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Abstract

Background: Ecological attributes estimated from food web models have the potential to be indicators of good
environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can
be used as a baseline to show how they might be modified in the future with human impacts such as climate change,
acidification, eutrophication, or overfishing.

Methodology: In this study ecological network analysis indicators of 105 marine food web models were tested for variation
with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also
considering structural properties of the models such as number of linkages, number of living functional groups or total
number of functional groups as covariate factors.

Principal findings: Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy;
total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the
community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western
Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal
complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had
increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as
having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer
efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity.
Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups
were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates).
Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure.
Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems
and should be avoided through management.

Conclusion/significance: Our results provide additional understanding of patterns of structural and functional indicators in
different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting
reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for
ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem
indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location,
ecosystem type, etc.) and not benchmarked against all other ecosystems.
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Introduction

Natural resource management approaches have been under

development for decades, driven by an increasing need to

understand the effect of anthropogenic impacts on ecosystems

[1,2]. Often, it was assumed that management could be based on

population dynamics at the individual species population level [3].

However, it is now clear that there are trade-offs in management
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[4–8] and that community effects therefore must be considered.

An example of these trade-offs is food web effects due to

competition or predation [2,9,10]. Ecosystems also have emergent

properties that call for consideration of ecosystem structure and

function in the management of marine resources [11–13].

Although detailed expert knowledge is essential for the

management of an ecosystem, a general theory of ecosystem

dynamics can help in defining aspects to be considered when

conducting ecosystem based management. Such a theory would

allow for extrapolation between systems, important given the lack

of detailed information available on some systems. Food webs

describe the interaction between species at different feeding levels

and depict the flow of energy and matter in ecosystems. These

predator-prey interactions are considered one of the main

regulators of ecosystem dynamics [14,15], and they partially

mediate the way ecosystems respond to natural and human

perturbations such as fishing, habitat degradation or environmen-

tal dynamics. Food web models are simplified representations of

natural systems, which help us understand how biodiversity and

ecosystems respond to changes. Creating food web models

typically calls for quantitative modeling integrating food web

dynamics and external factors such as environmental change or

fishing.

The study of marine food webs and ecosystems faces difficulties

with data collection and quantification of interactions, and the

added difficulty of modeling ecosystem processes and dynamics

[12]. Therefore, structural and functional properties of marine

ecosystems are less known than their terrestrial and freshwater

counterparts [12,16]. Moreover, the quantification of many food

web properties depends upon the modeling strategy and model

structure as they co-vary with model components and links

[12,17,18]. However, this lack of knowledge is changing.

Ecological modelling applications have increased exponentially

and a large body of standardized food web models have been

constructed over the last three decades to quantitatively describe

marine systems. The quantitative description of food web

attributes is essential to advance our understanding of (i) ecosystem

structure and functioning; and (ii) how to use ecological indicators

to inform policy makers and managers [19–21].

The most widely applied ecosystem modelling approach is

Ecopath with Ecosim (EwE, www.ecopath.org) [22–25], developed

by Polovina [25] and adapted by Christensen and Pauly [26] and

Walters [23,27] into a comprehensive modelling tool [28]. EwE is

currently composed of a core mass balance food web module

(Ecopath), from which temporal (Ecosim) and spatial (Ecospace)

dynamic simulations can be developed [24,29]. EwE models

represent complex food webs with non-linear and non-randomly

distributed interactions, where each node or functional group of

the web may be a species, a group of species, an ontogenetic stage

of a species, or a detritus group [24]. Ecopath models are different

from cascade models [30] and niche models [31], which are very

useful to describe several food web structural properties. Niche

and cascade models have been compared to results with EwE [32],

but they do not account for the strength of ecological interactions.

The functional groups of EwE models are characterised by

specific features such as abundance, biomass, and production,

which provide means of measuring biological diversity. The nodes

are linked by the strength of trophic (feeding) interactions, while

Ecosim can represent non-feeding interactions such as mutualism

or parasitism. Therefore, EwE models represent complex ecolog-

ical networks with a series of properties that characterise food webs

and are important for describing ecosystem structure and

Figure 1. Food web diagram of the Venice lagoon with 27 nodes or funtional groups. Colors of flows depict different fishing target
(artisanal fisheries in blue, and clam fishery in red) and non-target species (for clam harvesting, in green). Modified from Pranovi et al. [102].
doi:10.1371/journal.pone.0095845.g001
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functioning and for evaluating conservation needs (Fig. 1 shows an

illustrated example of a marine food web). Since food web models

typically include all trophic levels from the lowest (i.e., primary

producers and detritus) to highest (e.g., humans and apex

predators), they are able to capture both bottom-up and top-

down forcing dynamics.

The structural and functional properties of food webs can be

quantified using ecological network analysis [22]. Ecological

network analysis stems from the study in 1942 by Lindeman

[33]. Trophic interactions and linkages were further conceptual-

ized in food webs of energy transfers by EP Odum [34]. In 1980,

Ulanowicz [35] developed indicators of ecosystem development

such as ascendency [36].

The currently available EwE food web models provide

relevant information to progress the study of a general theory

of marine food web traits and dynamics. Taking advantage of

the significant number of published marine food web models

found in the literature (Table S1), this study investigates

whether there are general patterns in ecological traits of

marine food webs. To take into account the fact that models

vary due to different development strategies, structural

properties of the models (such as the number of total, living

and non-living, versus only living functional groups, and total

number of trophic links, called factors in this study) are used to

test the robustness of these patterns by means of covariance

analysis.

This paper analyses 105 published EwE models distributed

worldwide (Fig. 2) and their emergent ecological network

analysis properties to characterise structural and functioning

indicators of marine ecosystems. It also includes 26 indicators

of ecosystem structure and function as defined in Table 1. The

models represent a wide spatial diversity, covering ecosystems

from coastal lagoons to the deep sea in all the world’s oceans,

and large temporal diversity, with ecosystems representing

both past and recent timeframes (Fig. 2 & Table S1). To

analyse the variation of general patterns in food web

indicators, 7 traits were included in the analysis: (i) ecosystem

type (coastal, shelf, slope, estuary, bay, lagoon or reef); (ii)

latitude; (iii) ocean basin; (iv) depth; (v) size; (vi) period of time

represented; and (vii) exploitation rate.

This study is among the first to analyse a large variety of

EwE models from different systems in an organised and

systematic way. It presents the largest meta-analysis of the

structural and functional indicators of marine food webs to

date and adds to the general theory of marine food web

dynamics and its use for ecosystem conservation and manage-

ment. It also includes statistical analyses to address co-variance

of models and issues of structural uncertainty in these models.

The statistical analysis makes this work unique, and the study

also includes new and advanced analyses on the key species

concept.

