates, mutation rates, and motility. Overall, this work
provides evidence for a complex nongenetic response, encompassing shifts in gene
expression and gene expression variability, which underlies adaptive resistance.

IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment
through stress response processes known as adaptive resistance. Adaptive resistance
fosters transient tolerance increases and the emergence of mutations conferring her-
itable drug resistance. In order to extend the applicable lifetime of new antibiotics,
we must seek to hinder the occurrence of bacterial adaptive resistance; however,
the regulation of adaptation is difficult to identify due to immense heterogeneity
emerging during evolution. This study specifically seeks to generate heterogeneity
by adapting bacteria to different stresses and then examines gene expression trends
across the disparate populations in order to pinpoint key genes and pathways asso-
ciated with adaptive resistance. The targets identified here may eventually inform
strategies for impeding adaptive resistance and prolonging the effectiveness of anti-
biotic treatment.
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By 2050, drug-resistant pathogens are predicted to lead to 10 million fatalities per
year—more lives than are currently taken by cancer, traffic accidents, or diabetes

(1). In order to avert a return to a preantibiotic dark age, new antibiotics are desperately
needed, but in order to fully combat drug resistance, we must also strive to extend the
useful lifetime of antibiotic drugs. The most concerning of pathogens have already
evolved resistance to “nearly all” available treatments (2) and will undoubtedly rapidly
subvert new drugs unless new strategies that thwart the emergence of resistance are
implemented. At the heart of the antibiotic resistance crisis is the intrinsic processes
that bacteria employ to survive and evade antibiotic treatment; these processes, which
occur “upstream” of heritable resistance gains, are referred to as mechanisms of
adaptive resistance (3). Adaptive resistance is generally considered a nongenetic re-
sponse that temporarily facilitates increased likelihood of survival, with any tolerance
gains reversing quickly upon removal of the stress (4). Interfering with the regulation of
adaptive resistance could be a significant avenue by which to reduce the rise of novel
resistances, but distinguishing key players in adaptive resistance is a demanding
proposition. The main challenge lies in the vast heterogeneity introduced during
adaptation; heterogeneity is essential to drive evolution (5), but divergence on both the
genetic (6, 7) (i.e., mutational) and the nongenetic (4, 8, 9) levels confounds efforts to
decipher the regulation of adaptive resistance. While much research effort has been
devoted to scrutinizing mutational trends during adaptation (7, 10–13), only more
recently have studies emerged considering nongenetic contributions to resistance (4,
14). Here, our motivation is to characterize the nongenetic basis for adaptive resistance,
with the goal of providing fundamental insight that can be potentially applied to
combat the emergence of bacterial drug resistance.

To enable identification of general gene expression signatures associated with
adaptive resistance, and not those related to a specific toxin, we specifically sought to
generate diversity within and across adapted populations. To achieve this end, we
adapted duplicate Escherichia coli K-12 MG1655 colonies to each of three toxins with
dissimilar mechanisms of action: ampicillin (targeting cell wall synthesis), tetracycline
(targeting translation), and n-butanol (a complex stress, impacting the membrane,
metabolism, and respiration [15]). Adaptation was carried out for 11 to 14 days to
approximate a standard antibiotic course (Fig. 1A; Table 1). Previous research has
explored transcriptome-level responses in bacteria upon exposure to each of these
stresses (15–17). It has been shown that gene expression signatures can be used to
predict the specific mechanism of action for many antibiotics, including tetracyclines
and penicillins (17); however, antibiotic exposure has been linked to a multitude of
nonspecific responses, including stress response pathway activation, mutation rate
changes, and membrane modifications (16, 18–20), which can confound efforts to find
key regulators of adaptive resistance.

During the course of the adaptation period, the MIC for ampicillin-adapted popu-
lations increased 25-fold to reach 200 �g/ml of ampicillin, the MIC for tetracycline-
adapted populations increased 8- to 16-fold to 8 �g/ml tetracycline, and n-butanol-
adapted populations saw no net increase in tolerance, maintaining a MIC of either 1 or
2% (vol/vol) n-butanol. Unadapted samples were harvested from bacteria grown either
in M9 minimal medium without selection pressure or in that medium with n-hexane, a
compound to which E. coli is intrinsically resistant (21). To measure the gene expression
patterns dominating in each population, we harvested RNA from unadapted and
adapted populations and sequenced the resulting libraries on an Illumina HiSeq 2000
sequencer. We probed the transcriptome data with traditional gene expression analysis
as well as an unconventional analysis using gene expression variability. Our results
demonstrate the presence of immense transcriptome-level heterogeneity in gene
expression even between replicates adapted to the same toxin and then filter that
information to arrive at a focused set of 16 genes with conserved signatures in either
expression (11 genes) or variability (5 genes) across diverse adapted bacterial popula-
tions. We investigate the upstream regulators of these genes to detect major networks
controlling adaptive resistance and use clustered regularly interspaced short palin-
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dromic repeat (CRISPR) interference to perturb expression of target genes and measure
impact on adaptation. In total, this work underlines the complexity of intrinsic bacterial
adaptation mechanisms and presents key genes and pathways involved in general
adaptive resistance.

RESULTS AND DISCUSSION
Extensive interpopulation gene expression heterogeneity upon adaptation.

