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DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during

development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are

not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT

profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to con-

struct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes dur-

ing cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific

functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT chang-

es within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships be-

tween RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries

of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core

to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors

were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they con-

stitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of

cell-type–specific TRNs and RT control during lineage specification.

[Supplemental material is available for this article.]

During development, specific transcriptional programs and epige-
netic landscapes are established that maintain the identities and
functionality of the specialized cell types that emerge. Despite
characterization of changes in transcriptome and epigenome dur-
ing development (Gifford et al. 2013; Xie et al. 2013; Roadmap
Epigenomics Consortium et al. 2015; Tsankov et al. 2015), little
is known about the role of spatiotemporal genome organization
in cell fate specification. Changes in gene activity and chromatin
3D organization are coordinated with dynamic changes in the
temporal order of genome duplication, known as the replication
timing (RT) program (Hiratani et al. 2008, 2010; Rivera-Mulia
et al. 2015, 2018a). Spatiotemporal control of RT is conserved in
all eukaryotes (Rivera-Mulia and Gilbert 2016a; Solovei et al.
2016; Zhao et al. 2017), and alterations in the RT program are asso-
ciated with different diseases (Ryba et al. 2012; Gerhardt et al.
2014; Rivera-Mulia et al. 2017, 2019; Sasaki et al. 2017). RT is reg-
ulated during development in discrete chromosome units, referred
to as replication domains (RDs), that segregate into distinct nucle-
ar compartments (Jackson and Pombo 1998; Ryba et al. 2010;
Rivera-Mulia and Gilbert 2016b; Rivera-Mulia et al. 2018a).
Hence, we reasoned that RT can be exploited to characterize the
gene regulatory relationships established during development.

Previously, we generated a comprehensive database of RT
programs during human lineage specification and found that ap-
proximately half of the genome undergoes dynamic changes
that are closely coordinated with the establishment of transcrip-
tional programs (Rivera-Mulia et al. 2015). Additionally, our previ-
ous findings showed that developmentally RT regulated genes
are higher in the hierarchy of transcriptional regulatory net-
works (TRNs), suggesting that this type of gene regulates all other
genes during cell fate commitment (Rivera-Mulia et al. 2015).
However, strong gene expression was not restricted to early repli-
cating genomic regions, and transcriptional activation during
cell fate commitment often preceded RT changes (Rivera-Mulia
et al. 2015; Rivera-Mulia and Gilbert 2016b). In fact, although a
long-standing correlation between early replication and gene ex-
pression has been observed in all eukaryotes, the link between
RT and transcriptional activity is complex, and causal relation-
ships have not been established (Solovei et al. 2016; Rivera-Mulia
and Gilbert 2016b). Here, we explored the possibility that RT can
be regulated by the establishment of complex regulatory circuits
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of transcription factors rather than by the transcription levels of
genes within each RD.

Results

Construction of correlation-based RT networks

To determine whether the RT program can be used for novel gene
regulatory interaction identification, we defined a model that de-
scribes the relationship between all possible combinations of gene
pairs (nodes), establishing gene interactions (edges) according to
their correlated RT patterns during differentiation toward cell types
representing the three main germ layers (Fig. 1A). Distinct filters
were applied in ourmodel: (1)We included only genes that change
RTduring cell differentiation (removingRTconstitutive genes), and
(2) we included edges only between genes separated by at least
500 kb and/or in different chromosomes (Fig. 1B,C; Supplemental
Fig. S1). Separation by >500 kb was chosen to remove gene pairs
within the same RD, which we have shown vary in size from 0.4
Mb to 0.8 Mb (Hiratani et al. 2008; Pope et al. 2014; Rivera-Mulia
et al. 2015), and included only distal gene interactions; (3)we estab-
lished gene interactions (edges) between significantly correlated
gene pairs (statistical significance of gene pair interactions was
calculated as Bonferroni’s adjusted P-values; see Methods). After

applying these filters, gene pairs and interaction edges were ob-
tained (green boxes in Fig. 1C) and RTnetworks constructed. As ex-
pected, most of the genes colocated within 500 kb had correlation
values ≥0.9, and only a small fraction showed lack of correlation
or negative correlation (blue line in Fig. 1C). In contrast, gene pairs
separatedby>500 kb, or fromdistinct chromosomes, showed corre-
lation values ranging from −0.9 to +0.9 (red and orange lines in
Fig. 1C). Here, we used gene pairs in trans (from distinct chromo-
somes) aswell as genepairs in cisbut separatedby>500kb (classified
as colocated distant) to construct distinct models of RT networks
(Fig. 1C). Figure 1, D and E, illustrates hypothetical examples of
two distinct RT patterns along a particular cell differentiation line-
age, the correlations for which constitute connections between
gene pairs exploited to construct the corresponding RT networks.
These findings revealed correlated RT changes for thousands of
gene pairs during differentiation that are likely to be mediated by
common mechanisms related to differentiation. These gene pairs
were then used to construct the following networks.

RT subnetwork communities are composed of genes with

specific functional annotations

To examine whether correlated RT changes are linked to function-
al gene regulatory interactions, we constructed RT networks
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Figure 1. Coordinated changes in RT can be exploited to construct gene regulatory networks. (A) RT programs of distinct cell types representing inter-
mediate stages of human embryonic stem cell differentiation toward endoderm, mesoderm, and ectoderm were analyzed for the construction of RT reg-
ulatory networks. (B) Depiction of different highly RT-correlated genes from distinct chromosomes and the establishment of network interaction edges
between them. From all possible combinations of gene pairs, those colocated within 500 kb were removed from the analysis to include exclusively distal
gene interactions. Regulatory interactions (edges) between gene pairs are considered only for genes located >500 kb apart (colocated distant) or in distinct
chromosomes (not colocated); that is, edges between genes b-c and d-e were not included in the analysis. (C) Number of gene pairs as function of RT
correlation for distinct categories of gene pairs: colocated close (within 500 kb), colocated distant (separated by >500 kb), and not colocated (from
different chromosomes). Only gene pairs with significant RT correlations and located at least 500 kb apart were considered. (D) RT patterns of distinct hy-
pothetical genes during five distinct differentiation intermediate stages (distinct number of differentiation intermediates were used from each pathway).
(E) Construction of RT regulatory networks based on the significant Pearson’s correlation (distance between nodes are proportional to the correlation
strength).
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among significantly correlated gene pairs and characterized their
connectivity and association to specific functional annotations.
First, we constructed a RT network including all significantly
RT-correlated gene pairs across all differentiation pathways, posi-
tioning each node in a 2D space using the force-directed layout al-
gorithm in Cytoscape (Shannon et al. 2003), with the edge length
being proportional to the Pearson’s correlation strength (Fig. 2A;
Supplemental File 1). The resulting RT network was composed of
highly interconnected groups of nodes (with >90% of the nodes
having a degree distribution greater than 25), with very short dis-
tances (path length less than 3) and high clustering coefficients
within each group (Fig. 2A). Next, we identified local neighbor-
hoods (subnetwork communities) within the global networks
according to the connectivity and distances between nodes
(Blondel et al. 2008). Finally, to validate the biological significance
of the novel gene interactions detectedwithin RT networks, we ex-

amined their functional organization by performing ontology
analysis of each subnetwork community using the spatial analysis
of functional enrichment (SAFE) algorithm (Baryshnikova 2016;
Costanzo et al. 2016). We found subnetwork communities with
highly interconnected nodes of genes involved in specific
functions, which were color-coded based on the enrichment of
functional ontology annotations (Fig. 2A). Closer inspection of
subnetwork communities annotated with specific functions
grouped the genes according to their ontology terms (Fig. 2B;
Supplemental File 1). These findings confirm that gene regulatory
interactions can be identified exploiting the cell-type–specific RT
program.