Materials and Methods

a) Food web models
A description of the theory and algorithms behind Ecopath

with Ecosim (EwE) is given in File S1. The locations of the

ecosystems represented by the 105 published EwE models of

marine ecosystems from around the world used in this study

are shown in Fig. 2. The meta-data (i.e., ecological, network,

and synthetic indicators) used to describe the ecosystems are

available in Table S1. The models ranged from very simple,

with 6 component nodes or functional groups in the Canary

Island [Canary Islands 37] to more complex models consisting

of 68 groups in the North Sea [North Sea 38], with an average

number of 26 groups. In terms of depth, the systems

represented ranged from less than a meter deep in Venice

Lagoon [Venice Lagoon 39], to the deep sea off the Cape

Verde Islands [40], and the West Coast of Scotland [41]. The

timeline of the models spanned from 1880 (North Sea) to

various models that include recent data from the 2000s. The

models represent ecosystems from all continents (except

Antarctica), with 17 African systems, 14 Australasian systems,

35 European systems, 31 North American, and 8 South

American systems. Mexico (16) has the most models, followed

by Italy (8), Canada (8), and the USA (7). The latitude and

location of the model areas and references to the papers

describing these models are given in Table S1.

Many of the models were previously developed to achieve a

first description of the ecosystems using the mass balance

approach (42 models), while some had estimates of the

ecological network analysis (ENA) parameters (36 models) or

were used to compare the Ecopath approach to inverse

methods (5 models) (Table S1). In addition, several models

had been developed for theoretical dynamic analysis, spatial

analysis, or policy analysis (12 models) while 17 models were

fitted to time series to hindcast model dynamics, and 6 were

used for policy and fisheries impacts. All models used in this

analysis were previously peer-reviewed and published in the

primary scientific literature (Table S1).

b) Ecological food web- and fishing impact indicators
The food web models representing different marine systems

(Table S1) were used to analyse ecosystem structure and

function patterns by trait. We calculated several ecological

indicators from ecological network analysis (ENA) and

performed a meta-analysis across ecosystems applying different

statistical multivariate approaches. The indicators were chosen

because they had previously been widely applied to highlight

ecosystem structure and functioning, were thought to be robust

to differences in model construction (such as the number of

functional groups) and were independent from currency

used for biomass and flows (Table 1) [42,43]. In addition,

the robustness of these indicators to model construc-

tion was further checked by Factorial Analysis (see section

below).

The network analysis indicators are mainly related to the total

systems throughput (TST), which is the sum of all flows in the

model and considered an overall measure of the ‘‘ecological size’’

of the system [44]:

TST~
Xn

i~1,j~1

Tij ð1Þ

where Tij is the flow between any two compartments and includes

respiration and export flows.

The more descriptive indicators include the primary produc-

tion/total systems throughput (PP/TST), flow to detritus/TST

(FD/TST), total consumption/TST (Q/TST), total respiration/

TST (R/TST), total exports/TST (Ex/TST), total biomass

excluding detritus (TBco), and the ratio between primary

production and total production (PP/P).

The development capacity (C) of the system is the thermody-

namic limit of growth in the system and is calculated as:
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C~{TST :
X

ij

Tij

TST
: log

Tij

TST

� �
ð2Þ

It scales the TST to a measure of the information carried by

flows. Capacity is divided between ascendency (A) and the

overhead (O). Ascendency is an index of the organisation of a

food web [45] and is defined in terms of flow:

A~
X

ij

Tij

� �
: log

Tij:TST

Tj
:Ti

� �
ð3Þ

and overhead (O, an indicator of the ecosystem’s strength in

reserve [45]) is calculated as:

O~C{A ð4Þ

Overhead and Ascendency are divided into export, dissipation and

internal flows [46], and the overhead on internal flows (IFO) has

been used as an index of ecosystem redundancy [47]. The

redundancy is an indicator of the change in degrees of freedom of

the system, or the distribution of energy flow among the pathways

in the ecosystem [48], and is calculated as:

R~IFO~{
Xn

i~1

Xn

j~1

(Tij): log
Tij2

Pn
j~1

Tij:
Pn
i~1

Tij

0
BBB@

1
CCCA ð5Þ

The Finn Cycling Index (FCI) quantifies the amount of

recycling relative to TST and is an indication of stress and

structural differences [44], and is calculated as:

FCI~
TSTc

TST
ð6Þ

where TSTc is the total flow that is recycled.

Other ecological indicators are related to the trophic level (TL)

concept, which is the average number of steps for energy to move

from primary producers to higher-level consumers and provides

an indication of the trophic position of an organism. Thus for a

given predator j the TL is calculated as:

TLj~1z
X

i

DCij
:TLi ð7Þ

where TLi is the trophic level of prey i and DCij is the proportion of

prey i in the diet of predator j. The mean trophic level of the

community (mTLco) is calculated as the weighted average TL for

Figure 2. Distribution of food web model used in this study. Models are divided into Eastern Pacific (black), Western Atlantic (red), Eastern
Atlantic (blue), North and Baltic Seas (orange), Mediterranean Sea (green), Indian Ocean (purple) and Eastern Pacific (pink). Each model is numbered
on the graph according to its number in Table S1, where details and references to each model area are given.
doi:10.1371/journal.pone.0095845.g002
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functional groups with TL.2, as:

mTLco~

P
i

TLi
:BiP

i

Bi

ð8Þ

where the weighting factor is the biomass of each functional

group (Bi). TL.2 is used to reduce the variability in terms

of biomass and production that comes with using low trophic

levels.

Table 1. Ecological and fisheries related indicators used in this comparison.

Acronym Indicators Units Definition Reference

Ecological
indicators

TST Total System Throughput t?km22?y21 The sum of all the flows through the ecosystem [45]

PP/TST Primary production/TST Primary production over the sum of all the flows
through the ecosystem

[28]

FD/TST Flows to Detritus/TST Flows to detritus over the sum of all the flows
through the ecosystem

[28]

Q/TST Total consumption/TST Total consumption over the sum of all the flows
through the ecosystem

[28]

R/TST Total respiration/TST Total respiration over the sum of all the flows
through the ecosystem

[28]

Ex/TST Total exports/TST Total exports of the system over the sum of all
the flows through the ecosystem

[28]

PP/P PP/Total Production Primary production over total production [28]

MeanPz
(MaxPz)

Mean (Max) proportion of total mortality
due to predation

The mean (or Maximum) proportion of each
group’s total mortality that was accounted for
by each predator

[103]

meanEE Mean Ecotrophic Efficiency % Ecotrophic efficiency of a group is that
proportion of the production that is utilized
in the system.