We have previously examined gene expression heterogeneity in a select set of stress
response genes in E. coli populations adapted to ampicillin, tetracycline, and n-butanol
(22); here, we explore divergence at the transcriptome level. As a gauge of the degree
of interpopulation gene expression heterogeneity, we performed principal-component
analysis (PCA) on normalized transcript abundance within each population (as frag-
ments per kilobase of transcript per million mapped reads [FPKM]) (Fig. 1B). PCA shows
that the expression patterns do not group according to the stress condition. While the
wild-type and n-hexane samples are relatively close in PCA space, the adapted popu-
lations are more widely distributed. This indicates that the overall gene expression
profiles have been impacted as a result of the adaptation, but different populations
have achieved unique solutions. Clustering according to the resulting relative gene
expression levels [log2(fold change) from Cufflinks] gives additional insight into the
heterogeneity in the adapted populations (Fig. 1C). Across all samples, on average most

FIG 1 Heterogeneity in gene expression upon adaptation. (A) To obtain adapted and unadapted popula-
tions, individual wild-type (WT) E. coli K-12 MG1655 colonies were picked from plates and used to inoculate
liquid cultures. Wild-type and n-hexane (HEX) samples were harvested after 1 day of growth in M9 minimal
medium. Ampicillin (AMP), tetracycline (TET), and n-butanol (BUT) populations were collected after 11 to
14 days of adaptation. (B) Principal-component (PC) analysis of normalized transcript abundance (using FPKM)
in the 10 populations (two populations per condition). (C) Heterogeneous gene expression patterns are
observable across independent populations. Color indicates gene expression in indicated sample (x axis) with
respect to duplicate wild-type populations. Values of log2(fold change) are standardized by sample such that
the mean for each sample is 0 and the standard deviation is 1. Clustering is according to Euclidean distance.
(D) Similarities and differences between ampicillin-adapted populations 1 and 2. Venn diagrams list the
number of genes overexpressed �2-fold or underexpressed (indicated by up or down arrowheads, respec-
tively) in each or both populations. The three most enriched gene ontologies are called out for each condition.
AA, amino acid; EF, elongation factor; PTS, phosphotransferase.
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genes (56% � 9%) had expression levels that were within 2-fold of that of the wild type.
Underexpressed genes (at least a 2-fold decrease with respect to the wild type)
represented 28% � 4% of genes, while 16% � 5% of genes were overexpressed
(�2-fold increase). Furthermore, the PCA (Fig. 1B) and clustering analysis (Fig. 1C) reveal
that groupings are not fully explained by differences in optical density (OD) at the time
of sampling. For instance, in PCA space WT1 (OD � 0.59) and HEX2 (OD � 0.64) are
relatively close together but very far from TET2, which has an optical density of a similar
magnitude (OD � 0.63). Likewise, in Fig. 1C BUT2 had an OD of 0.83 at the time of
sampling and yet is clustered with HEX2 (OD � 0.64) rather than AMP2 (OD � 0.84).
Therefore, we conclude that factors beyond differences in growth condition are con-
tributing to the heterogeneity observed between populations.

Comparison particularly between populations adapted to the same selection pres-
sure reveals substantial differences (Fig. 1C and D; see also Text S1 in the supplemental
material). For example, across ampicillin populations, there were 397 and 745 genes
with �2-fold-higher expression in populations 1 and 2, respectively; out of these, 225
were common between populations. The three most enriched functional classifications
for the overexpressed set of genes in population 1, as obtained from DAVID v. 6.8 (23),
include ATP synthesis (enriched 40-fold, P � 8.8e�21), amino acid biosynthesis (33-
fold, P � 8.7e�9), and translation (22-fold, P � 1.8e�42). In population 2, outer
membrane (enriched 87-fold, P � 4.1e�25), secretion system (41-fold, P � 5.7e�6), and
transmembrane (4.7-fold, P � 1.9e�127) were the most enriched functions within
overexpressed genes. Enriched functions for genes overexpressed in both populations
included ATP-binding cassette (ABC) transporters (enriched 61-fold, P � 3.3e�21),
electron transport (25-fold, P � 3.9e�6), and transmembrane (4.6-fold, P � 2.2e�27).
Several transport and membrane-associated genes were overexpressed in both ampi-
cillin populations, including nikBC, tauC, and gltJ. Differences lay in the particular set of
genes impacted; for instance, the emrA and acrB multidrug efflux genes had higher
expression in population 1 (no change in population 2), while alternate multidrug efflux
genes (e.g., mdtB, mdtL, and emrY) were overexpressed in population 2 (no change in
population 1). Other notable differences include higher expression of cellular division
genes (ftsQ, ftsB, and ftsL) and NADH-quinone oxidoreductase genes (nuoBC, nuoEF, and
nuoGHIJKLMN) in ampicillin population 1 versus higher expression of various transcrip-
tional regulators (lsrR, allS, cynR, envR, and others) in population 2.

Differences were also present in underexpressed genes. In population 1 only, 630
genes were underexpressed; the three most enriched functions were phosphotrans-
ferase system (enriched 62-fold, P � 2.4e�8), outer membrane (43-fold, P � 2.3e�14),
and transmembrane (4.3-fold, P � 1.3e�104). In population 2 only, the 829 underex-
pressed genes included many other transport and membrane proteins, as well as
sensor proteins (e.g., phoQ, dcuS, and rcsD) and transcriptional regulators (e.g., uvrY,

TABLE 1 Growth conditions for sample populationsa

Sample
No. of days
propagated

Medium condition at time of sampling
(M9 minimal medium with 0.4% glucose and toxin as stated)

Unadapted
WT1 1 NA
WT2 1 NA
HEX1 1 10.0% (vol/vol) n-hexane
HEX2 1 10.0% (vol/vol) n-hexane