Distinct coordinated changes in RT are restricted to specific
differentiation pathways (Rivera-Mulia et al. 2015). Thus, to iden-
tify lineage-specific gene interactions, we generated RT networks
of differentiation toward each germ layer separately by combining
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Figure 2. Functional annotation of RT networks. (A) RT-correlated gene pairs across all differentiation pathways from human ES cells were identified and
exploited to construct a RT network. (B) Detailed subnetwork connectivity from the RT network shown in A and its respective node organization per on-
tology term. (C–E) RT networks and functional subnetwork communities constructed for each differentiation pathway: ectoderm (C ), mesoderm (D), and
endoderm (E). Interaction edges between gene pairs were established only for significantly correlated nodes (Bonferroni’s adjusted P-values with alpha =
0.05/n), and the subset of most connected nodes (>20 edges) was used to visualize RT networks displayed as 2Dmaps in Cytoscape (Shannon et al. 2003).
Pearson’s correlation and Bonferroni-corrected P-value thresholds, as well as the connectivity analysis for each network, are shown (degree distribution,
path lengths, and clustering coefficients). Highly interconnected subnetwork communities were annotated with functional ontology terms using the
SAFE algorithm (Baryshnikova 2016) and are displayed in distinct colors.
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the cell types of each lineage (ectoderm, mesoderm, and endo-
derm). Thenwe visualized these RTnetworks as 2Dmaps and iden-
tified subnetwork communities as described above. Consistently,
we found RT networks composed by highly interconnected sub-
network communities associated with specific functions relevant
to each germ layer (Fig. 2C–E; Supplemental File 1). For ectodermal
lineage,we found subnetwork communities for genes associated to
synapsis assembly, glial differentiation, eye development, gluta-
matergic synaptic transmission, and mesenchymal differentiation
(Fig. 2C). For mesodermal lineages, we identified communities
annotated for cardiac development, endothelial and lymphocyte
differentiation, muscle contraction, and vasculogenesis (Fig. 2D).
Finally, for endodermal lineages, we obtained subnetwork com-
munities linked to liver, digestive, andmesonephric development,
as well as T cell differentiation and activation (Fig. 2E). Complete
lists of genes within each subnetwork community and their inter-
actions are shown in the Supplemental File 1. Subnetwork
communities without ontology enrichmentmight identify regula-
tory relationships that have not been previously annotated. To test
this hypothesis, we explored the genes within these communities
and identified subnetworks communities that link genes involved
in specific processes. For example,we identified a subnetwork com-
munity associated with DNA replication that includes GINS1,
MCM4, MND1, and NCAPG2, genes that are required for replica-
tion, cell cycle regulation, and chromosome condensation (Fig.
2A). We also identified a community linked to muscle develop-
ment that includes RSPO2, ADAMTS5, ADAMTS1, and MIR490,
genes that have been linked to myogenesis control (Han et al.
2011; Stupka et al. 2013; Sunet al. 2013;Du et al. 2017). These find-
ings validate the functional relationships between the nodes of
these novel interactions.

To confirm that the coordinated changes in RT define the
functional subnetwork communities, we constructed randomized
networks and performed the ontology analysis. To do so, we pre-
served exactly the same gene nodes and number of interactions
in each network but randomly shuffled all edges. Ontology analy-
sis of these randomized networks resulted in generic ontology
terms (“cellular regulation,” “biological process,” “regulation of
development,” and “cellular metabolism”) and did not identified
subnetwork communities annotated with more specific terms
(Supplemental File 1).

Correlated RT networks vary greatly in size depending on the
parameters selected; here we considered only the most significant
correlated nodes that switch RT between the very early (>0.3) and
very late (<−0.3) replication and with >20 degree count (number
of edges). Relaxing the parameters (for early and late replication,
significance threshold, and degree count) would produce larger
networks with higher number of local neighborhoods (at the ex-
pense of computational time). To evaluate the effect of the distinct
thresholds on the network size and connectivity, we obtained cor-
related RT networks using distinct thresholds and quantified the
number of nodes and edges obtained. We found that increasing
correlation threshold decreases the size of the networks
(Supplemental Table S1). Moreover, because the distinct lineages
vary in the number of differentiation stages (2–5), we evaluated
the effect of the number of time points in the construction of cor-
related RT networks. To do so, we generated correlated RT net-
works for pancreas differentiation using two, three, four, and
five differentiation stages. We found that higher number of time
points increases the network size but reduces its connectivity
(Supplemental Table S2). These results suggest that increasing
the number of differentiation time points improves the network

analysis as correlation values can be estimated more precisely.
Additionally, most of the genes that change RT during develop-
ment switch from early to late replication (EtoL) or from late to
early replication (LtoE); however, a small fraction of genes changes
RT back and forth during development (Rivera-Mulia et al.
2015). To characterize these types of changes, we constructed cor-
related LtoEtoL and EtoLtoE RT networks. We identified subnet-
work communities annotated with lineage-specific functions
(Supplemental Fig. S2). For endodermal cell types, we identified
a subnetwork community with LtoEtoL changes associated with
regulation of protein dephosphorylation, as well as a subnetwork
community with EtoLtoE changes associated with protein phos-
phorylation (Supplemental Fig. S2). Because RT is coordinated
with transcriptional potential, these results suggest the transient
induction of phosphatases and down-regulation of kinases corre-
lated with RT changes during endodermal differentiation. For ec-
todermal cell types, we found that LtoEtoL networks contain
subnetwork communities associated with the epithelial–mesen-
chymal transition and mesenchymal differentiation, whereas
EtoLtoE networks included communities linked to neurogenesis
and axon development (Supplemental Fig. S2). Overall, our results
revealed that dynamic changes in RT can be exploited to charac-
terize the complex regulatory interactions established during cell
fate commitment.

Directional RT networks identify regulatory interactions of cell

fate commitment

The RT networks described above (Fig. 2) identified subnetwork
communities enriched for specific functional annotations.
However, these correlated RT networks are not directional and,
as such, cannot characterize the hierarchical relationships or iden-
tify potential targets for regulators. Hence, here we analyzed
whether RT can be also exploited to characterize the hierarchical
gene regulatory interactions during lineage commitment. To do
so, we took advantage of the data collected at multiple intermedi-
ate differentiation stages (more than three differentiation interme-
diates) toward pancreas, liver, smooth muscle, and mesothelium
and constructed directional RT networks for each of the specific
differentiation pathways. First, we filtered all genes that change
RT significantly (and classified them according to the order of RT
changes during each differentiation pathway (Fig. 3A), identified
those that change during the earliest cell fate transition, assigned
directional edges to genes that changed RT in the subsequent dif-
ferentiation stage, and repeated this for each stage (see Methods).
Then directional RT networks were displayed either in 2D maps
or in a hierarchical arrangement, and nodes were color/size-coded
according to the order of the changes in RT during distinct differ-
entiation pathways (Fig. 3B). Construction of directional RT net-
works constitutes a novel approach to identify the genes with
earliest RT changes during cell fate commitment (red nodes in
Fig. 3C) as well as their downstream relationships in terms of
temporal ordering of RT change (green, blue, and gray nodes in
Fig. 3C). To test this approach and its value for identifying
novel gene regulatory interactions, we constructed directed RT
networks for known transcription factors that are key regulators
for either pluripotency or cell differentiation. Early replication cor-
relates with transcriptional induction, and changes from EtoL are
associated with gene down-regulation (Rivera-Mulia et al. 2016b).
Consistently, the earliest EtoL RT changes during differentiation
are enriched in genes associated with pluripotency regulation
(Rivera-Mulia et al. 2015). To characterize this type of gene
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Figure 3. Directional RT networks. (A) Distinct genes change RT at different time points during cell fate commitment, and the order of RT changes can be
used to construct directional RT networks. Red genes change during the first transition between differentiation stages, whereas gray genes change at the
last differentiation transition. (B) 2D maps and hierarchical displays of a directional RT networks were constructed based on a source gene (central node)
and downstream connected nodes. (C ) An exemplary directional RT network for liver differentiation is shown. The central node is SOX17, and all down-
stream nodes were connected based on temporal times during differentiation at which they change RT. (D) Classification of gene nodes according to their
hierarchy in directed RT networks. Master regulators were operationally defined as those genes that change RT in the earliest differentiation transition and
have the largest degree of connectivity (red nodes). Green and blue nodes represent “manager” nodes that are connected to the final “effector” nodes at
the lowest level of the network (gray nodes). Node distribution in each of the hierarchical levels for each differentiation pathway is shown. (E,F) Directed RT
networks of FOXA2 and FOXA1 during liver and pancreatic differentiation, respectively. FOXA2 and FOXA1 (red node) change from late to early replication
during the earliest stages of differentiation; potential downstream genes were identified as those genes that change in subsequent differentiation stages
(green and blue nodes). Sixty-five percent or more of the genes within the directed RT networks interact with each other at the protein level (protein–
protein interactions were obtained from the STRING database; nodes were mapped using the same layout as the directional RT network; and edge thick-
ness indicates the strength of the data supporting each interaction). (G,H) ChIP-seq signals show the binding of FOXA2 and FOXA1 at the promoters of
predicted hepatic-specific and pancreas-specific downstream genes (ALB, AFP, and APOB for liver and CPB1,MS4A8, and SLC4A4 for pancreas). A pluripo-
tency gene (DPPA2) and a mesodermal-specific gene (WT1) are shown as a control.
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relationship, we constructed EtoL directional networks for
each differentiation pathway using as source nodes genes involved
in pluripotency and maintenance of early progenitors
(Supplemental Fig. S3). Next, to characterize the establishment
of gene interactions associated with cell fate commitment, we fo-
cused on changes from LtoE and constructed LtoE directional RT
networks using as source nodes key regulators of cell fate commit-
ment for each differentiation pathway. Consistently, known
downstream targetswere identified among the downstream targets
predicted by the directed RT networks (Supplemental Fig. S4).
Hence, we classified the nodes in hierarchy levels according to
the order of RT changes: “Master regulators” were defined as the
genes that change RT in the earliest differentiation transition
with the largest degree of connectivity (red node in Fig. 3C),
whereas downstream nodes were classified as “managers” and “ef-
fectors” according to the time during differentiation when they
change RT. Manager genes were defined as those that change RT
in intermediate differentiation stages and effector genes as those
that change in the latest differentiation stage (Fig. 3C). Because en-
dodermal lineages have more differentiation stages than mesoder-
mal lineages, genes from the two intermediate stages were
classified asmanagers. Establishment of RT networks occurs differ-
ently for each germ layer. For endoderm cell types (liver and pan-
creas), most of the changes occur very early during differentiation,
with 51% of genes behaving asmaster regulators (switching RT dur-
ing the earliest transitions), 47% as managers, and only 2% as ef-
fectors (Fig. 3D). In contrast, for mesodermal cell types (smooth
muscle and mesothelium), fewer master regulators were connected
with an increased number of downstream nodes. Only 11%–17%
of the genes were classified as master regulators, 40%–60% as
managers, and 24%–48% as effectors.