[28]

TBco Total Biomass (excluding first trophic level) t?km22 Total biomass of the community excluding
detritus and primary producers

[28]

mTLco Mean Trophic Level of the Community Weighted average trophic level for functional
groups with a TL.2

[28]

TEm Mean Transfer Efficiency % Geometric mean of transfer efficiencies for trophic
level II to IV

[33]

A/C Ascendency/Capacity % Relative Ascendency, dimensionless index
of ascendency - index of organisation of the
food web

[45]

O/C Overhead/Capacity % Relative overhead, dimensionless index of the
ecosystem’s strength in reserve

[45]

IFO Internal Flow Overhead or redundancy % Indicator of the change in degrees of freedom
of the system, or an indicator of the distribution of
energy flow pathways in the system

[45,47,48]

FCI Finn’s Cycling Index % Quantifies the relative amount of recycling and
is an indication of stress and structural differences
either among models [44]

[44]

SOI System Omnivory Index Variance of trophic levels in the diet [24,49]

KS Keystoneness Index of the ability of a trophic group with low
biomass to influence others

[52]

KD Dominance Index of both high biomass and high influence [52]

Fishing
indicators

TC Total Catches t?km22?y21 Total landings and discards exported from the system [28]

TLc Mean Trophic Level of the Catch** Average trophic level of all caught species using
weighted by yield

[50]

Lindex Loss in production Index Loss in secondary production due to fishing [28]

Psust Probability of being sustainable fished % Probability of the system to be sustainably fished
adopting [55] ecosystem overfishing definition and
criteria

[51,53,54]

*Excluding the cases where the indicator was 0 due to no fishing.
doi:10.1371/journal.pone.0095845.t001
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The system’s omnivory index (SOI) is defined on the basis of the

omnivory index (OI) of each food web component. It indicates the

variance of trophic levels in the diet, and is:

OIi~
Xn

j~1

TLj{ TLi{1ð Þ
� �2:DCij ð9Þ

So from the OI of each functional group, the SOI for the food

web is calculated as:

SOI~

Pn
i~1

OIi
: log Qið Þ½ �

Pn
i~1

log Qið Þ
ð10Þ

where Qi is the food intake of each consumer [24,49].

The mean transfer efficiency (TEm) for the food web was

calculated as the geometric mean of transfer efficiencies for each of

the integer trophic levels II to IV. The transfer efficiency of a

trophic level is calculated as the sum of the flow transferred from

any given level to the next higher level, plus exports (e.g., catches)

from the given level relative to the input (or throughput) of the

given trophic level.

We also included indicators measuring fishing intensity and

impacts in the ecosystems: the mean trophic level of the catch

(TLc) [TLc, 50], the primary production required to sustain the

catches [PPRc, 28], the loss in production index (Lindex) [L index,

51] and the probability of an ecosystem being sustainably fished

Psust [Psust, 52].

Similar to the mTLco, the mean trophic level of the catches

(TLc) is calculated as the weighted average of TL of caught species

using catches (Yi) as the weighting factors:

TLc~

P
i

TLi
:YiP

i

Yi

ð11Þ

The proportion of primary production required for the

exploited fishery’s catch (PPRc) is defined as:

PPRc~
X
Paths

Y :P
Pr ed, Pr ey

Qpred

Ppred

:DC
0
Pr ed,prey

" #
ð12Þ

where P is production, Q consumption, and DC9 is the diet

composition for each predator/prey interaction in each path from

primary production or detritus through the food web to the catch,

with cycles removed from the diet compositions [28]. PPRc can be

expressed in percentage terms when it is normalized with the

primary production (PPRc/PP = PPRc%).

The Loss in Production Index (Lindex) and the probability for the

ecosystem to be sustainably fished (psust) are both used to evaluate

the ecosystem effects of fishing [51,53,54]. The probability of

being sustainably fished was defined by adopting Murawski’s [55]

ecosystem overfishing definition and criteria, and it includes

structural and functional degradation associated with stock

collapses and overexploitation of marine resources. Lindex is

defined as:

LIndex~
PPRc:TEmTlc{1

PP: ln TEm
ð13Þ

where the loss in production is estimated on the basis of TLc, TEm

and PPRc, that is compared to the primary production at the base

of the food web (PP). The probability that such energy loss is

sustainable was calculated by comparing Lindex for a set of

overexploited and sustainably exploited ecosystems as reported in

Libralato et al. [51]. This allows the definition of a non-linear

empirical relationship between the Lindex and Psust to be used for

calculating sustainability of fisheries.

c) Factorial analysis
To analyse marine food webs by the ecological and fishing

indicators described above, 7 traits (factors) were chosen:

ecosystem type, latitude, ocean basin, depth, size, time period,

and exploitation of the ecosystem represented by the model.

Size of ecosystem included six classes (1–10 km2, 11–100 km2,

101–1,000 km2, 1,001–10,000 km2, 10,001–100,000 km2, .

100,000 km2), depth included seven classes (,5 m, ,10 m, ,

20 m, ,50 m, ,100 m, ,200 m, .200 m), and ecosystem type

was divided into six classes (lagoon, estuary, bay, coastal, reef,

continental shelf, and upper slope). The classes were developed

following from previous analyses [56,57] and were included where

there were enough models per class (n.5). The modelled food

webs were divided into four latitude classes from the equator to the

poles (15uS–15uN and 15–30u, 30–60u, 60–90u, north and south

combined). The food webs were also divided from west to east into

seven ocean basin classes following a longitudinal gradient (West

Atlantic, East Atlantic, North and Baltic Sea, Mediterranean,

Indian, West Pacific, East Pacific). The time periods represented

by the models were divided into four classes: before 1970, 1970–

1980, 1980–1990 and after 1990. With regards to exploitation, the

ecosystems were split into three classes: high exploitation, low

exploitation (including food webs with recreational fishing only)

and no exploitation.

Significant differences between ecosystems were assessed first by

comparing all ecological indicators and then comparing individual

indicators with each trait and using the non-parametric multivar-

iate permutational analysis of variance (PERMANOVA, in

PRIMER with PERMANOVA+ v. 6, PRIMER-E Ltd., Plym-

outh, UK) on the Euclidean distance matrix. PERMANOVA

calculates a pseudo-F statistic that is analogous to the construction

of the traditional F-statistic for multifactorial univariate ANOVA

models, but uses permutation procedures (here 9999 permutations)

to obtain p-values for each term in the ANOVA model [58]. Due

to the limited number of observations, and an unbalanced design

among traits, we performed a 1-way analysis by trait using first all

the indicators together and then each indicator separately. Even if

we used indicators less affected by model construction [42,43], the

number of functional groups and aggregation used to represent

food webs can still influence model outputs and analyses.

Therefore we assessed the robustness of indicators to model

configuration by including 3 factors as covariates in the

PERMANOVA analysis: (i) the number of functional groups or

nodes of each food web model; (ii) the number of living groups;

and (iii) the total number of trophic links. We used a Type I (or

sequential) partition of the sum of squares (SS) since individual SS

terms were not independent when including covariates.

When significant, the variation of the different ecological food

web indicators and fishing indicators by trait (ecosystem type,

latitude, ocean basin, depth, size, time period, and exploitation

was plotted using boxplots.
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d) Key functional groups
Key functional groups are those with important roles in the food

web, and include keystone and structuring functional groups [59].