Adapted
AMP1 14 100 �g/ml ampicillin
AMP2 12 100 �g/ml ampicillin
TET1 14 4 �g/ml tetracycline
TET2 11 4 �g/ml tetracycline
BUT1 14 1% (vol/vol) n-butanol
BUT2 14 0.5% (vol/vol) n-butanol

aAbbreviations: NA, not applicable; WT, wild type; HEX, hexane; AMP, ampicillin; TET, tetracycline; BUT,
n-butanol.
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narL, and baeR). The most enriched functions among underexpressed genes in popu-
lation 2 were all associated with protein synthesis: translation elongation factor (en-
riched 470-fold, P � 2.6e�15), translation (22-fold, P � 1.4e�66), and aminoacyl-tRNA
synthetase (150-fold, P � 3.5e�19). Within the 390 genes underexpressed in both
ampicillin populations, enriched functions were tonB box (470-fold, P � 2.6e�15),
flagellar rotation (380-fold, P � 1.2e�14), and flagellum biosynthesis (190-fold, P �

1.9e�10). The tonB box is a binding sequence that is present in all TonB-dependent
transporters, which have substrates including ferric siderophores, nickel chelates, vita-
min B12, and carbohydrates (24).

We observed a multitude of differences between the duplicate tetracycline- and
n-butanol-adapted populations as well. Across tetracycline populations, 172 genes had
�2-fold overexpression in population 1 only (histidine biosynthesis was enriched
22.4-fold, P � 9.7e�1) and 235 genes had �2-fold overexpression in population 2 only
(leucine biosynthesis enriched 13.3-fold, P � 2.7e�2). Across n-butanol populations,
156 and 282 genes had �2-fold overexpression in only population 1 or 2, respectively
(biotin synthesis enriched 25.2-fold, P � 9.6e�1, in population 1, and colanic acid
biosynthesis enriched 8.1-fold, P � 7.0e�8, in population 2). We have provided further
discussion on the differences in gene expression in tetracycline- and n-butanol-adapted
populations in Text S1 in the supplemental material.

Transcriptome-level signatures based on differential gene expression. In light
of the heterogeneity in gene expression, we calculated differential gene expression
using partial replicates for each toxin and determined the expected variability in each
adapted population according to the variance between the duplicate wild-type libraries
(i.e., with a pooled dispersion metric). To attain a reduced set of genes most likely
contributing to general adaptive resistance, we selected a false discovery rate of 30%
to obtain the differentially expressed (DE) genes within each population and then
filtered to locate intersections across populations (Fig. 2A). As expected, few genes
were significantly DE in two populations exposed to the same toxin (10 genes shared
between the two ampicillin populations, 24 genes between tetracycline populations,
none between n-butanol populations, and 1 between n-hexane populations). Overall, a
total of 760 unique genes were DE across all six adapted populations. Upon filtering to
include only genes DE in at least two out of the six adapted populations, we were left
with 61 genes with a variety of annotated roles (Fig. 2A). The top three classifications
associated with underexpressed genes included metabolic and biosynthetic processes
(20%), cell motility (17%), and genes with unknown function (15%). The top three
classifications for overexpressed genes included metabolic and biosynthetic processes
(35%), membrane components (20%), and response to stimulus (20%). Twenty genes
encode enzymes present in the E. coli genome-scale metabolic network model iJO1366
(25), including gatD, gmd, tnaA, hisG, and fes, among others (Fig. S3). A complete list of
DE genes is available in Data Set S1, along with a summary of overrepresented gene
ontologies (23) in the entire set of DE genes.

Filtering further, we identified 11 genes that were DE in at least three out of the six
adapted populations (Fig. 2A and B), including nine genes representing functional
classes of motility, membrane components, transport, and metabolic and biosynthetic
processes and two of unknown function. The adapted populations in which these
genes were DE and the degree of the expression change are shown in Fig. 2B. All nine
genes of known function have previously been linked, either directly or indirectly, to
various stress responses, providing corroboration that these genes participate in adap-
tive resistance. Among underexpressed genes, the transport gene mntH, the membrane
protein gene fiu, and the enterobactin synthesis genes entC and entE are associated
with iron scavenging. Previous literature shows that changes in regulation of iron
metabolism instigate mutagenesis (26) in systems including Mycobacterium tuberculosis
response to phage (27). The motility-associated genes fliA and tar were also underex-
pressed upon adaptation to ampicillin or tetracycline. Out of the entire set of 11 DE
genes, these two motility genes were the only ones also found to be DE in either of the
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n-hexane populations (n-hexane population 1). Decreased expression of motility genes
has been previously seen in similar adaptive evolution experiments (8) and has been
hypothesized to be a generalized means of self-protection via energy conservation
under particularly harsh conditions (28).

A gene overexpressed upon adaptation to ampicillin and n-butanol, wzc, is part of
the colanic acid gene cluster. Colanic acid is an external polysaccharide that is an
important component of the cell wall in a number of bacteria, including Salmonella and
Klebsiella spp. (29), and the gene cluster has been implicated in response to ampicillin
treatment, resistance to desiccation, and formation of biofilms (16, 29, 30). Other genes
in the colanic acid gene cluster, including wcaA, wcaE, and gmd, were also significantly
overexpressed in both of the ampicillin-adapted populations (Data Set S1), emphasiz-
ing the potential importance of this operon. amtB, an ammonia transporter regulated
by the sigma factor �N, and citC, encoding a citrate lyase synthetase, were both
overexpressed upon ampicillin and tetracycline adaptation. Overexpression of citC has
previously been associated with SOS response induction upon �-lactam exposure,
though it is unclear if citC plays a role in the SOS response or is merely altered as a
consequence of physical proximity on the genome to the DpiBA two-component signal
transduction system (31).