The presence of known targets for key differentiation regula-
tors between the predicted downstream targets in the directed
RT networks suggests that the interactions identified by this ap-
proach reflect functional gene relationships. To validate these
gene interactions, we constructed directional networks for tran-
scription factors key for the differentiation control toward liver
and pancreas. Then, we obtained the protein–protein interac-
tions from the STRING database (Szklarczyk et al. 2019) and iden-
tified the known interactions between the nodes in our networks
(Fig. 3E,F). We found that 65%–75% of the genes within the
directional RT networks interact at the protein level with at least
other gene, with ≥40% genes interacting with other five to 20 in
the network (Fig. 3F; Supplemental Fig. S4). Moreover, during the
preparation of this paper, ChIP-seq data sets for transcription
factors binding became available for liver and pancreas (Diaferia
et al. 2016; Davis et al. 2018; Wang et al. 2018), permitting us
to further validate these downstream targets predicted by the
novel RT networks. We constructed directed RT networks for liver
and pancreatic differentiation using FOXA2 and FOXA1 as source
nodes, respectively (Fig. 3E,F), and calculated the enrichment of
ChIP-seq peaks of these transcription factors at the predicted
downstream targets. We found moderate enrichment of FOXA2
peaks and a highly significant enrichment of FOXA1 peaks at
the promoters of predicted downstream targets for liver and
pancreas development, respectively (Supplemental Table S3).
Exemplary target genes and ChIP-seq signals for downstream
nodes of the FOXA2 and FOXA1–directed RT networks are shown
in Figure 3G,H. These findings validate the ability of the directed
RT networks to identify novel directional regulatory mechanisms
and place them into their temporal order during cell fate
commitment.

RT network edges overlap with known transcriptional regulatory

interactions

To determine the extent to which RT networks capture the regula-
tory interactions characterized by other methods, we analyzed
their overlap with TRNs using a previously described set of cell-
type–specific networks of TFs (Neph et al. 2012). First, we identi-
fied the cell types that most closely match the TRNs to our RT net-
works, as follows: hESC-derived hepatocytes were compared to
TRNs from HepG2, a liver cancer cell line that retains morpholog-
ical and functional hepatocyte properties (Knowles et al. 1980;
Berger et al. 2015); hESC-derived mesothelial cells were compared
to TRNs from HCF cells, cardiac fibroblasts that during develop-
ment and in vitro differentiation can be derived frommesothelial
cells (Mutsaers 2004); and hESC-derived neural precursors were
compared to TRNs from the SK-N-SH cell line after treatment
with retinoic acid. SK-N-SH cells were derived from a neuroblasto-
ma and retinoic acid causes differentiation to neural phenotype
(Preis et al. 1988). Next, we constructed RT networks using only
the subset of genes present in the TRNs (475 TFs) that change RT
and are significantly correlated in their RT patterns in each differ-
entiation pathway. Finally, we identified the number of common
and unique edges between RT networks and TRNs. We found that
in all three cases there was a highly significant overlap compared
with the expected overlap by randomly selecting the same number
of edges (Fig. 4A). In fact, significant overlap was also observed
when all cell types frombothRTnetworks and TRNswere classified
per germ layer (Supplemental Table S4), and common edges were
identified for ectoderm and mesoderm, even when distinct cell
types were used for each germ layer. These results confirm a high
overlap between RT and transcriptional networks and further val-
idate the gene regulatory interactions identified using the RT
program.

Building blocks of RT networks are motifs with multiple nodes

Previous studies explored the architecture of gene regulatory rela-
tionships by analyzing either transcriptional or protein interac-
tions and found that complex cellular networks are constituted
by sets of small network motifs, such as interactions between tran-
scription factors and their targets (Zhang et al. 2005; Alon 2007).
Here, we performed a topology characterization of RT networks
constructed with the subset of genes (475 TFs) present in the
TRNs (Neph et al. 2012) to explore the most overrepresented pat-
terns of connectivity. We computed all possible network motifs
composed by two to four nodes and identified the motifs with
high enrichment in each RT network constructed per differentia-
tion pathway (Supplemental Fig. S5–S7). Statistical significance
(P-value <0.01) of each motif occurrence in the RT networks was
calculated by comparing to the frequency of the samemotif in ran-
domized networks (Milo et al. 2002; Baiser et al. 2016; Elhesha and
Kahveci 2016). The most frequent motifs with three and four
nodes in each differentiation pathway are shown in Figure 4B.
Previous observations in transcriptional and protein regulatory
networks that suggest that gene regulatory networks are composed
mainly by smallmotifs with two to three nodes (Yeger-Lotem et al.
2004; Alon 2007). In contrast, we found that the most enriched
motifs are the motifs with higher number of nodes (Fig. 4C). In
fact, motif enrichment increases with higher number of nodes,
and this distribution ismaintained at distinct Pearson’s correlation
thresholds and in all differentiation pathways analyzed (Fig. 4C).
These findings suggest a higher connectivity for RT-correlated
genes than that previously observed in transcriptional and protein
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regulatory networks. Additionally, because significant overlap
between RT and transcriptional networks was observed in all
differentiation pathways (Fig. 4A), we examined the presence of
transcriptional edges within the RT networks motifs. We found
that transcriptional edges were present in most of the motifs, sug-
gesting an interconnectivity between TRNs and RT networks
(Supplemental Figs. S5–S7).

Composite networks: combining RT and TRNs

To better understand how the regulatory circuitries are established
during cell fate commitment, we constructed a model of compos-
ite regulatory networks by merging RT and TRNs. Previous studies
showed that distinct types of interactions (such as protein–protein
and transcription regulation) can be combined to explore more
complex cellular circuitries (Yeger-Lotem et al. 2004; Vidal et al.

2011). Here, we combined the regulatory
interactions observed in RT networks
with those identified in the TRNs be-
tween TFs detected for the closest cell
types. First, we obtained all gene nodes
present in both correlated RT and TFs
networks (Fig. 4D). Then we combined
all the interactions between RT nodes
with the transcriptional interactions in
the TRNs from matching cell types and
constructed composite networks (Fig.
4D). RT networks for each differentiation
pathway are constituted by multiple un-
connected motifs of four or fewer nodes;
however, the addition of transcriptional
edges revealed more complex and
highly interconnected networks with all
nodes interacting with at least three oth-
er nodes (Fig. 4B–D). Exemplary compos-
ite networks for liver and mesothelium
show the connectivity of known key reg-
ulators for each differentiation pathway
(Fig. 4E,F).

Bipartite networks reveal transcription

factors as regulators of RT

To further characterize the gene regula-
tory interactions established during cell
fate commitment, we analyzed the cell-
type–specific transcriptomes and their
relationships with RT. First, we exploited
the genome-wide transcriptome data
that we obtained previously from the
same cell types as for RT (Rivera-Mulia
et al. 2015). Our highly comprehensive
characterization of gene expression, in-
cluding multiple replicates for each
differentiation stage, allowed us to iden-
tify with confidence the genes that are
differentially expressed during cell fate
commitment toward each cell type and
the genes that better distinguish each
intermediate stage. Coexpressed genes
were identified by weighted correla-
tion network analysis (Langfelder and

Horvath 2008). Strong correlations between gene expression
levels are widely used to identify regulatory interactions
(D’haeseleer et al. 2000; Li 2002; Allocco et al. 2004; Novak and
Jain 2006; Horvath and Dong 2008; Laurenti et al. 2013; Gabr
et al. 2015); thus, we constructed coexpressed networks for each
differentiation pathway. To decrease the complexity of the data
to a computationally manageable size, we focused on the top
100 genes that are significantly coexpressed in specific cell
types/intermediate differentiation stages. In all differentiation
pathways and for each differentiation stage, we found that tran-
scription factors were among the most significant genes distin-
guishing each cell type (Fig. 5A). Moreover, ontology analysis
(Ashburner et al. 2000; The Gene Ontology Consortium 2015)
using the different subsets of genes revealed strong enrichment
of genes regulating the specification of each cell type (Supplemen-
tal Table S5).