Keystone groups have relatively low biomass but disproportion-

ately large effects on the food web [52,59], while structuring

groups have large effects due to their relatively high biomass [60].

The marine food web models were used to calculate the

absolute overall effect of a species on the food web as the sum of all

the direct and indirect effects, quantified through the mixed

trophic impact analysis (MTI). The MTI analysis quantifies the

direct and indirect impacts that each (impacting) group has on any

(impacted) group of the food web [61]. The absolute overall effect

was then compared with the biomass proportion of each group to

identify key species: either keystone (low biomass proportion and

high overall effect) or key structuring groups (high biomass

proportion and high overall effect [59]). The role of functional

groups was assessed through the key role (keystone or structuring

functional groups), trophic level (TL) and proportion of top down

effects (td; where bottom-up effect is calculated as bu = 100 – td).

On the basis of the work done by Libralato et al. [52], the

overall effect of each functional group i on the ecosystem was

estimated through:

ei~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j=i

m2
ij

vuut ð14Þ

in which the effect of the change in biomass on the group itself

(i.e., mii) is not included. Moreover, accounting for the fraction of

positive and negative contributions to the overall effect allows

evidence for contribution of bottom-up (positive mij) and top-down

(negative mij) effects [52]. This was synthesized here by reporting

the fraction of top-down contributions (td, as percentage) to the

total effect.

The overall effect of each functional group on the ecosystem

combined with information on the group’s density is useful to

identify its role in the ecosystem and to identify key functional

groups [59,60]. In particular, groups with a high impact might be

identified as keystone or dominant groups if they have a low or

high biomass in the ecosystem, respectively [59]. The biomass was

found by calculating the contribution of each functional group to

the total biomass of the food web, as:

pi~
BiP

k

Bk

ð15Þ

where pi is the biomass proportion for group i; see Libralato et al.

[52].

Using the definition given by Libralato et al. [52], the index of

keystoneness was calculated as follows:

KSi~ log ei
:(1{pi)½ � ð16Þ

that has the property of attributing high values of keystoneness to

functional groups that have both low biomass proportion and high

overall effect (as defined above).

The absolute overall effect and the biomass proportion of the

functional group were used to identify key functional groups (i.e.

species or groups of species with particular roles in the food web),

complementing the keystone indicator as proposed by Libralato et

al. [52].

The analysis of biomass proportion and overall effect helped to

distinguish those key groups that might be difficult to disentangle

in terms of keystoneness index only. Therefore, similarly to the

keystoneness, an index of dominance of species was calculated

from:

KDi~ log ei
:pi½ � ð17Þ

that assumes high values for functional groups that have both high

biomass proportion and high overall trophic effect (as defined

above): these groups are considered the dominant functional

groups, also known as structural groups. The overall impact

‘keystoneness’ and ‘dominance’ proposed here were estimated for

each living functional group (thus excluding detritus groups) in the

suite of food web models.

For each group, the method provided values for KS and KD:

generally groups ranking high in KS were ranking low in KD and

vice versa. In order to simplify the evaluation, analyses were

performed on the most influential functional groups identified as

the top 5% ranking groups over all the models. Thus, high ranking

keystone functional groups were defined with KS $0 and

dominant species those with KD $20.7.

Significant differences in the proportion of key functional

groups (keystone and structural species) in relation to exploitation

level and ecosystem traits (ecosystem type, latitude, ocean basin,

depth, size, period represented and exploitation) were evaluated

using Correspondence analysis (CA) and performed using

Statistica version 6.1 (Statsoft; www.statsoft.com) [62]. CA

evaluates deviation from independence between key groups’

frequency and traits on the basis of Chi-squared statistic, and

decomposes the overall Chi-square in contributions from each

combination of trait/key groups, see for example [see for example

63,64]. Therefore, on the basis of the main contributors to overall

Chi-square, CA identifies the combination of traits that deviates

more from the expected values and the complete independency of

factors [complete independency of factors 62].

Results

a) Ecological food web indicators of marine ecosystems
We calculated several ecological indicators from flows and

biomasses of food webs (Table 1).

There were significant differences in the food web properties of

marine ecosystems by ecosystem type, ocean basin, depth, size,

and whether the ecosystem was fished or not (Table 2, values in

bold). These results were robust considering differences in model

construction since they were corrected for covariance, or the way

food webs were described. In contrast, ecological indicators were

maintained in ecosystems over time (with no significant difference

in food web properties by year, suggesting that the main past and

present configurations of marine food webs prevail) and latitudinal

gradient (Table 2).

When examining specific ecological indicators by ecosystem

type (Table 3), there were significant differences in Total System

Throughput (TST, the measure of total trophic flows within an

ecosystem) and Total Biomass of the community (TBco), with

higher values in reefs, lagoons and shelves (Fig. 3a & 3b). The

mean Ecotrophic Efficiency (meanEE, the proportion of overall

production used within the system) increased from estuaries to

shelves and slopes (Fig. 3c). These results were significant after

accounting for covariance.

Some ecological indicators also differed significantly with depth

(Table 3), with the Flow to Detritus (FD/TST, the non-living

particulate organic matter that returns to the trophic flow as a
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ratio of the total flow), total Respiration (per unit of trophic flow,

R/TST), mean Ecotrophic Efficiency (meanEE) and mean

Transfer Efficiency (TEm, or the conversion of production from

lower to higher trophic levels) all showing significant differences

(Fig. 4). The flow to detritus (FD/TST, Fig. 4a) was higher in

shallower systems, with the trend being reversed in respiration (R/

TST, Fig. 4b) and mean transfer efficiency (Tem, Fig. 4c). The

trend in mean Ecotrophic Efficiency (meanEE, Fig. 4d) also

showed correlation with ecosystem type, where shallower systems

(such as lagoons, estuaries and bays) had lower mean Ecotrophic

Efficiencies than deeper systems (such as shelves and slopes).

Similarly, ecological indicators were also significantly different

by ecosystem size (Table 3). Again, the mean Ecotrophic

Efficiency was lower in smaller systems (meanEE, Fig. 5a), and

increased with size, while the export from the system (export of

matter per unit of flow, Ex/TST) was also lowest in small systems

and increased in larger systems (Fig. 5b). This was converse to the

trend in the Finn Cycling index (FCI, an index of the relative

amount of recycling in the ecosystem), which was highest in

smaller systems (Fig. 5c) and declined as size increased.