FIG 2 Intersections in differentially expressed (DE) genes across adapted populations. (A) Gene ontology
distribution is shown for genes found to be differentially expressed or overexpressed (indicated by down
or up arrows, respectively) in at least one, two, three, or four out of six adapted populations. The total
number of genes DE at each level is shown to the right of the pie charts. (B) Summary of the 11 genes
that were significantly DE in at least half of the adapted populations. Gene expression values are bold
if the gene was significantly differentially expressed (P � 0.05, q � 0.3).
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Among the genes of unknown function, yfiL was found to be differentially under-
expressed upon ampicillin and tetracycline adaptation. yfiL likely encodes a lipoprotein
(32) and has been connected to the general stress response (regulated by the sigma
factor �s). Genes in the same operon play a role in motility and persistence in
pathogenic E. coli and in an analogous operon in Pseudomonas aeruginosa (33). Another
gene of unknown function, yjjZ, was the only gene DE in ampicillin-, tetracycline-, and
n-butanol-adapted populations (significantly underexpressed in 5 out of 6 of the
adapted populations). yjjZ has been mentioned as a potential small RNA (34), and so it
may perform a regulatory role. Overall, these results indicate that functional classes
promoting adaptive resistance include those that conserve energy by reducing motility,
implementing protective membrane modifications, and priming cells for mutation.
Importantly, the focused set of 11 DE genes are found by examining trends across
diverse adaptation conditions and therefore likely represent universal players in adap-
tive resistance.

Transcriptome-level signatures based on differential gene expression variabil-
ity. Gene expression variability is becoming increasingly acknowledged as a metric by
which to evaluate transcriptome data, providing relevant information for human
disease (35, 36) and allowing for predictions of a gene’s connectivity in a regulatory
network (37, 38). We have previously recognized that measuring expression variability
in E. coli stress response genes granted a measure for a gene’s involvement in adaptive
resistance, with lower-variability genes more likely to impact adaptation (22). Continu-
ing that proposition, we here hypothesized that transcriptome-level shifts in gene
expression would be present when comparing unadapted and adapted populations
(Fig. 3A). These shifts could point to genes with significant differential variability (DV)
and potential relevance for adaptive resistance. To quantify gene expression variability,
we compared the variability in normalized transcript abundance (coefficient of variation

FIG 3 Shifts in gene expression variability are present during bacterial adaptation. (A) Hypothetical distribution in interpopulation gene expression variability.
If unadapted samples possess a certain distribution, we predict that shifts in variability will occur in adapted populations. (B) Distribution of variability (CV in
FPKM) in gene expression across 4,181 genes in unadapted and adapted samples. For box plots in panels B and D, all data points are shown for each condition.
Box plots display the interquartile range and median for the corresponding data. Whiskers on box plots show the minimum and maximum values. (C)
Hierarchical clustering by gene expression variability reveals clusters of genes (on vertical axis) with higher and lower variability in unadapted versus adapted
bacterial populations. (D) Shifts in gene expression variability in nonessential and essential genes. Shifts are defined as ΔCV � CVunadapted � CVadapted. For
ΔCV � 0, the gene has higher expression variability in adapted populations. For ΔCV � 0, the gene has lower variability in adapted populations. The three most
enriched gene ontologies are displayed for the 10% of genes with highest and lowest ΔCV (10th and 90th percentiles in ΔCV for all genes are marked with
horizontal dashed lines). (E) CV across duplicates for five genes with significantly different expression variability in adapted versus unadapted populations.
Abbreviations are as in Fig. 1.
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[CV] � �/� in FPKM) across the four unadapted (two hexane and two wild-type
populations) to that across all six adapted populations. Overall, there was a significant
shift (P � 8.6e�11) toward increased gene expression variability across adapted versus
unadapted populations (Fig. 3B), which is consistent with the divergence in gene
expression (Fig. 1). Hierarchical clustering further underscores the shifts in expression
variability at the transcriptome level and underscores sets of genes with similar trends
in interpopulation expression variability (Fig. 3C), including genes with higher variabil-
ity (red) as well as lower variability (blue). To better comprehend the impacts of the
variability shifts observable in this transcriptome-level heat map, we calculated the ΔCV
for each gene between unadapted and adapted populations and plotted the data in
Fig. 3D.

When examining variability according to the essentiality reported in the PEC data-
base (http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp), nonessential genes demon-
strated larger shifts in variability than essential genes (Fig. 3D) (P � 9.2e�11), suggest-
ing that essential genes are more tightly regulated than nonessential genes. We located
enriched gene ontologies in genes (essential and nonessential) with the largest (10th
and 90th percentile) shifts in variability for unadapted versus adapted strains (Fig. 3D;
Data Set S1) via DAVID v. 6.8 (23). The three most enriched classes for genes exhibiting
lower variability upon adaptation (ΔCV � 0) were flagellum (enriched 17-fold, P �

1.5e�12), ABC transporters (47-fold, P � 4.3e�18), and lipoprotein (37-fold, P �

8.1e�14). The three most enriched classes for genes with higher variability upon
adaptation (ΔCV � 0) were associated with ABC transport (enriched 49-fold, P �

1.5e�16), outer membrane (41-fold, P � 3.2e�9), and transmembrane (4.1-fold, P �

3.3e�52).
We identified a subset of five genes with significant DV in gene expression by using

t tests and controlling the false discovery rate with Benjamini and Hochberg’s adjust-
ment (39) (Fig. 3E; Data Set S1). Notably, though the overall trend is toward increased
variability, only ybjG showed significantly higher variability in adapted populations,
whereas the remaining four DV genes (ydiV, yehS, ydhY, and yoeD) displayed signifi-
cantly lower variability across adapted populations. Prior research supports that some
of the DV genes influence resistance or stress response; for instance, ybjG is a putative
bacitracin resistance gene (40), the motility-associated gene ydiV (41) is regulated by
the membrane stress sigma factor �E, and the general stress sigma factor �S regulates
the predicted oxidoreductase ydhY (42, 43). The functions of the conserved protein yehS
and the pseudogene yoeD are unknown (Text S1 contains discussion on the potential
roles of these genes).