E F

BA

C D

Figure 4. RT and transcriptional networks overlap and can be combined into composite networks.
(A) Overlap analysis of RT and TRNs interaction edges. RT networks were constructed for matching
cell types in the TRNs (Neph et al. 2012), and common and unique interaction edges were identified.
Only genes within the TRNs were used (475 transcription factors), maintaining the filters for significant
correlation and gene pairs in trans (separated by >500 kb or in distinct chromosomes). A hypergeometric
test was performed to test the overlap significance (P-values are shown). (B,C) RT networks are enriched
in motifs with multiple nodes. (B) The most enriched motif for each differentiation pathway is shown.
(C) Motif frequency distribution at distinct thresholds in Pearson’s correlation values (each bar represents
a distinct correlation threshold –R). (D) Construction of composite networks by combining RT and tran-
scriptional networks. RT networks were used to define the “base network,” which includes all nodes of
RT-correlated genes; interaction edges between RT nodes were extracted from TRNs. Composite net-
works included all RT edges (black undirected lines), transcriptional edges within RT network motifs (di-
rected solid red arrows), and transcriptional edges outside RT network motifs (directed dashed gray
arrows). Exemplary composite networks for liver (E) and mesothelium differentiation (F) are shown.
Pearson’s correlation and Bonferroni’s corrected P-values thresholds, as well as the number of nodes
and edges, are shown.
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Figure 5. Bipartite networks. (A) Transcription factor expression patterns distinguish each cell type/differentiation intermediate. Cell-type–specific ex-
pression patterns were analyzed to identify themost significant differentially coexpressed genes, and then the resulting genes were classified as TFs or other
type. (B) Expression patterns of exemplary key TFs of pancreas development correlate with the RT of downstream regulators of pancreatic differentiation.
(C ) Expression patterns of exemplary key TFs of liver development correlate with the RT of downstream regulators of hepatic differentiation. (D,E) Bipartite
networks of pancreas (D) and liver (E) differentiation. Bipartite networks were constructed based on the correlation between transcriptional levels of the
genes in the TRN side and RT changes of genes in the RT side. TRNs were constructed from the top genes coexpressed in pancreas and liver, respectively. RT
network sides were constructed by identification of genes with RT patterns highly correlated with the expression levels of genes at the TRN side. Only edges
between TRN and RT networks are shown (with each gene in the RT side connected with at least 50% of the nodes in the TRN side), as all nodes within each
network are interconnected with all others. (F) ChIP-seq signals show the co-occupancy of FOXA1 and PDX1 at exemplary pancreatic-specific downstream
targets predicted by the bipartite network shown in D. (G) ChIP-seq signals show the co-occupancy of FOXA1, FOXA2, NR2F2, HNF4A, and HNF4G at
hepatic-specific downstream targets predicted by the bipartite networks shown in E. (H,I) Co-occupancy analysis for the pancreatic-specific and hepat-
ic-specific TFs at the promoters of downstream targets.
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Because we found that (1) subnetwork communities associat-
ed with transcription factor activity were identified in all RT-corre-
lated networks (Fig. 2), (2) interactions between TFs in TRNs
significantly overlap with RT networks (Fig. 4), and (3) TF expres-
sion patterns distinguish each cell type (Fig. 5A), we hypothesize
that gene regulation by TFs might be critical not only for cell-
type–specific transcriptional program establishment but also
for RT program control during cell fate specification. To analyze
the potential role of TF in RT regulation, we constructed bipartite
networks in which we identified the correlated patterns of RT
that correlated with the expression levels of the TRNs. First, we
identified the genes whose RT patterns are correlated with the ex-
pression levels of the top 100 genes that distinguish each cell type.
Exemplary gene expression levels for a subset of TFs critical for
pancreas and liver differentiation are shown in Figure 5, B and C,
as well as the corresponding genes with correlated patterns for
RT regulation. Then, we constructed bipartite networks that
consist of two independent but interconnected networks: “coex-
pression networks” that contain genes coexpressed in specific
developmental stages/cell types and the RT network contains
genes whose RT changes were highly correlated with the expres-
sion patterns from the coexpression network. These gene interac-
tions are in trans and cannot be explained by the “simple”
correlation between RT and transcription but correlated transcrip-
tional changes with remote, unlinked RT changes. Hence, the regu-
latory interactions described here cannot be explained by the
previously recognized correlation. Interaction edges between
each side of the bipartite networks were established for nodes in
the RT side that correlate (R≥0.75) with the transcriptional levels
of at least 50% of the genes in the coexpression network. Bipartite
networks for pancreatic and liver differentiation are shown in
Figure 5, D and E, respectively. TFs that regulate these specific dif-
ferentiation pathways are highlighted in each bipartite network at
the transcriptional side (Fig. 5D,E), and known pancreatic-specific
and liver-specific downstream genes were found in for each bipar-
tite network at the RT side (Fig. 5D,E). These results suggest that es-
tablishment of TRNs during cell differentiation might be required
for RT control.

During the preparation of this manuscript, ChIP-seq data sets
for transcription factors binding became available for liver and
pancreas (Diaferia et al. 2016; Davis et al. 2018; Wang et al.
2018). Hence, to further analyze the relationship of TFs whose ex-
pression strongly correlates with the RT of downstream genes in
trans, we analyzed ChIP-seq data for known TFs required for pan-
creatic and liver cell fate commitment (Fig. 5F,G). For pancreatic
differentiation, we analyzed whether downstream targets predict-
ed at the RT side of the bipartite network (Fig. 5D), contain binding
sites for FOXA1 (endoderm-specific TF) and PDX1 (pancreatic-spe-
cific TF). We found ChIP-seq peaks for both TFs in close proximity
to the promoters (<20 kb) of the downstream targets predicted in
the bipartite network (Fig. 5F). In fact, 80% of the predicted down-
stream genes were bound by at least one of the two TFs, and 40%
presented highly significant co-occupancy (P-value =6.4 ×10−3)
for both TFs at the promoters (Fig. 5H). For liver differentiation,
we obtained ChIP-seq data for five different TFs required for the
regulation of hepatic differentiation (FOXA1, FOXA2, NR2F2,
HNF4A, and HNF4G), which allowed us to test for co-occupancy
of these key regulators at the predicted targets. We found that
81% of the predicted downstream genes were bound by at least
one of the five TFs, and 23% presented co-occupancy of all five
TFs at their promoters (Fig. 5G,I). Moreover, binding of these TFs
at the promoters of the predicted targets (Fig. 5I) was highly signif-

icant for all combinations of TFs co-occupancy compared with ex-
pected occurrence (Supplemental Table S6). These findings suggest
a regulatory link between the establishment of cell-type–specific
transcriptional networks and RT control during lineage
specification.

Discussion

In this study, we introduced a new approach to construct gene reg-
ulatory networks, exploiting the dynamic changes in DNA RT dur-
ing lineage specification. RT is cell-type–specific (Hiratani et al.
2010; Ryba et al. 2011; Rivera-Mulia et al. 2015); regulation of RT
is critical to maintain genome stability (Donley et al. 2013;
Neelsen et al. 2013; Alver et al. 2014); and abnormal RT is observed
in disease (Ryba et al. 2012;Gerhardt et al. 2014; Rivera-Mulia et al.
2017, 2018b; Sasaki et al. 2017). RT is closely related to the spatio-
temporal organization of the genome with early and late replicat-
ing domains segregating to distinct nuclear compartments (Pope
et al. 2014; Rivera-Mulia and Gilbert 2016b). Cell fate commit-
ment is accompanied by dynamic changes in RT that are globally
coordinated with transcriptional activity (Rivera-Mulia et al. 2015;
Rivera-Mulia andGilbert 2016b). Hence, RT constitutes a function-
al readout of genome organization that is linked to gene regula-
tion during cell fate commitment. However, despite a significant
correlation of early RT with transcriptional activity, RT and tran-
scription cannot predict each other, suggesting an indirect rela-
tionship. Here, we constructed RT networks based on RT changes
across 15 cell types and differentiation intermediates derived
from human embryonic stem cells. We identified thousands of
genes fromdifferent chromosomes that are correlated in RT during
cell differentiation (Fig. 1C), and constructed distinct RT network
models based on their dynamic changes. Our results suggest an in-
timate regulatory link between RT and cell-type–specific TRNs that
is not revealed by associationwith transcription in cis but is uncov-
ered by RT networks.

Directional RT networks were able to identify sets of unlinked
genes whose RT changes coordinately during differentiation, the
master regulators of RT changes, and their temporally downstream
targets. To validate our model of directional RT networks, we
showed that the gene interactions identified by our novel net-
works could predict the downstream targets of known regulators
of specific differentiation pathways for which ChIP-seq data were
available (Fig. 3). The algorithms to construct these RT networks
that we present here can be applied to explore the interactions of
any gene of interest (for detailed information on the computation-
al pipeline, see Methods).