The ecosystem trait that showed significant differences for most

ecological indicators was ocean basin (Ocean, Table 3). Respira-

tion (R/TST, Fig. 6a), export of matter per unit of flow (Ex/TST,

Fig. 6b), mean transfer efficiency (TEm, Fig. 6c), flow to detritus

(FD/TST, Fig. 6d), the mean trophic level of the community

(mTLco, the average trophic level for functional groups with a

TL.2 that represents a mean trophic position of organisms in the

community, Fig. 6e), total consumption (per unit of flow, Q/TST,

Fig. 6f), system omnivory index (SOI, the variance of trophic levels

in the diet, Fig. 6g), redundancy or internal flow overhead (IFO,

the distribution of energy flow pathways in the system, Fig. 6h),

relative ascendency (A/C, an index of organisation of the food

web, C being the Development Capacity of the system, Fig. 6i) and

relative overhead (O/C, the index of the ecosystem’s strength in

reserve, Fig. 6j) all showed significant changes with ocean basin. A

general decreasing trend between the West and East Atlantic (and

the reverse in the West and East Pacific) was observed in

respiration (R/TST), consumption (Q/TST) and the redundancy

(IFO) in these systems, while an increasing trend was shown in the

flow to detritus (FD/TST) and the relative ascendency (A/C). It

was also clear that some differences between Ocean basins were

reproduced in ecosystem indicators such as the mean transfer

efficiency (TEm), mean trophic level of the community (mTLco),

and the system omnivory index (SOI): the Pacific Ocean had

Figure 4. Boxplot of significant differences of food web ecological indicators by depth class. The smallest observation (sample
minimum), lower quartile, median, upper quartile, largest observation (sample maximum) and outliers are indicated. The boxes are drawn with widths
proportional to the square-roots of the number of observations in each class. FD/TST = flow to detritus/total systems throughput (proportion), R/TST
= respiration/total systems throughput (proportion), TEm = mean transfer efficiency (%) and mean EE = mean ecotrophic efficiency (proportion).
doi:10.1371/journal.pone.0095845.g004
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higher values than the Atlantic and Indian Oceans, and the Indian

Ocean generally had the lowest value for all those indicators.

Overall, the traits that showed significant differences between

model indicators were ecosystem type, latitude, ocean basin, size,

and year. Those indicators that were least prone to co-vary with

factors (i.e. functional groups, number of living groups, and

number of trophic links) were total export (Ex/TST) and total

biomass of the community (TBco, showing no differences in cell

colour between covariance in Table 3). Both were only signifi-

cantly different in two traits each (Ex/TST = ocean basin and

size, TBco = ecosystem type and size). Of those ecological

indicators analysed, eight were robust to covariates, namely

relative ascendency (A/C), relative overhead (O/C), redundancy

(IFO), primary production (PP/TST), total systems throughput

(TST), consumption (Q/TST), export (Ex/TST), and total

biomass of the community (TBco, as highlighted in Table 3).

These indicators may be of special interest for future food web

studies if correction for covariance is not possible.

b) Key functional groups of food webs
Keystone and key dominant/structuring group indicators have

been estimated for all the 2,635 functional groups in the 105

models, and properties of keystone and key dominant/structuring

groups were defined on the basis of the top 5% of the ranking

groups. The top ranking keystone functional groups had an

average TL of 3.2860.97, an average biomass proportion of

0.02260.044, and a clear prevalence of top-down effects with an

average td effect of 67%628%. Conversely, top ranking key

structuring functional groups had an average TL of 1.5360.6, an

average biomass proportion of 0.4360.17 and an average td effect

of 33%634% (Fig. 7a & 7b). The last result highlighted a

prevalence of bottom-up effects in key structuring groups.

However, the large range might be due to predatory groups

having high td (i.e. benthic invertebrates), and therefore assump-

tions about bottom-up effects as a characteristic feature should be

made with caution.

The groups’ ranking in terms of overall effect from each of the

105 food webs showed that several groups were identified to be

keystones (i.e. with low biomass proportion; Fig. 7b, black symbols)

and a large proportion of these groups had high trophic levels.

Smaller organisms were prevalently key structuring groups (i.e.

with high biomass proportion and high impact; grey symbols). The

groups that ranked first in terms of overall effect generally had

high trophic levels and many of them were larger organisms such

as sharks and rays (ten models, n = 10), top predatory fishes (n = 6),

marine mammals (n = 7) and seabirds (n = 1). Producers, and

especially benthic primary producers such as macroalgae and

pleustophytes, were key structuring species (n = 10). Our results

highlight groups whose changes in biomass have the largest effect

on the food web, and the main distinctive factor between

structuring and keystone species is their biomass proportion,

although, this is not surprising as biomass proportion is explicit in

the definition of key species.

Correspondence analysis indicated that the proportion of

keystone and structural functional groups showed significant

variation with size, depth, and type of ecosystem at p,0.001, as

well as significant variability with ocean basin at p,0.001 (Fig. 8

and Table 4). In particular, a significantly higher proportion (with

the highest Chi-square values by trait) of keystone groups was

found in smaller (size ,10 km2, Fig. 8a) and shallower (depth #

5 m, Fig. 8b) ecosystems, in estuaries (Fig. 8c) and in the Indian

Ocean models (Fig. 8d). This last result is due to the fact that the

Indian Ocean models mostly represent bays and estuaries (Fig. 8 &

Table 4). The proportion of structural groups never showed high

Chi-squared contributions, thus indicating that dominant species

did not distribute differently among traits and have a similar

ecological role.

Figure 5. Boxplot of significant differences of food web
ecological by size class. The smallest observation (sample minimum),
lower quartile, median, upper quartile, largest observation (sample
maximum) and outliers are indicated. The boxes are drawn with widths
proportional to the square-roots of the number of observations in each
class. Mean EE = mean ecotrophic efficiency (proportion), Ex/TST =
export/total systems throughput (proportion) and FCI = Finn cycling
index.
doi:10.1371/journal.pone.0095845.g005

Global Patterns in Marine Food Webs

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e95845



Global Patterns in Marine Food Webs

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e95845



c) The impacts of fishing on marine food web indicators
Fishing is at present the main human factor that impacts marine

food webs [2,65,66]. Therefore, this study tested if ecological food

web indicators also varied among different exploitation levels in

marine ecosystems. Our results showed that primary production

(PP/P, the unit of primary production over total ecosystem

production), mean Ecotrophic Efficiency (MeanEE) and total

community biomass (TBco) showed significant differences between

exploited and non-exploited food webs (Table 3; Fig. 9a, 9b & 9c).

Moreover, marine food webs also showed differences in the

levels of fishing between systems of different depth and size

(Table 2), implying different levels of exploitation strategies and

impact from fishing with regard to these ecosystem features.

Shallower and smaller ecosystems are closer to the coast, thus in

general more exposed to fishing (in some cases for centuries),

whereas deep and large ecosystems are less accessible, constituting

refuges from fishing. The results show, for instance, the mean

trophic level of the catch (TLc, which quantifies the mean trophic

position of exploited organisms) increased with depth (Fig. 9d).

The trophic level of the catch also increased with latitude (TLc,

Fig. 9e) and was lowest in the Indian Ocean and highest in the

West Atlantic (Fig. 9f), although the TLc was also high in the

North and Baltic Seas. Fishing intensity changed with time and we

observed a decrease of the probability of being sustainably fished

(Psust, Fig. 9i) over time.