Regulatory networks influencing the expression of common DE and DV genes.
An intriguing question is that of the upstream regulation of the DE/DV genes identified
here— do these genes point to the relevance of a specific set of regulatory pathways
in controlling adaptive resistance? Using information available in EcoCyc (44) and
RegulonDB (45), we traced the regulation of the 11 common DE genes and the five DV
genes upstream, continuing upstream until no additional regulators were detected. A
total of 112 regulatory genes were identified that are known to either directly or
indirectly regulate one or more of the target genes (Data Set S1). Overall, we note the
influence of many different types of regulators, including 63 transcription factors (e.g.,
oxyR, associated with oxidative stress, and marA, mostly commonly associated with
antibiotic treatment), 22 genes involved with signal transduction (e.g., AcrAB and
EnvZ/OmpR two-component signaling systems), 17 small RNAs (including arcZ, chiX,
and micA), and four sigma factors (�S, �E, �H, and �N), all of which present potential
targets for future studies attempting to control adaptive resistance at the nongenetic
level.

To further mine critical regulators within the set of 112 genes, we present a
simplified analysis of this network in Fig. 4, where in level 1 we include only the genes
known to regulate or be regulated by two or more of the DE/DV genes. Proceeding
upstream, additional levels 2 and 3 of regulation include genes that further control or
are controlled by two or more of the target genes or their regulators. This simplified
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analysis identifies a total of 16 regulatory genes, including 11 genes at level 1 (cheR,
cheB, nsrR, fur, fnr, crp, oxyR, arcA, rpoS, gadX, and hns) and 4 genes at level 2 (fis, hfq,
ihfB, and ihfA), finally peaking with a single gene (dksA) at level 3. dksA is an RNA
polymerase-binding regulator that works with the alarmone ppGpp to control rRNA
promoters and others with unstable open promoter complexes, most commonly
associated with a starvation response (46, 47). dksA has 5 connections in the network—
regulating fis, ihfA, ihfB, and itself while being regulated by crp—and likely represents
an important node of regulation.

The average number of connections among genes in levels 1 to 3 is 6.1 � 3.2. nsrR
has the fewest connections, at 2. The most highly connected regulators within the set
include the Fur transcriptional dual regulator, the fumarate and nitrate reductase
DNA-binding transcriptional dual regulator (FNR), and the cyclic AMP receptor protein
(CRP), as well as the sigma factor �S (encoded by rpoS). Fur, which regulates iron
homeostasis, has been established to influence the evolution of de novo resistance to
ciprofloxacin, potentially by increased mutagenesis spurred by iron overload (48). Of
the DE/DV genes, Fur regulates amtB, yjjZ, fiu, mntH, entC, and entE, in addition to
influencing the expression of the regulators rpoS and fnr and being influenced by crp,
hfq, and itself for a total of 11 connections. The primary role for FNR is to enable the
transition to anaerobic metabolism, though transcriptome analysis has revealed that

FIG 4 Upstream regulators of target genes. The diagram shows a simplified version of the network
regulating target DE and DV genes. Here, only regulators that control two or more of the target genes
(in level 0) are shown. Proceeding upstream (moving left to right), only regulators that control two or
more of target genes and lower-level genes are included. Arrows indicate the direction of the regulation
(i.e., cheR regulates tar).
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FNR regulates genes involved with a variety of functions, including chemotaxis, osmotic
adaptation, and transport (49). Here, FNR also has 11 connections: regulating amtB, citC,
tar, and ydhY of the DE/DV genes and acrA, cheB, cheR, and gadX of other regulators and
being regulated by itself, acrA, fur, and ifhB. Similarly, CRP and �S each regulate
hundreds of genes with a variety of functions. CRP has been discovered to be involved
in the stringent response, biofilm formation, and multidrug efflux (50–52) and here has
11 connections. �S is involved with plasmid transfer and stress-induced mutagenesis
(53, 54), in addition to managing gene expression during stationary phase, and has 10
connections.

Contribution of mutations to gene expression variation. Genetic variation is
expected during adaptive evolution and is likely necessary to ensure heritable resis-
tance. To establish whether the observed gene expression changes can be attributed
to mutation, we searched the sequencing data for the presence of variants that could
be a factor in DE/DV. None of the five DV or 11 common DE genes contained mutations.
Further, none of the alternate sigma factors (�S, �E, �N, �F, �H, and �I) contained
mutations in any population. We checked the sequences of 22 transcription factors that
directly regulate one or more of the abovementioned genes, including FlhC/D, OxyR,
Fnr, Crp, and others. Again, there were no instances in which we could attribute gene
expression changes to a change at the genome level (Text S1; Fig. S4). Thus, while
mutations in other genes or in intergenic regions may be responsible for expression
changes in some populations, it is likely that separate adapted populations have
achieved similar gene expression patterns via unique mutations, through the use of
nongenetic regulatory pathways, or using a combination of the two. These results
indicate that the DE or DV genes would not have been identified through a genome-
level mutational analysis.