Combining transcriptional and RT networks into composite
and bipartite networks revealed new insights into gene regulation
during cell fate commitment. First, we found that there is a signifi-
cant overlap between TRNs and RT networks of TFs (Fig. 4A) and
that transcriptional edges are present in most of the motifs identi-
fied in correlated RT networks (Supplemental Figs. S5–S7). These
findings suggest an interconnectivity between transcriptional
and RT networks, which we confirmed by constructing composite
networks that combine transcriptional and RT interactions.
Composite networks revealed more complex circuitries in which
transcriptional edges connected otherwise separated RT motifs
(Fig. 4D,E). Finally, an important question in the DNA replication
field is what regulates the RT program. Correlations with chroma-
tin features have been described for decades (Rivera-Mulia and
Gilbert 2016b), but we do not understand yet how RT is regulated
and how it is remodeled during cell fate specification. Recent
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studies suggest a causal link between transcriptional activity and
RT control, as targeting strong artificial transcriptional activators
or histone acetyltransferases is sufficient to advance RT in some
middle-late replication loci (Goren et al. 2008; Hassan-Zadeh
et al. 2012; Koryakov et al. 2012; Therizols et al. 2014; Blin et al.
2019). However, it is not clear whether these changes are depen-
dent on transcriptional activity, histone acetylation, or other chro-
matin changes associatedwith transcription.Moreover, individual
knockout/knockdown or overexpression of many transcription
and chromatin structure regulators (including TFs such as
MYC [also known as C-MYC], MYCN [also known as N-MYC],
MYOD1, and PAX5) has no effect on RT (Dileep et al. 2015), and
combinatorial coregulation of multiple TFs might be required to
control TRNs (Novershtern et al. 2011; Gerstein et al. 2012).
Indeed, in budding yeast, binding of Fkh1 and Fkh2 TFs near a
class of replication origins is necessary for early replication, but
this function is separable from its transcription activity (Ostrow
et al. 2017). Moreover, recently discovered cis elements that are
necessary for control of RT in pluripotent cells have been shown
to contain sites of POU5F1, SOX2, and NANOG co-occupancy,
TFs that are central to the pluripotency TRN (Sima et al. 2019).
Thus, it is possible that core TRN TFs may independently regulate
mammalian RT, perhaps to coordinate cell-type–specific changes
in RT with changes in transcription.

Here, we identified an intriguing relationship of TFs whose
expression strongly correlates with the RT of downstream genes
in trans (Fig. 5B,C) and constructed a novel class of bipartite net-
works (Fig. 5D,E). Bipartite networks allowed us to identify hun-
dreds of RT-correlated genes correlated with expression levels of
coexpressed TFs within the same differentiation pathways. This
is of particular significance to our understanding of RT control
because our findings suggest that establishment of complex cir-
cuitries/complete regulatory TFs networks, rather than transcrip-
tional induction of specific downstream targets, might be
required to shape the RT program during development. Because
the chromatin is assembled at the replication fork and different
types of chromatin are assembled at different times during S phase
(Lande-Diner et al. 2009), a change in a transcriptional network
that stimulates an RT change would alter the chromatin structure
of an entire RD and all the genes within that domain contributing
to the regulation of nuclear function and organization during cell
fate commitment. Overall, the RT networks suggest a novel hy-
pothesis that can be tested to unveil the mechanisms for RT regu-
lation during lineage specification. Experimental manipulation of
TFs followed by differentiation protocols would provide novel in-
sights of whether TFs regulate RT independently of their transcrip-
tional roles, whether all TFs are able to regulate RT or only a specific
class of TFs have this property, andwhether a complex combinato-
rial co-occupancy of several TFs and/or binding to superenhancers
is required to remodel the RT program.

Methods

Extraction of RT values at the TSS of NCBI RefSeq genes

RT data from multiple cell types and intermediate differentiation
stages derived from human embryonic stem cells (Rivera-Mulia
et al. 2015) were used to extract the RT values at the transcription
start sites (TSSs) of all RefSeq genes. All RT data sets are publicly
available in the Gilbert laboratory database at http://www
.replicationdomain.org, as well as in the ENCODE portal (Davis
et al. 2018). Briefly, average RT profiles were obtained frommulti-

ple replicates, and RT values were predicted at the TSS from the
loess smoothed RT profiles (Ryba et al. 2011). These data consist
of RT values at the TSSs of all RefSeq genes from 15 cell types de-
rived from hESCs representing three main germ layers: ectoderm,
mesoderm, and endoderm (Fig. 1A).

Construction of RT networks based on coordinated changes in RT

To construct correlated RTnetworks, wedenoted the set of genes as
V= {g1, g2, …, gn} and the set of cell types as {c1, c2, …, cs}. Then
three filters were applied to include exclusively genes that change
RT and are correlated in during differentiation. First, we removed
all genes that do not change RT during cell differentiation because
all genes that have the same (or very similar) RT values across all
cell types will yield high correlation values regardless of their RT
values. Thus, we removed all RT constitutive genes and included
only the genes that change RT during cell differentiation between
the very early (>0.3) and very late (<−0.3) replication. It is worth
noting that this is an aggressive filter as these parameters would
consider some genes as constitutive even if they may have high
variation in RT, although it is always early or late in replication.
Second, we removed gene pairs with correlated RT patterns that
are located within the same RD. If two genes are located close to
each other on the same chromosome, their RT values are expected
to be highly correlated owing to a natural outcome of theDNA rep-
lication process. Such correlations are extensively characterized
and not as relevant for this work compared with those among
physically distant genes, for the correlations between distant genes
provide hints about the existence of complex interactions that reg-
ulate the order in which genes are replicated. Because we have
shown that RDs vary in size from 0.4 Mb to 0.8 Mb (Hiratani
et al. 2008; Pope et al. 2014; Rivera-Mulia et al. 2015), we removed
all gene pairs separated by <500 kb (distance threshold denoted as
µ). Thus, for all possible gene pairs in V, we obtained the locations
of gi and gj on the DNA. If they are on the same chromosome, we
classified them as colocated; if they are in different chromosomes,
we classified them as not colocated. If the two genes gi and gj are co-
located, the distance between their TSS positions d(gi, gj) was calcu-
lated, and all genes with d<µ were removed from the analysis.
Finally, we established interaction edges exclusively for gene pairs
that are significantly correlated. To do so, for each gene gi∈V, we
constructed a vector wi with an entry of the RT of gi in cell type cx.
Then, themodel of correlated RT networkwas defined asG= (V, E),
where V and E denote the set of nodes and edges, respectively. For
all pairs of genes gi, gj∈G, we computed the Pearson’s correlation
coefficient between their vectors wi and wj. Statistical significance
for the Pearson’s correlation of each gene pair was calculated as fol-
lows:

t = r
�������
n− 2

√
��������
1− r2

√ ,

where the P-value being 2×P(T> t), r is the correlation coefficient
and n is the number of observations. Next, we applied Bonferroni
correction to the P-values and drawn an edge between gi and gj
when

Pij ≤ a
m

.

Pij is the Bonferroni-corrected P-value, a is the statistical signifi-
cance threshold, and m is the number of tests conducted. For
each such significant correlation, an edge (gi, gj) is added to the
set E.

Correlated RT networks were constructed across all samples,
as well as for distinct subsets of cell types focusing on the threema-
jor germ layers: ectoderm, mesoderm, and endoderm. In our
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correlated RT network models, each node represents a gene, and
each edge represents a relationship between correlated RT of the
corresponding two genes in the network.

RT network visualization

To visualize our RT network, we focused on the subset of highly
connected nodes (>20 degree count). First, we constructed a 2D
map of the RT-correlated networks using the force-directed layout
algorithm in Cytoscape (Shannon et al. 2003), with the edge
length being proportional to the Pearson’s correlation strength
(Fig. 2). Next, we detected subnetwork communities by running
a Louvain community detection algorithm (Blondel et al. 2008).
This method is a heuristic method that is based onmodularity op-
timization. Finally,we used SAFE algorithm to annotate functional
attributes for communities. SAFE (Baryshnikova 2016) is an auto-
mated network annotation algorithm. Given a biological network
and a set of functional groups or quantitative features of interest,
SAFE performs local enrichment analysis to determine which re-
gions of the network are significantly overrepresented for each
group of features. Thus, local neighborhoods were identified,
and functional attributes were annotated based on the Gene
Ontology (GO) terms (Baryshnikova 2016).