Top ranking keystone and structuring species (95th percentile in

the KS and KD distribution) were tested for variance according to

fishing intensity by analyzing the proportion of these key groups in

food webs representing fished, non-fished, or slightly fished (i.e.

marine protected areas that included only recreational or artisanal

fishing) ecosystems. Of the 2,366 functional groups from the fished

ecosystem models, 104 (4.4%) were top ranking keystone groups

[52] and 78 (3.3%) were top ranking structuring functional groups.

Similar proportions were identified for the non-fished ecosystems:

among the 127 functional groups, 6 (4.7%) and 5 (3.9%) groups

were identified as top ranking keystone and structural functional

groups, respectively. Interestingly, in the 142 functional groups of

the lightly exploited food webs, 14 (9.9%) were keystones and only

1 (0.7%) was a structuring functional group. Correspondence

analysis between key species and fishing trait was significant at

p = 0.02 (Chi-squared = 11.6; df = 4), with a major contribution

from the increase of groups with high keystoneness in lightly

exploited food webs (Fig. 8e & Table 4).

Discussion

Our approach emphasizes the power of using a large database

of ecosystem models to quantify food web indicators at the global

level. The ability to generalize from different ecosystems

constructed using a common EwE approach is one advantage of

having comparable models, based on the same framework.

This study provides a comprehensive analysis for how

ecosystems function to show how these indicators might be

modified in future with additional human impacts such as climate

change, eutrophication, acidification, etc. The impact of model

structure and its link with model construction are taken into

account by using statistical analyses of co-variance, placing this

study among the first to analyse a large variety of EwE models

from different systems in an organized, systematic and statistical

way.

a) Caveats
This analysis is predicated on a modelling technique that has,

like other modelling techniques, its own drawbacks, such as the

lack of uncertainty testing in model inputs [67], the difficulty of

including non-trophic interactions, and the fact that it does not

handle migratory species particularly well [68]. The quality of

input data also affects the predictive quality of the outputs. In

addition, the suite of models included here range from very early

models (created in the early 1990s) with fewer trophic groups, to

newer and/or larger models, i.e. models that are more well

defined, and therefore have more trophic groups (this is taken into

account in our covariance analysis).

At the same time, even models with the same number of trophic

groups might have very different topologies; one model with 20

functional groups might have all the herbivorous species combined

in one functional group and the top predators defined by species,

while another with 20 groups might have one top predator

functional group including very different species, and the lower

trophic levels defined in more detail. Although this is to some

degree encapsulated in the Finn Cycling Index and the Internal

Flow Overhead (and this study tested for co-variance in number of

trophic links) this still needs to be tested further. The lack of

consistency in model construction can be fully addressed only in

studies where all models are developed in a comparable and

standardized way, as was done in a few other instances [47,69].

However a large scale study such as ours would be very difficult to

achieve using those methods.

In addition, only 8 of the models used here did not include

fishing. EwE models and -up effects such as eutrophication and

environmental changes are not always represented. These drivers

might have been included in the models that were fitted to time

series (see Table S1 for details), but was not the main drivers for

most of the models used. Thus, top-down and bottom-up drivers

are not equally represented in our study, resulting in underrep-

resentation of the impact of bottom-up drivers on the ecosystem.

Specifically, very few models had the microbial loop defined, and

the impact of detritus and the detritivorous food chain is

underrepresented. Future work should include a study of models

where the microbial loop is defined to elucidate the importance of

this underrepresented part of the food web.

Furthermore, not all indicators are equally robust. Fulton et al.

[70] found that some throughput-based indicators are very useful

if one has good diet data and knowledge of the ecosystem

structure, and similarly trophic level-based indicators are only

effective if one has good diet data. They also suggest that the

network indicators such as relative ascendency are dependent on

the data and model formulation as well as on reliable knowledge of

ecosystem structure, concluding that these indicators would be

most useful in well-studied systems. Although this large meta-

analysis allowed us to disentangle the effects of each trait and

covariates, more data will result in better models, and well-

validated models will give more reliable indicators. Our study

Figure 6. Boxplot of significant differences of food web ecological by ocean basin. The smallest observation (sample minimum), lower
quartile, median, upper quartile, largest observation (sample maximum) and outliers are indicated. The boxes are drawn with widths proportional to
the square-roots of the number of observations in each class. R/TST = respiration/total systems throughput, Ex/TST = export/total systems
throughput (proportion), mean TE = mean transfer efficiency, FD/TST = flow to detritus/total systems throughput (proportion), MTLco = mean
trophic level of the community, Q/TST = consumption/total systems throughput (proportion), SOI = systems omnivory index, IFO = Internal flow
overhead (%), A/C = relative ascendency (%), O/C = relative overhead (%).
doi:10.1371/journal.pone.0095845.g006
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Figure 7. Key ecological roles of functional groups of marine food web models. a) Keystone (KS $0; black circles) and dominant groups (KD
$0.7; grey circles), respectively, in terms of absolute overall effect (e) for each food web. Open dots represent non key functional groups. b) The 105
trophic groups franking first in terms of absolute overall effect within each food web model (Fig. 2, Table S1). The figure shows the trophic level (TL)
vs. the fraction of top-down effect (td%). Groups identified as keystones are represented in black symbols and dominant groups are reported in grey
symbols, respectively, whereas open circles represent non key functional groups. Groups are highlighted for both keystones and dominant: birds (star
within square), marine mammals (triangles), sharks and rays (squares), top-predators (romboid), primary producers (crossed squares), other groups
(circles). Large squares with error bars identify mean+/2SD for all keystones and dominants identified in the 105 models.
doi:10.1371/journal.pone.0095845.g007
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concurs with that of Fulton et al. [70], by showing that not all

indicators can be used without taking account of the number of

functional groups, the number of living groups or the number of

trophic links (Table 3).

Lassen et al. [71] showed that some indicators obtained from

EwE models (biomass of important species, food web productivity,

etc.) are useful as indicators of good environmental status for the

EU Marine Strategy Framework Directive (MSFD) [72]. In

addition to the indicators described by Lassen et al. [71], other

ecological indicators used here to describe marine food webs have

the potential to be indicators of good environmental status as

requested by international law and directives such as the MSFD

[72], given their capabilities to describe food web changes and

sensitivity to fishing. However, our results highlight that some

ecosystem indicators vary by ecosystem trait (depth, type, size,

etc.), thus implying that the trait effect needs to be accounted for

when setting reference levels and thresholds for conservation and

management. If food web indicators vary with ecosystem traits, the

process of defining and quantifying reference levels and thresholds

[73–75] will have to take this into account. Otherwise, manage-

ment advice could be based on the wrong indicator or on a wrong

reference level, or the indicator might be insensitive to the adopted

management policies. Our results, therefore, represent a starting

point for disentangling the variability of indicators due to

ecosystem traits caused by other stressors of interest to managers.