Application of CRISPRi to assess impact of target genes on adaptation. The DE
and DV genes presented here may offer interesting targets for attempts to impede
adaptive resistance mechanisms. To validate our approach for identifying key players in
adaptive resistance and demonstrate that these genes are involved with adaptation, we
applied an engineered type II CRISPR-Cas system to perturb gene expression (Fig. 5A).
CRISPR interference (CRISPRi) systems are well suited to mimic natural cellular re-
sponses, as they allow for precise manipulation of target gene expression (55, 70). We
transformed E. coli MG1655 with a plasmid expressing an inducible deactivated type II
Cas9 protein (dCas9) and a single guide RNA (sgRNA) targeting one of a randomly
selected set of five DE (fiu, fliA, tar, wzc, and yjjZ) and four DV (yoeD, ybjG, yehS, and ydiV)
genes. As a control, we included a plasmid expressing an sgRNA targeting a red
fluorescent protein (RFP) not present in E. coli MG1655. Colonies from each strain (here
referred to by the gene that is targeted and “-i” to represent interference) were
subjected to a range of antibiotic concentrations, and a visual resazurin assay (56) was
used to ascertain the MIC for each colony (Fig. 5B to D). The MIC as well as the degree
of heterogeneity introduced in the MIC was used as an indicator for each gene’s
involvement in adaptive resistance.

When establishing the MIC of ampicillin (Fig. 5C) or gentamicin (Fig. 5D), perturba-
tion of the target genes generally resulted in increased intrastrain heterogeneity in MIC.
The range in MIC increased (relative to the control) in seven out of the nine strains. As
the ability to generate diversity is a hallmark of adaptation (5, 14, 57), this finding is a
strong indicator that both DE and DV genes influence adaptive resistance. We used
one-way analysis of variance (ANOVA) and Bonferroni tests to determine whether
significant differences existed in the average MIC. In ampicillin (Fig. 5C), both yoeD-i
(P � 0.006) and fiu-i (P � 8.6e�7) had significantly higher average MICs than the
control. The MIC of fiu-i was also significantly higher than that of tar-i, yjjZ-i, ybjG-i, and
yehS-i (P � 0.03 for all), while yoeD-i had a higher MIC than yjjZ-i (P � 0.02).

While none of the strains exposed to gentamicin had a significantly higher average
MIC, the trend of increased heterogeneity was maintained (Fig. 5D). Furthermore,
increased heterogeneity in MIC is associated with higher frequency of clinically relevant
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resistances. For instance, the Clinical and Laboratory Standards Institute (CLSI) sets an
ampicillin resistance breakpoint at �32 �g/ml of ampicillin (58). By this standard, one
of the 50 (2%) RFP-i colonies was resistant to ampicillin. In contrast, resistance was
achieved in �20% of fliA-i, fiu-i, wzc-i, yoeD-i, and ydiV-i colonies. The fliA-i and yoeD-i
strains in particular demonstrated the greatest range of ampicillin MICs, with colonies

FIG 5 Synthetic perturbation of DE and DV genes. (A) CRISPR interference (CRISPRi) is used to repress gene expression by blocking progression of RNA
polymerase (RNAP) at a site specified by the sequence of the sgRNA. The dCas9 protein and the sgRNA are expressed from a medium-copy-number plasmid.
(B) MIC was determined for individual colonies from each CRISPRi strain. Colonies were grown for 16 h in a range of antibiotic concentrations, and MIC was
determined visually through a resazurin assay. (C and D) The MICs of ampicillin (C) and gentamicin (D) are shown for individual colonies from each CRISPRi strain.
Box plots show the interquartile range. The median is marked with a horizontal line. Whiskers demarcate minimum and maximum values. Individual data points
are overlaid on the box plots. n � 19 to 50 colonies per strain. (E) Representative plates from swarming motility assay, for E. coli BW25113 wild-type and five
knockout strains after 48 h of growth. (F) Average area from swarming motility assay. Error bars represent the standard deviation across n � 3 replicates per
strain. (G) Relative mutation rates for CRISPRi strains (rate of strain/rate of RFP-i control). Error bars represent the standard deviation (n � 30 parallel cultures
for each). (H) Resazurin reduction curves. RFU, relative florescence units. Error bars are the standard deviation (n � 4 replicates). gent, gentamicin. (I) Slopes
of resazurin reduction curves in panel H. For panels F, G, and I, asterisks indicate a result significantly different from the control (P � 0.05).
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in each having MICs as low as 4 or as high as 128 �g/ml of ampicillin (Fig. 5C). The CLSI
breakpoint for gentamicin resistance is �16 �g/ml. Although no colonies were gen-
tamicin resistant (Fig. 5D), the general trend of increased frequency of higher MIC was
maintained. Fifteen percent of control RFP-i colonies had a MIC of �0.5 �g/ml of
gentamicin, while all of the CRISPRi strains had a higher proportion of colonies with a
MIC at or above 0.5 �g/ml, including 60% of fliA-i, 70% of fiu-i, and 55% of yjjZ-i
colonies. As there were significant differences between CRISPRi strains, with yjjZ-i and
yehS-i especially having ampicillin MIC distributions similar to the control, we can
deduce that these results are attributable to the specific perturbation of the target gene
and not merely to any disruption of normal cellular function. These data demonstrate
that subtle expression changes in certain genes can impact the likelihood of survival in
the presence of high levels of stress, providing a more favorable environment in which
to develop heritable resistances.