Construction of directional RT networks

Directional RT networks were generated for each differentiation
pathway for changes in LtoE and EtoL. In these directed RT net-
work models, we do not consider the correlated RT patterns but
the temporal order of RT changes between two corresponding
genes. For differentiation pathway ESCs (the earliest stage)→ later-
al plate mesoderm→ splanchnic mesoderm→ smoothmuscle (the
latest stage) of a LtoE directed RT network, we draw a directed edge
from a gene that switches in earlier stage to a gene that switches in
later stage only if the difference of switching stage is one or two.
For example, if LtoE pattern of gene g_1 is L→E→E→E in the
differentiation pathway ESCs→ lateral plate mesoderm→ splanch-
nic mesoderm→ smooth muscle and LtoE pattern of gene g_2 is
L→L→E→E in the same pathway, we draw an directed edge
from g_1 to g_2 as g_1 switches in lateral plate mesoderm stage
(earlier) and g_2 switches in splanchnicmesoderm stage (later), as-
suming the change from LtoE of gene g_1 could be causally linked
to the change of gene g_2 in the next stage. Similarly, we con-
structed EtoL directed networks considering g_1 changes E→L→
L→L and identified g_2 genes with patterns E→E→L→L.

RT network edges overlap with known transcriptional regulatory

interactions

We compared the topologies of the RT networks with those of
TRNs. Particularly, we used the TRNs constructed using TFs
(Neph et al. 2012). To do that, for each cell lineage, we counted
the number of edges common to its RT network and TRN by focus-
ing on the nodes/TFs that are common to both networks (i.e., at
least have one edge in each network). An undirected edge in the
RT network overlaps with a directed edge in the TRN if the gene
pairs corresponding to an edge are same in the RT network and
the TRN. By using the number of common edges in the two net-
works, we calculate the P-value of the overlap from their hypergeo-
metric distributions. To do so, we denoted the number of nodes
(i.e., genes) in the given TRN with n. The total number of possible
edges (excluding self-edges) in a directed complete graph with n
nodes is M=C(n, 2) × 2 =n× (n−1), where C(x, y) denotes x choose
y (i.e., the number of y-element combinations of a set with x ele-
ments). Let us also denote the number of edges present in the ac-
tual TRN with m, the number of edges in the undirected RT

network with K, and the number of common edges between
TRN and RT networks with k. Then we computed the probability
that the number of common edges between the two networks is
equal to a specific value (say i) as

P(X = i) = (C(k, i)× C(M − K, m− i))/C(M, m).

The numerator in this probability mass function (PMF) describes
the number of ways to pick exactly i edges from the RT network
in m draws from a complete graph, without replacement. The
denominator shows the number of alternative network topologies
with the same nodes as the RT network, which hasm edges. By us-
ing this PMF, we calculate the P-value of havingmore than or equal
to k common edges between the RT network and the TRN as∑n

i=k P(X = i). Thus, significant P-values signify unexpectedly
large number of common edges between the two networks.

RT network motif identification

Network motifs are defined as recurrent and statistically signifi-
cant subgraphs or patterns. We identified the most frequent mo-
tifs in the RT networks by creating all possible shapes of
connected nodes (in terms of undirected edges) for two, three,
and four node subgraphs. The analysis was limited to motifs of
four or fewer nodes: first, because it has been shown that the fun-
damental regulatory subnetwork patterns consist of a small num-
ber of nodes networks (Milo et al. 2002; Yeger-Lotem et al. 2004;
Baiser et al. 2016; Elhesha and Kahveci 2016) and, second,
because the number of possible motif topologies grow exponen-
tially with number of nodes, making it impossible to test larger
motif sizes. To identify the most frequent motifs in the RT net-
works, we counted the number of matching motifs between the
RT network and randomized networks. We also created multiple
shuffled networks that have the same number of nodes and edges
with the RT network and set a z-score as 2.54 for a subgraph to be
considered as a motif present in the network. Is important to note
that the motif frequency (i.e., the number of times a given motif
appears in a given network) does not monotonically decrease or
increase with the motif size, and the statistical significance of
the motif abundance is independent of the motif size and topol-
ogy (Elhesha and Kahveci 2016). This is because motif count does
not have downward closure property, and a motif is considered as
abundant in a given network only if its frequency is significantly
higher than the number of times the same motif appears in ran-
domized networks (P-value <0.01).

Construction of composite RT and gene expression networks

The composite networkmodelmerges the interactions observed in
RT networks (using only genes present in the networks of Neph
et al. 2012) with the interactions observed in TRNs. To construct
the composite networks, we used as a base network the motifs
(all subgraphs consisting in connected two, three, and four nodes)
detected in the RT networks constructed from the subset of genes
present in the TRNs. We then combined the RT and TRNs by tak-
ing the union of their edge sets. To do so, we draw the transcrip-
tional edges between the RT nodes according to the interactions
identified in the TRNs. Composite networks were visualized in
Cytoscape (Shannon et al. 2003). Transcriptional edges are direc-
tional, and they were differentiated according to the connectivity
within/outside RT motifs; that is, if a TRN interaction was present
within an RT network motif, it was visualized as a directed solid
edge, and if the interaction occurs between nodes from different
RT network motifs, it was visualized as a directed dashed edge.
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Construction of bipartite RT and transcriptional networks

A bipartite network is a graphwith two components. Each compo-
nent is a set of nodes. In our model, first component is based
on the expression patterns of genes, and the second component
is based in the RT of genes. For our analysis, we started with the
list of genes coexpressed in specific cell types that constitute the
first component. We append an edge between the first compo-
nent and the second component if the RT of a gene in the second
component is correlated with expression of a gene in the first
component with more than a certain correlation threshold.
Next we removed a gene in the second component if the number
of edges of this gene (correlation with coexpressed genes) is less
than a specified ratio of total number of genes in the first
component.

ChIP-seq data analysis

ChIP-seq peaks and aligned reads (hg19 genome assembly)
for the FOXA1 (ENCSR735KEY), FOXA2 (ENCSR310NYI), NR2F2
(ENCSR338MMB), HNF4A (ENCSR601OGE), and HNF4G (ENC
SR297GII) transcription factors in liver tissue were downloaded
from the ENCODEdata portal (Davis et al. 2018). FOXA1 transcrip-
tion factor-specific peaks and raw reads in pancreas tissue were col-
lected from Diaferia et al. (2016) (GSE64557), and PDX1-specific
ChIP-seq data in pancreas tissue was downloaded from Wang
et al. (2018) (GSE106949). Aligned reads for FOXA1 and PDX1 in
the pancreas tissue on hg19 genome assembly were generated us-
ing the Bowtie 2 alignment program (Langmead and Salzberg
2012). PDX1-specific peak calling against the respective input
was performed using the MACS2 program (Zhang et al. 2008)
with the following parameters: “-g hs –q 0.05”. All the significant
transcription factor peaks (FDR<0.05) were retained for down-
stream analysis, and the raw ChIP-seq signal tracks were scaled
to the signal track with minimum coverage for visualization pur-
pose. Individual transcription factor peaks and their respective
combinations in liver and pancreas were mapped to the annotated
(Harrow et al. 2012) hg19 TSSs (±20 kb) using the “bedtools map”
function (Quinlan and Hall 2010) with default parameters.
Overlap significance and enrichment of transcription factor bind-
ing in RT network–specific genes were measured using a Fisher’s
exact test by comparing against a similar number of random sets
of non-RT network genes. Realigning our data to hg38 (GRCh38)
would not significantly affect our conclusions as the major im-
provements of hg38 assembly are in the annotation of centromeric
and other repetitive genomic regions (Guo et al. 2017), which are
not included in our analysis.

Data access

Normalized data of RT and gene expression values from all the
hESC-derived cell types analyzed are available in the
Supplemental Material, including a Cytoscape session with all
gene networks shown in this paper’s Supplemental File 1.
Additionally, the source code and documentation to reproduce
the gene networks shown in this paper are available in the
Supplemental Code, as well as on GitHub (https://github.com/
sebkim/RTNet).

Acknowledgments

This work was supported by National Institutes of Health grant
GM083337 (D.M.G.).

Author contributions: J.C.R.-M., T.K., and D.M.G. conceived
and designed the study; J.C.R.-M., S.K., H.G., A.C., and F.A. per-

formed data analysis and interpretation; J.C.R.-M. and D.M.G.
wrote the manuscript.