For instance, knowing that an indicator is intrinsically lower or

higher in certain ecosystem types might help to better understand

the locally provided estimates and adapt reference levels and

thresholds.

b) Structure and functioning of marine food webs
Our detailed results showed some interesting general trends. For

example, coral reefs seem to have the largest energy flow and the

largest total biomass per unit of surface area, and as the included

reef systems covered large areas [76–79], their mean Ecotrophic

Figure 8. Proportion of key functional groups by food web ecological traits and by exploitation. Graphs report proportion of Keystone
(KS $0) and dominant groups (KD $0.7) by a) ecosystem size, b) depth, c) ecosystem type, d) ocean basin and e) fishing category. Only traits showing
significantly different patterns (on the basis of total Chi-squared) are reported (***, ** respectively p,0.01, p,0.05). Main contribution to Chi-squared
are highlighted by asterisk (see also Table 4).
doi:10.1371/journal.pone.0095845.g008
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Efficiencies were also high. However, the smaller, shallower

systems such as lagoons, estuaries, and bays had lower mean

Ecotrophic Efficiencies. These smaller systems usually have shorter

residence times, with a larger proportion of species that either

migrate in and out of the system, and so might not be utilized in

the system [80], thus increasing the unexplained mortality in that

system, and therefore reducing the mean Ecotrophic Efficiency.

The shallower systems also had more flow to detritus, which

together with the fact that these systems often included more

benthic interactions usually at low efficiency [80], explained the

low mean transfer efficiency found for the shallower areas [81].

Systems with high transfer efficiencies often have fewer

pathways between trophic levels, while systems such as lagoons,

estuaries and bays often have more species at the lower trophic

levels – detritivores, suspension feeders, etc., therefore reducing

the mean transfer efficiency [82–85]. This was also seen in the

higher Finn cycling indices in these systems where more energy

was recycled [86], while the total export from these systems was

significantly reduced. Systems with higher Finn cycling indices

often have the ability to recover from perturbations quicker [86],

and could therefore be more stable. Conversely, upwelling or

pelagic ecosystems, which tend to be deeper, would have higher

transfer efficiencies, more export and less recycling [86] and they

are often characterised by large fluctuations [83,84,87], although

this is not specified in our study and should be examined in future.

Interesting results emerged from the comparisons between

ocean basins: there were differences between the eastern and

western parts of the Atlantic and Pacific Oceans, which were most

noticeable in the Atlantic. From the Western to Eastern Atlantic,

we found increased flows to detritus, which was reflected by an

increase in ascendency and mean trophic level of the community,

while the inverse trend was found in respiration, consumption,

redundancy, and overhead. These changes were not necessarily

due to differences in ecosystem type, depth, or size categories, as

these were all similar for the Eastern and Western Atlantic, nor

due to differences in the numbers of groups (average number of

groups in the Western Atlantic = 25, Eastern Atlantic = 29). The

difference in overhead and redundancy indicates that the Western

Atlantic systems seem to have more ‘‘strength in reserve’’ and that

the energy in these systems has more pathways to travel from

primary producers to top predators than in the systems of the

Eastern Atlantic. The differences in the Atlantic could also be due

to differences in the biological carbon pumps in these two systems.

Helmke et al. [88] showed that there were higher nutrient inputs

in the Western Atlantic and more pulsed production events, which

accounted for more carbon being produced and fluxed in the west.

This higher production and flux explain the higher consumption,

respiration, and overhead in that system compared to the East

Atlantic.

The difference between the east and west was reversed to some

extent in the Pacific, with a higher flow to detritus and lower

respiration and consumption in the west than the east. The Pacific

models also have similar numbers of compartments (26 for both

Eastern and Western Pacific on average), but the Western Pacific

models were mostly large shallow systems including reefs and bays,

while in the east, models included more deep continental shelves

but also estuaries, bays and lagoons. Thus, these differences in the

types of systems, depth, and size (which were more similar in the

Atlantic) confounded the interpretation as depth, size, and

ecosystem type have an impact on ecosystem indicators. Thus,

even though the primary production is higher in all four eastern

boundary current systems (California and Humboldt in the Pacific

and Canary and Benguela in the Atlantic) [89], the increase it

created in the ascendency, flow to detritus and export in the
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Atlantic was not seen in the Pacific. This confirms the results of

Carr and Kearns [89], who found that the increase in primary

production did not increase the biomass sustained by the available

nutrients as much in the Pacific as it did in the Atlantic. They

found that the higher iron content, increased physical retention,

and differences in plankton community structure accounted for the

higher sustained biomass in the Atlantic eastern boundary current

(our Western Atlantic), indicated by a higher redundancy (or

internal flow overhead, IOF, Fig. 6h).

The mean trophic level of the community and omnivory showed

a general increase from the Atlantic westwards to the Pacific, with

only the Indian Ocean having much lower values for these

indicators. The Indian Ocean models were mainly bays and

estuaries, thus mostly shallow and small, with the lowest mean

transfer efficiency and high ascendency. These ecosystems in the

Indian Ocean are thus rather inefficient in transferring energy up

the food chain, with very low omnivory but high organisation of the

food webs. In contrast, the models of the North and Baltic Seas have

the highest transfer efficiencies, but also have high ascendency, and

are thus most efficient at transferring energy up the trophic chain

while also being a well-organised system. The high transfer

efficiency in the North and Baltic Seas is probably due to the lower

species diversity in the Baltic Sea model areas [90], which has

translated into high transfer efficiency between fewer species.

Most ecological food web indicators did not show significant

differences over time, thus can be considered invariant properties of

ecosystems over the broad time ranges and global scales used in our

study. Exceptions were the mean trophic level of the consumer

community and the probability of the system to be sustainably

fished, which both decreased with time. The probability of being

sustainably fished was defined by adopting Murawski’s [55]

ecosystem overfishing definition and criteria, which includes

structural and functional degradation associated with stock collapses

and overexploitation of marine resources, whereas in sustainably

fished ecosystems the main structure and function are preserved.

Thus, from our analyses the most relevant changes on these systems

through time were due to fishing, which gives such a strong, global

signal as to be detectable using these broad time ranges and global

scales, supporting claims that fishing is currently the main impacting

human factor on marine food webs [2,65,66,91].