Certain target genes impact swarming motility. As our gene ontology enrich-
ment analysis identified many motility-associated changes in DE or DV genes, we
sought to determine whether DE/DV genes of unknown function also influence adap-
tation through a motility-associated mechanism. We obtained gene-knockout strains
for the DV genes ydiV, ybjG, ydhY, and yehS and the DE gene yjjZ and then compared
the motility to that of the wild-type strain E. coli BW25113. Figure 5E shows a
representative image of each strain after 48 h of growth on semisolid agar plates (M9
minimal medium with 0.3% agar). We find significant increases in motility in the ΔydiV,
ΔybjG, and ΔydhY strains (Fig. 5F). Overexpression of the anti-FlhDC factor ydiV has
been previously shown to decrease motility (41), in agreement with our findings.
However, neither ybjG nor ydhY has been previously shown to influence motility. While
it is not straightforward to rationalize how changes in variability of these genes might
be reflected in a phenotype, our results suggest that shifts in variability of ydiV, ybjG,
and ydhY could lead to phenotypic heterogeneity in motility, in turn promoting survival
in the presence of stress.

Mutation rates in CRISPR interference strains. Increased mutation rates could be
a mechanism for higher and more heterogeneous MICs. We performed standard
fluctuation tests to assess whether CRISPRi influences mutation rates. For four out of
the five CRISPRi strains evaluated, we found that the mutation rates were not signifi-
cantly different between CRISPRi strains and the control (Fig. 5G). Therefore, we can
conclude that the CRISPRi system does not inherently increase mutation rates inde-
pendently of the gene being targeted and that unintentional increases in mutation rate
are not the likely explanation for the phenotypic heterogeneity present in CRISPRi
strains like yoeD-i, ybjG-i, and yjjZ-i. Interestingly, we did observe that the ydiV-i strain
has a mutation rate significantly higher than the RFP-i control (10-fold higher). As
mentioned above, ydiV does have a known function as an anti-FlhDC factor. Our results
suggest that it may impact mutation rates as well, though further investigation is
needed to elucidate the precise mechanism by which ydiV contributes to adaptive
resistance.

Metabolic rates in CRISPR interference strains. Our gene ontology enrichment
analysis also revealed a differential expression in a multitude of genes associated with
metabolism. Thus, the DV and DE genes of unknown function could potentially impact
adaptation by promoting changes in metabolism. Resazurin dye is reduced to the
fluorescent resorufin through an irreversible reaction catalyzed by dehydrogenases and
dependent upon NADH availability (59). Therefore, by adding resazurin to cultures and
monitoring the changes in fluorescence over time, high-level insight into metabolic
rates within populations can be garnered. We used a resazurin reduction assay to
measure metabolic rates in CRISPRi strains subjected to a range of gentamicin concen-
trations (Fig. 5H). We find that yoeD-i has a consistently decreased metabolic rate as
measured by the slope of the resazurin reduction curve for a range of gentamicin
concentrations, including 0.25 �g/ml (P � 0.02), 0.5 �g/ml (P � 0.0008), and 1 �g/ml
(P � 0.0003) of gentamicin (Fig. 5I). The average metabolic rate of yoeD-i strains was
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reduced by 46% (compared to the control) in 0.25 �g/ml of gentamicin, by 34% in
0.5 �g/ml of gentamicin, and by 55% in 1 �g/ml of gentamicin. None of the other
strains had metabolic rates reduced to such an extent or reduced in more than one
concentration, though ybjG-i and ydiV-i had slightly reduced rates in 1 �g/ml of
gentamicin (12% reduction, P � 0.05, and 16% reduction, P � 0.02, respectively).

Conclusions. Here, we compare transcriptome patterns in heterogeneous adapted

and unadapted bacterial populations in order to locate key genes and pathways
contributing to adaptive resistance. While others have used mutant library selection
approaches to detect genes which convey specific tolerances or resistances (60, 61),
only transcriptome profiling allows for the detection of subtle and simultaneous
changes across multiple genes. Ascertaining general signatures of adaptation is not
trivial, due to the immense potential for heterogeneity in gene expression during
adaptation (4, 5, 8). In this study, by intentionally generating diversity at the phenotypic
as well as gene expression level via medium-term adaptation to diverse toxins, we
identified a subset of 16 genes with significantly different expression characteristics
across multiple adaptation conditions. Many of the target genes are supported by
previous reports, though several are of unknown function, particularly those genes
identified via differential variability analysis. The DE and DV genes suggest the impor-
tance of changes in motility, metabolism, membrane structure, and transport during
adaptation to diverse conditions. This study also emphasizes global regulators poten-
tially linked to adaptation, which were not themselves DE or DV but were recognized
by examining the upstream regulation of the DE/DV genes. Locating key regulators
may not always be possible through DE/DV analysis alone; for instance, FNR has similar
expression levels under anaerobic and aerobic conditions and is activated only when
oxygen induces a conformational shift (62). Therefore, an analysis of the known
regulators of genes identified through a top-down approach is necessary to garner a
more complete understanding of the regulation of adaptive resistance.

Importantly, this work substantiates the idea that bacterial adaptation is enabled not
only by changes in gene expression levels but also by shifts in gene expression
variability. Gene expression variability analysis is emerging as a powerful method,
particularly in eukaryotic systems, but is not often incorporated into bacterial transcrip-
tome analysis. For instance, in human stem cells and in yeast, genes trending toward
lower variability were found to be more likely to be essential or highly connected (i.e.,
to play a regulatory role) (37, 38, 63). Our whole-transcriptome variability analysis is in
line with those performed in eukaryotic systems— essential genes experienced lower
magnitudes of variability shifts upon adaptation than did nonessential genes. In this
study, the observation that variability shifts occur during adaptation is also consistent
with previous studies in yeast, which have demonstrated that expression “noise” is a
selectable trait (64). We find an overall shift toward increased variability in adapted
versus unadapted populations. This could be attributed to the fact that different gene
expression states are being selected for across divergent populations but could also be
due to intrinsic regulation of an adaptive response, considering that stress response
genes have been found to tend toward higher variability in mice and yeast (65, 66). In
this study, five genes with significantly different gene expression variabilities were
located, four out of five of which had decreased variability upon adaptation. We have
previously suggested that shifts toward lower variability may impart evidence of
involvement with adaptation (22), and the transcriptome-level validation here implies
that gene expression variability is tunable in bacteria as well as eukaryotic systems. We
postulate that genes involved with the transient adaptive resistance process likely have
differential variability between unstressed and stressed conditions. In our data, we
observe that the majority of the DV genes demonstrate a shift toward tight regulation
and lower variability only upon the addition of stress. Theoretical models of the mar
regulon in E. coli support this theory; a high-noise state was found to be lower cost,
while the addition of salicylate produced a low-noise, higher-cost state (67). Further
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studies, especially in bacterial systems, will enable the field to decipher the complex
regulation of expression variability in regard to evolutionary responses.