References

Allocco DJ, Kohane IS, Butte AJ. 2004. Quantifying the relationship be-
tween co-expression, co-regulation and gene function. BMC
Bioinformatics 5: 18. doi:10.1186/1471-2105-5-18

Alon U. 2007. Network motifs: theory and experimental approaches. Nat
Rev Genet 8: 450–461. doi:10.1038/nrg2102

Alver RC, Chadha GS, Blow JJ. 2014. The contribution of dormant origins to
genome stability: from cell biology to human genetics. DNA Repair
(Amst) 19: 182–189. doi:10.1016/j.dnarep.2014.03.012

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al. 2000. Gene Ontology: tool for the
unification of biology. Nat Genet 25: 25–29. doi:10.1038/75556

Baiser B, Elhesha R, Kahveci T. 2016.Motifs in the assembly of foodweb net-
works. Oikos 125: 480–491. doi:10.1111/oik.02532

Baryshnikova A. 2016. Systematic functional annotation and visualization
of biological networks. Cell Syst 2: 412–421. doi:10.1016/j.cels.2016.04
.014

Berger E, Vega N,Weiss-GayetM, Géloën A. 2015. Gene network analysis of
glucose linked signaling pathways and their role in human hepatocellu-
lar carcinoma cell growth and survival in HuH7 and HepG2 cell lines.
Biomed Res Int 2015: 821761. doi:10.1155/2015/821761

Blin M, Le Tallec B, Nähse V, Schmidt M, Brossas C, Millot GA, Prioleau M-
N, Debatisse M. 2019. Transcription-dependent regulation of replica-
tion dynamics modulates genome stability. Nat Struct Mol Biol 26: 58–
66. doi:10.1038/s41594-018-0170-1

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of
communities in large networks. J Stat Mech 2008: P10008. doi:10.1088/
1742-5468/2008/10/P10008

CostanzoM, VanderSluis B, Koch EN, Baryshnikova A, PonsC, TanG,Wang
W, Usaj M, Hanchard J, Lee SD, et al. 2016. A global genetic interaction
network maps a wiring diagram of cellular function. Science 353:
aaf1420. doi:10.1126/science.aaf1420

Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA,
Jain K, Baymuradov UK, Narayanan AK, et al. 2018. The encyclopedia of
DNA elements (ENCODE): data portal update. Nucleic Acids Res 46:
D794–D801. doi:10.1093/nar/gkx1081

D’haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from
co-expression clustering to reverse engineering. Bioinformatics 16:
707–726. doi:10.1093/bioinformatics/16.8.707

Diaferia GR, Balestrieri C, Prosperini E, Nicoli P, Spaggiari P, Zerbi A, Natoli
G. 2016. Dissection of transcriptional and cis-regulatory control of dif-
ferentiation in human pancreatic cancer. EMBO J 35: 595–617. doi:10
.15252/embj.201592404

Dileep V, Rivera-Mulia JC, Sima J, Gilbert DM. 2015. Large-scale chromatin
structure-function relationships during the cell cycle and development:
insights from replication timing. Cold Spring Harb Symp Quant Biol 80:
53–63. doi:10.1101/sqb.2015.80.027284

Donley N, Stoffregen EP, Smith L, Montagna C, Thayer MJ. 2013.
Asynchronous replication, mono-allelic expression, and long range
cis-effects of ASAR6. PLoS Genet 9: e1003423. doi:10.1371/journal
.pgen.1003423

Du H, Shih C-H, Wosczyna MN, Mueller AA, Cho J, Aggarwal A, Rando TA,
Feldman BJ. 2017. Macrophage-released ADAMTS1 promotes muscle
stem cell activation. Nat Commun 8: 669. doi:10.1038/s41467-017-
00522-7

Elhesha R, Kahveci T. 2016. Identification of large disjoint motifs in biolog-
ical networks. BMC Bioinformatics 17: 408. doi:10.1186/s12859-016-
1271-7

Gabr H, Rivera-Mulia JC, Gilbert DM, Kahveci T. 2015. Computing interac-
tion probabilities in signaling networks. EURASIP J Bioinform Syst Biol
2015: 10. doi:10.1186/s13637-015-0031-8

The Gene Ontology Consortium. 2015. Gene Ontology Consortium: going
forward. Nucleic Acids Res 43: D1049–D1056. doi:10.1093/nar/gku1179

Gerhardt J, Tomishima MJ, Zaninovic N, Colak D, Yan Z, Zhan Q,
Rosenwaks Z, Jaffrey SR, Schildkraut CL. 2014. The DNA replication pro-
gram is altered at the FMR1 locus in fragile X embryonic stem cells. Mol
Cell 53: 19–31. doi:10.1016/j.molcel.2013.10.029

GersteinMB, Kundaje A, HariharanM, Landt SG, Yan K-K, Cheng C,Mu XJ,
Khurana E, Rozowsky J, Alexander R, et al. 2012. Architecture of the hu-
man regulatory network derived from ENCODE data. Nature 489: 91–
100. doi:10.1038/nature11245

Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek AK,
Kelley DR, Shishkin AA, Issner R, et al. 2013. Transcriptional and epige-
netic dynamics during specification of human embryonic stem cells.
Cell 153: 1149–1163. doi:10.1016/j.cell.2013.04.037

Rivera-Mulia et al.

1426 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247049.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247049.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247049.118/-/DC1
https://github.com/sebkim/RTNet
https://github.com/sebkim/RTNet
https://github.com/sebkim/RTNet
https://github.com/sebkim/RTNet
https://github.com/sebkim/RTNet


Goren A, Tabib A, Hecht M, Cedar H. 2008. DNA replication timing of the
human β-globin domain is controlled by histonemodification at the or-
igin. Genes Dev 22: 1319–1324. doi:10.1101/gad.468308

Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. 2017. Improvements and
impacts of GRCh38 human reference on high throughput sequencing
data analysis. Genomics 109: 83–90. doi:10.1016/j.ygeno.2017.01.005

Han XH, Jin Y-R, Seto M, Yoon JK. 2011. AWNT/β-catenin signaling activa-
tor, R-spondin, plays positive regulatory roles during skeletal myogene-
sis. J Biol Chem 286: 10649–10659. doi:10.1074/jbc.M110.169391

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Aken BL, Barrell D, Zadissa A, Searle S, et al. 2012. GENCODE: the refer-
ence human genome annotation for The ENCODE Project. Genome Res
22: 1760–1774. doi:10.1101/gr.135350.111

Hassan-Zadeh V, Chilaka S, Cadoret J-C, Ma MK-W, Boggetto N, West AG,
Prioleau M-N. 2012. USF binding sequences from the HS4 insulator ele-
ment impose early replication timing on a vertebrate replicator. PLoS
Biol 10: e1001277. doi:10.1371/journal.pbio.1001277

Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang C-W, Lyou Y,
Townes TM, Schübeler D, Gilbert DM. 2008. Global reorganization of
replication domains during embryonic stem cell differentiation. PLoS
Biol 6: e245. doi:10.1371/journal.pbio.0060245

Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-
Jones DP, Plath K, Dalton S, et al. 2010. Genome-wide dynamics of rep-
lication timing revealed by in vitro models of mouse embryogenesis.
Genome Res 20: 155–169. doi:10.1101/gr.099796.109

Horvath S, Dong J. 2008. Geometric interpretation of gene coexpression
network analysis. PLoS Comput Biol 4: e1000117. doi:10.1371/journal
.pcbi.1000117

Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromo-
some structure: evidence that nuclear organization contributes to the ef-
ficient activation and propagation of S phase in human cells. J Cell Biol
140: 1285–1295. doi:10.1083/jcb.140.6.1285

Knowles BB, Howe CC, Aden DP. 1980. Human hepatocellular carcinoma
cell lines secrete the major plasma proteins and hepatitis B surface anti-
gen. Science 209: 497–499. doi:10.1126/science.6248960

Koryakov DE, Pokholkova GV, Maksimov DA, Belyakin SN, Belyaeva ES,
Zhimulev IF. 2012. Induced transcription results in local changes in
chromatin structure, replication timing, and DNA polytenization in a
site of intercalary heterochromatin. Chromosoma 121: 573–583.
doi:10.1007/s00412-012-0382-9

Lande-Diner L, Zhang J, Cedar H. 2009. Shifts in replication timing actively
affect histone acetylation during nucleosome reassembly. Mol Cell 34:
767–774. doi:10.1016/j.molcel.2009.05.027

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinformatics 9: 559. doi:10.1186/1471-
2105-9-559

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2.
Nat Methods 9: 357–359. doi:10.1038/nmeth.1923

Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C, Fan J-B, Dick JE.
2013. The transcriptional architecture of early human hematopoiesis
identifies multilevel control of lymphoid commitment. Nat Immunol
14: 756–763. doi:10.1038/ni.2615

Li K-C. 2002. Genome-wide coexpression dynamics: theory and applica-
tion. Proc Natl Acad Sci 99: 16875–16880. doi:10.1073/pnas.252466999

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 2002.
Network motifs: simple building blocks of complex networks. Science
298: 824–827. doi:10.1126/science.298.5594.824

Mutsaers SE. 2004. The mesothelial cell. Int J Biochem Cell Biol 36: 9–16.
doi:10.1016/S1357-2725(03)00242-5

Neelsen KJ, Zanini IMY, Mijic S, Herrador R, Zellweger R, Ray Chaudhuri A,
Creavin KD, Blow JJ, Lopes M. 2013. Deregulated origin licensing leads
to chromosomal breaks by rereplication of a gapped DNA template.
Genes Dev 27: 2537–2542. doi:10.1101/gad.226373.113