Figure 9. Boxplot of significant differences of food web ecological traits by exploitation and of fishing indicators. The smallest
observation (sample minimum), lower quartile, median, upper quartile, largest observation (sample maximum) and outliers are indicated. The boxes
are drawn with widths proportional to the square-roots of the number of observations in each class. PP/P = primary production/total production
(proportion), meanEE = mean ecotrophic efficiency (proportion), TBco = total biomass of the community (t.km22), Mean TLc = mean trophic level
of the catch, Lindex = loss in production index, and Psust = probability of being sustainably fished.
doi:10.1371/journal.pone.0095845.g009
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This shows that while ecosystems have stable intrinsic properties,

human impacts could still be important. However, we did not test in

detail for bottom-up processes such as eutrophication and other

environmental drivers; therefore these cannot be excluded as

important anthropogenic impacts on marine ecosystems. In

addition, our indicator of time was relatively crude, by grouping

the models in three periods – based on the year(s) that the models

represented. To fully take account of changes, a dynamic analysis of

the indicators over time should be performed for each calibrated

model. Such evaluations have been done for some indicators, e.g. by

Heymans et al. [47] and Tomczak et al. [92], but could not be

implemented here for all models as it needs models validated with

time series analyses. Nevertheless, the analysis conducted by broad

time periods at the global scale has the advantage that it identifies

important trends at a global level, disregarding local peculiarities

that can be studied only when calibrated dynamic simulations are

available.

Testing for changes in ecological food web indicators between

exploited and non-exploited ecosystems indicates that fishing also

induced a decrease in the consumer biomass and a higher use of

ecosystem production (increase of mean Ecotrophic Efficiency).

The reduction in total biomass of the community confirms work

by Worm et al. [93] who found an 11% decline in 144 stock

assessment biomass time series since 1977, specifically in pelagic

and demersal species in the North Atlantic. In addition, fishing

uses the surplus production to some extent, and therefore will

increase the explained mortality of the ecosystems. The lower

primary production to total production ratio in fished ecosystems

could result from fisheries targeting ecosystems with higher

secondary production.

Among fishing indicators, we found that some ecosystem traits

(latitude, ocean basins, depth) influence trophic level of the catch,

while both depth and size affect the loss in production index, thus

suggesting the need to account for these confounding traits when

evaluating such fishing indicators and using them as ecosystem

indicators. Nevertheless, the analysis also showed that, with the

exception of trophic level of the catch, fishing indicators were

overall less impacted by model covariates (i.e. factors that describe

the food webs) than the ecological indicators. These indicators

may be of special interest for future food web studies if correction

for covariance is not possible. In general, both ecosystem dynamics

(such as predator-prey interactions) and external factors (such as

fishing) will have an impact on ecosystems and the strength of

these impacts depends on a variety of factors [47,94–97].

However, other variations such as economic drivers would also

have to be taken into consideration in future studies.

The search for key functional groups in the 105 food webs

showed that keystone groups had higher trophic level and mainly

affected food webs as predators (top-down), whereas structural

functional groups were benthic primary producers, which affected

food webs mainly, but not exclusively, through bottom-up effects.

Given their high overall impact, modification of the biomass of these

key groups through anthropogenic-induced changes may produce

important changes in food webs, possibly impairing ecosystem

structure and functioning. Reducing top-down impacts exerted

through predation by removing or depleting keystone groups (for

instance) can cause ecological effects such as the increase of their

prey [98], lower predatory mortality for individuals affected by

disease or deficiencies, and can result in the decreased transfer

efficiency of the ecosystem. On the contrary, modification of

structuring groups that exert large effects on food webs through a

prevalence of bottom-up effects implies potentially large impacts on

the higher trophic levels. Given the prey-predator basis of models

analysed, it is very likely that non-predatory roles exerted by

structuring species (such as protection, habitat building, interference

with physical variables) are underestimated in this analysis and thus

the ecological role of these species may be even larger.

Notably, while structuring species appear to be evenly

distributed according to ecosystem traits, keystone groups were

especially prevalent in estuarine systems and systems smaller than

10 km2 and less than 5 m in depth. As the Indian Ocean modelled

areas were mainly shallow, small estuaries, a significant proportion

of keystone groups are identified. However, these results may also

be due to the Indian Ocean being historically less impacted by

fishing [53] or the fact that mainly bays and estuarine models of

the Indian Ocean were available.

These results suggest that coastal and shallow areas with high

physical/chemical variability such as estuaries are likely to host a

relatively higher proportion of keystone functional groups. Such a

result might be important, if further confirmed, for supporting the

protection and conservation of these ecosystems, as these groups

are often directly implicated with key marine ecosystem services

including biodiversity and marine resources [99].

Overall, the disproportionate impacts of keystones and structuring

groups [59] implies disproportionate effects if their biomass is

modified, thus recommending particular caution when contemplat-

ing human impacts. Results of key groups’ analysis, therefore, further

encourage the protection of estuarine environments, already on the

priority list for protection under the Ramsar Convention [100] for

the goods and services they provide, for their high ecological value

and of importance when valuing ecosystem services [101].

We found a significantly higher proportion of keystone

functional groups in lightly exploited ecosystems in comparison

to more exploited areas, despite a consistently stable proportion of

structuring species. The lack of significant changes in the

proportion of keystones in no-fishing models might be due to the

low number of unexploited webs available for the analysis.

Nevertheless, the significant result for the lightly fished ecosystems

may indicate that fishing negatively affects keystones and/or that

the keystone role is more prominent and distributed among

functional groups in protected environments. The larger abun-

dance of keystone functional groups in lightly exploited ecosystems

confirmed previous results for the Mediterranean Sea [57] and

highlights a possible effect of fishing in levelling out the species

effects. We could not distinguish if the lower proportion of

keystones in heavily exploited ecosystems was due to removal of

these groups or if the keystone role was hampered by fishing, but

we conclude that keystoneness is more clearly pronounced when

fisheries exploitation is low. This insightful result merits further

study to verify its generality. Overall the keystone groups appear to

be more sensitive than structural species to ecosystem properties

and exploitation. While their sensitivity might be due to their

lower abundance, the large effects they produce in ecosystems

through food web interactions make them optimal groups for

signalling ecosystem disturbances and impairment, thus being

good candidates for ecological indicators.

Conclusions

Our results provide additional knowledge on how marine

ecosystems structure and function, and the fact that different

patterns occur in different ecosystems pose additional scientific

questions and management challenges. For example, significant

changes of food web indicators from marine ecosystems highlight

the need to set well defined reference levels and thresholds when

managing marine resources. It is not possible to set one reference

level for all systems regardless of size, depth, or type of ecosystems.

Nor it is useful to set reference levels for similar systems in different

Global Patterns in Marine Food Webs

PLOS ONE | www.plosone.org 19 April 2014 | Volume 9 | Issue 4 | e95845



ocean basins, even if these systems seem to be similar in physical

characteristics, i.e. being eastern boundary current systems. Since

different baseline references exist and marine ecosystems seem to

have intrinsic differences due to ecosystem dynamics, establishing

absolute reference values for ecosystem indicators as a whole

seems not to be a suitable solution to advance the ecosystem-based

and precautionary approach. Reference levels for ecosystem

indicators should be developed for individual ecosystems or

ecosystems with the same typologies (similar location, ecosystem

type, etc.) and not benchmarked against all other ecosystems.
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