When expression of DE and DV genes was perturbed with CRISPRi, we found
increased prevalence of higher MICs as well as larger heterogeneity in MICs in both DE
and DV gene targets. Indeed, many of the perturbed strains had MIC profiles more
closely resembling those associated with endpoint adapted populations (22). We briefly
investigated the mechanisms by which the DV genes of unknown function could be
contributing to adaptive resistance. While most CRISPRi strains had mutation rates
similar to that of the control strain, perturbation of ydiV increased mutation rates
approximately 10-fold, a function that has not been previously attributed to this
motility-associated gene. Two other DV genes, ybjG and ydhY, also appear to impact
motility, providing further evidence to support that regulation of motility is important
to a multitude of stress response pathways (68). Finally, we observed that perturbation
of yoeD influences metabolic rates in a range of gentamicin concentrations, suggesting
a metabolic or global regulatory role for this gene of unknown function.

Our results together support the existence of a nongenetic basis for adaptive
resistance; subtle gene expression changes are sufficient to drive increased resistance
in bacterial populations. The DE/DV genes presented in this study, as well their
regulators, deliver a snapshot of the complex response controlling adaptive resistance.
Continued inquiry using approaches similar to those presented here, and expanding to
investigate additional stress conditions and bacterial species, will only further our
understanding and ability to impede the upstream, nongenetic responses that enable
the eventual emergence of novel antibiotic resistances.

MATERIALS AND METHODS
Strains and culture conditions for adaptation experiments. E. coli K-12 strain MG1655 (ATCC

700926) was used in adaptation experiments. Unless otherwise mentioned, all strains were propagated
in M9 minimal medium (5� M9 minimal medium salts solution from MP Biomedicals, 2.0 mM MgSO4, and
0.1 mM CaCl2 in sterile water) with 0.4% glucose. Strains were adapted to ampicillin, tetracycline, or
n-butanol or grown in n-hexane as described previously (22). Briefly, cultures were propagated via serial
dilution (1:5 to 1:100 dilutions, depending on OD at 600 nm [OD600]) in increasing concentrations of toxin
until either the MIC had increased to four times the initial MIC or until no resistance gains were observed
for seven consecutive 24-h growth periods. OD600 was measured on a NanoDrop 2000 spectrophotom-
eter (Thermo Scientific), using 2 �l of culture. Cultures were considered resistant to a certain concen-
tration of toxin if the OD600 was �0.5 after 24 h of growth at 37°C. Bacterial cultures (500 �l) with an
OD600 of �0.54 and �0.84 were mixed with 1 ml RNAprotect bacterial reagent (Qiagen), flash-frozen in
dry ice and ethanol, and stored at �80°C until RNA extraction. Glycerol stocks were prepared by spinning
down 0.5 ml of culture at 4,000 rpm for 5 min, pouring off the supernatant, and then resuspending the
remnant in LB with 50% glycerol. Stocks were stored at �80°C. Populations sequenced correspond to
wild-type populations 1 and 2, ampicillin populations 2 and 3, tetracycline populations 1 and 2, butanol
populations 1 and 2, and n-hexane populations 1 and 3 from the related publication (22).

RNA sequencing library preparation. Total RNA for sequencing was extracted using phenol-
chloroform extraction with a TRIzol Max bacterial RNA isolation kit (Ambion). RNA was treated with the
Turbo DNA-free kit (Ambion) to remove DNA. RNA concentration and A260/A280 ratios (�1.8) were
obtained with a NanoDrop 2000 spectrophotometer (Thermo Scientific). rRNA treatment and library
preparation were carried out at the Genomics and Microarray Core Facility (Anschutz Medical Campus,
University of Colorado Denver). Ten sequencing libraries were prepared using 80 to 600 ng of total RNA
per sample and nonstranded Nugen kits. All samples were sequenced in one lane of an Illumina HiSeq
2000 with 1 � 100-bp reads, generating an average of 28.6 � 2.2 million reads per library.

Sequencing data analysis. The E. coli K-12 MG1655 reference FASTA and gene annotation files were
obtained from Ensembl, in the bacteria_22 collection (files Escherichia_coli_k_12_substr_ mg1655.
gca_000005845.2.22.dna.chromosome.Chromosome.fa and Escherichia_coli_k_12_substr_mg1655.gca_
000005845.2.22.chromosome.Chromosome.gff3). The TopHat/Cufflinks workflow (69) was used to iden-
tify differentially expressed transcripts and to calculate FPKM for differential variability analysis.

Further details on the sequencing data analysis, growth characterization, fluctuation tests, motility
assays, statistical analysis, CRISPRi, and other experiments described are provided in Text S1 in the
supplemental material.

Accession number(s). Data have been deposited in NCBI’s Sequence Read Archive (accession no.
SRP069322).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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