Neph SS, Stergachis ABA, Reynolds AA, Sandstrom RR, Borenstein EE,
Stamatoyannopoulos JAJ. 2012. Circuitry and dynamics of human tran-
scription factor regulatory networks. Cell 150: 1274–1286. doi:10.1016/
j.cell.2012.04.040

Novak BA, Jain AN. 2006. Pathway recognition and augmentation by com-
putational analysis of microarray expression data. Bioinformatics 22:
233–241. doi:10.1093/bioinformatics/bti764

Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN,
McConkey ME, Habib N, Yosef N, Chang CY, Shay T, et al. 2011.
Densely interconnected transcriptional circuits control cell states in hu-
man hematopoiesis. Cell 144: 296–309. doi:10.1016/j.cell.2011.01.004

Ostrow AZ, Kalhor R, Gan Y, Villwock SK, Linke C, Barberis M, Chen L,
Aparicio OM. 2017. Conserved forkhead dimerization motif controls
DNA replication timing and spatial organization of chromosomes in
S. cerevisiae. Proc Natl Acad Sci 114: E2411–E2419. doi:10.1073/pnas
.1612422114

Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y,
Hansen RS, Canfield TK, et al. 2014. Topologically associating domains

are stable units of replication-timing regulation. Nature 515: 402–405.
doi:10.1038/nature13986

Preis PN, Saya H, Nádasdi L, Hochhaus G, Levin V, SadéeW. 1988. Neuronal
cell differentiation of human neuroblastoma cells by retinoic acid plus
herbimycin A. Cancer Res 48: 6530–6534.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for compar-
ing genomic features. Bioinformatics 26: 841–842. doi:10.1093/bioinfor
matics/btq033

Rivera-Mulia JC, Gilbert DM. 2016a. Replicating large genomes: divide and
conquer. Mol Cell 62: 756–765. doi:10.1016/j.molcel.2016.05.007

Rivera-Mulia JC, Gilbert DM. 2016b. Replication timing and transcriptional
control: beyond cause and effect—part III. Curr Opin Cell Biol 40: 168–
178. doi:10.1016/j.ceb.2016.03.022

Rivera-Mulia JC, Buckley Q, Sasaki T, Zimmerman J, Didier RA, Nazor K,
Loring JF, Lian Z, Weissman S, Robins AJ, et al. 2015. Dynamic changes
in replication timing and gene expression during lineage specification
of human pluripotent stem cells. Genome Res 25: 1091–1103. doi:10
.1101/gr.187989.114

Rivera-Mulia JC, Desprat R, Trevilla-García C, Cornacchia D, Schwerer H,
Sasaki T, Sima J, Fells T, Studer L, Lemaitre JM, et al. 2017. DNA replica-
tion timing alterations identify common markers between distinct pro-
geroid diseases. Proc Natl Acad Sci 114: E10972–E10980. doi:10.1073/
pnas.1711613114

Rivera-Mulia JC, DimondA, Vera D, Trevilla-García C, Sasaki T, Zimmerman
J, Dupont C, Gribnau J, Fraser P, Gilbert DM. 2018a. Allele-specific con-
trol of replication timing and genome organization during develop-
ment. Genome Res 28: 800–811. doi:10.1101/gr.232561.117

Rivera-Mulia JC, Schwerer H, Besnard E, Desprat R, Trevilla-García C, Sima J,
Bensadoun P, Zouaoui A, Gilbert DM, Lemaitre JM. 2018b. Cellular sen-
escence induces replication stress with almost no affect on DNA replica-
tion timing. Cell Cycle 17: 1667–1681. doi:10.1080/15384101.2018
.1491235

Rivera-Mulia JC, Sasaki T, Trevilla-García C, Nakamichi N, Knapp D,
Hammond C, Chang B, Tyner JW, Devidas M, Zimmerman J, et al.
2019. Replication timing alterations in leukemia reflect stable clinical-
ly-relevant changes in genome architecture. bioRxiv doi:10/1101/
549196

Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J,
Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang
J, et al. 2015. Integrative analysis of 111 reference human epigenomes.
Nature 518: 317–330. doi:10.1038/nature14248

Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ,
Dalton S, Gilbert DM. 2010. Evolutionarily conserved replication tim-
ing profiles predict long-range chromatin interactions and distinguish
closely related cell types. Genome Res 20: 761–770. doi:10.1101/gr
.099655.109

Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, Zhang J, Dalton S, Gilbert
DM. 2011. Replication timing: a fingerprint for cell identity and pluri-
potency. PLoS Comput Biol 7: e1002225. doi:10.1371/journal.pcbi
.1002225

Ryba T, Battaglia D, Chang BH, Shirley JW, Buckley Q, Pope BD, Devidas M,
Druker BJ, Gilbert DM. 2012. Abnormal developmental control of repli-
cation-timing domains in pediatric acute lymphoblastic leukemia.
Genome Res 22: 1833–1844. doi:10.1101/gr.138511.112

Sasaki T, Rivera-Mulia JC, Vera D, Zimmerman J, Das S, Padget M,
Nakamichi N, Chang BH, Tyner J, Druker BJ, et al. 2017. Stability of pa-
tient-specific features of altered DNA replication timing in xenografts of
primary human acute lymphoblastic leukemia. Exp Hematol 51: 71–
82.e3. doi:10.1016/j.exphem.2017.04.004

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res
13: 2498–2504. doi:10.1101/gr.1239303

Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP,
Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, et al. 2019.
Identifying cis elements for spatiotemporal control of mammalian
DNA replication. Cell 176: 816–830.e18. doi:10.1016/j.cell.2018.11
.036

Solovei I, Thanisch K, Feodorova Y. 2016. How to rule the nucleus: divide et
impera. Curr Opin Cell Biol 40: 47–59. doi:10.1016/j.ceb.2016.02.014

Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N,
Martin S, Coles C, Collier F, Ward AC, et al. 2013. Versican processing
by a disintegrin-like andmetalloproteinase domain with thrombospon-
din-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol
Chem 288: 1907–1917. doi:10.1074/jbc.M112.429647

Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li M, Cao J, Wang Z.
2013. MiR-490-3p modulates the proliferation of vascular smooth mus-
cle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res
100: 272–279. doi:10.1093/cvr/cvt172

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
Simonovic M, Doncheva NT, Morris JH, Bork P, et al. 2019. STRING

Replication timing networks

Genome Research 1427
www.genome.org



v11: protein–protein association networks with increased coverage, sup-
porting functional discovery in genome-wide experimental datasets.
Nucleic Acids Res 47: D607–D613. doi:10.1093/nar/gky1131

Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA.
2014. Chromatin decondensation is sufficient to alter nuclear organiza-
tion in embryonic stem cells. Science 346: 1238–1242. doi:10.1126/sci
ence.1259587

Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A,
Meissner A. 2015. Transcription factor binding dynamics during human
ES cell differentiation. Nature 518: 344–349. doi:10.1038/nature14233

Vidal M, Cusick ME, Barabási A-L. 2011. Interactome networks and human
disease. Cell 144: 986–998. doi:10.1016/j.cell.2011.02.016

Wang X, Sterr M, Burtscher I, Chen S, Hieronimus A, Machicao F, Staiger H,
Häring H-U, Lederer G, Meitinger T, et al. 2018. Genome-wide analysis
of PDX1 target genes in human pancreatic progenitors.MolMetab9: 57–
68. doi:10.1016/j.molmet.2018.01.011

XieW, SchultzMD, Lister R, Hou Z, Rajagopal N, Ray P,Whitaker JW, Tian S,
Hawkins RD, Leung D, et al. 2013. Epigenomic analysis of multilineage
differentiation of human embryonic stem cells. Cell 153: 1134–1148.
doi:10.1016/j.cell.2013.04.022

Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U,
Margalit H. 2004. Network motifs in integrated cellular networks of
transcription-regulation and protein–protein interaction. Proc Natl
Acad Sci 101: 5934–5939. doi:10.1073/pnas.0306752101

Zhang LV, King OD, Wong SL, Goldberg DS, Tong AHY, Lesage G, Andrews
B, Bussey H, Boone C, Roth FP. 2005.Motifs, themes and thematicmaps
of an integrated Saccharomyces cerevisiae interaction network. J Biol 4: 6.
doi:10.1186/jbiol23

Zhang Y, Liu T,Meyer CA, Eeckhoute J, JohnsonDS, Bernstein BE, Nusbaum
C,Myers RM, BrownM, LiW, et al. 2008. Model-based Analysis of ChIP-
Seq (MACS). Genome Biol 9: R137. doi:10.1186/gb-2008-9-9-r137

Zhao PA, Rivera-Mulia JC, Gilbert DM. 2017. Replication domains: genome
compartmentalization into functional replication units. Adv Exp Med
Biol 1042: 229–257. doi:10.1007/978-981-10-6955-0_11

Received December 9, 2018; accepted in revised form August 5, 2019.

Rivera-Mulia et al.

1428 Genome Research
www.genome.org


