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Abstract: In this study, two natural phenolic polyamines, kukoamine A and B, were comparatively
investigated for their antioxidant and cytoprotective effects in Fenton-damaged bone marrow-derived
mesenchymal stem cells (bmMSCs). When compared with kukoamine B, kukoamine A consistently
demonstrated higher IC50 values in PTIO•-scavenging (pH 7.4), Cu2+-reducing, DPPH•-scavenging,
•O2

−-scavenging, and •OH-scavenging assays. However, in the PTIO•-scavenging assay, the IC50

values of each kukoamine varied with pH value. In the Fe2+-chelating assay, kukoamine B presented
greater UV-Vis absorption and darker color than kukoamine A. In the HPLC–ESI–MS/MS analysis,
kukoamine A with DPPH• produced radical-adduct-formation (RAF) peaks (m/z 922 and 713).
The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay suggested that both kukoamines
concentration-dependently increased the viabilities of Fenton-damaged bmMSCs at 56.5–188.4 µM.
However, kukoamine A showed lower viability percentages than kukoamine B. In conclusion, the two
isomers kukoamine A and B can protect bmMSCs from Fenton-induced damage, possibly through
direct or indirect antioxidant pathways, including electron-transfer, proton-transfer, hydrogen atom
transfer, RAF, and Fe2+-chelating. Since kukoamine B possesses higher potentials than kukoamine
A in these pathways, kukoamine B is thus superior to kukoamine A in terms of cytoprotection.
These differences can ultimately be attributed to positional isomeric effects.

Keywords: positional isomeric effect; antioxidant mechanisms; cytoprotective effect; kukoamine A;
kukoamine B; phenolic polyamine

1. Introduction

The majority of natural antioxidants are phenolic compounds, mainly including flavonoids,
phenolic acids, tannins, coumarins, and anthraquinone [1,2], while none of these contain a nitrogen
atom (N-atom) in their molecular scaffolds. In fact, natural antioxidants bearing a nitrogen atom
are relatively rare in natural products. As phenolic alkaloids naturally present in the dried root
bark of Lycium chinense, kukoamines A (KukA) and B (KukB) (Figure 1) however possess nitrogen
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atoms in their molecular structures, and they are actually spermine derivatives with dihydrocaffeoyl
groups [3,4]. It is well known that dihydrocaffeic acid and their analogs are potent natural antioxidants
with multiple mechanisms involving free radical scavenging and metal ion chelation [5]. Spermine is
a natural antioxidant, which plays an important role in many cellular processes including protection
of cells against oxidative damage by free radicals, and regulation of transcription and translation [5,6].
In recent years, increasing attention has been directed toward finding natural antioxidants for diseases
associated with oxidative stress. Hence, kukoamine with two pharmacophores in the backbone
structure is a promising candidate.
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Figure 1. Structures (above) and preferential conformation-based ball-stick models (below) of
kukoamine A (A,C) and kukoamine B (B,D). The ball-stick models were created using Chem3D
Pro 14.0.

Accumulated evidence from studies in vivo and in vitro indicates the neuroprotection of
kukoamines A and B against oxidative stress [7–11]. These neuroprotective effects have been reported
to be closely related to antioxidant action, because oxidative damage induced by reactive oxygen
species (ROS) is one of the main sources of neurotoxicity. To our knowledge, there is little literature on
the antioxidant mechanisms of kukoamines A and B so far.

As shown in Figure 1, kukoamines A and B are actually isomers of each other, and the only
difference between these two compounds is the position of dihydrocaffeoylation. Kukoamine A has
a linear-chain structure in which two dihydrocaffeoyl moieties are individually connected to two
terminal N-atoms; as for kukoamine B, one of the two dihydrocaffeoyl moieties is linked to one middle
N-atom, which forms a branched chain structure. Such positional isomerism differs considerably from
that of other phenols, e.g., ferulic acid and isoferulic acid. Ferulic acid is 3-hydroxy-4-methoxycinnamic
acid; whereas isoferulic acid is 4-hydroxy-3-methoxycinnamic acid. Such small differences cannot
change the molecular shape of these molecules. Therefore, there is no great difference in antioxidant
levels between ferulic acid and isoferulic acid [12].

In addition to the molecular shape, another point to be noted is that kukoamine A and kukoamine
B vary greatly in the relative distance of functional groups. As seen in Figure 1, the distance between
the two dihydrocaffeoyl moieties is farther in kukoamine A with a linear-chain structure than that
in kukoamine B. More importantly, the linear distance from the dihydrocaffeoyl moiety to the
N-atom is nearer in kukoamine B (branched chain structure) than that in kukoamine A. Thereby,
the dihydrocaffeoyl moiety and the N-atom in kukoamine B may interact with each other. This is well
documented as a positional isomeric effect [13]. In fact, similar isomeric effects have been reported
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to influence molecular crystallization, morphology, chirality, and phototoxicity [14,15]. Nevertheless,
there is no evidence regarding isomeric effect (especially positional isomeric effect) in antioxidants.

In this study, two phenolic alkaloids, kukoamines A and B, were comparatively investigated
using a cellular model and several typical antioxidant assays. The cellular model is based on bone
marrow-derived mesenchymal stem cells (bmMSCs) under oxidative stress. bmMSCs are considered
a highly promising source for cell-based tissue engineering and stem cell transplantation, but the
poor viability of transplanted cells caused by oxidative stress has been a bottleneck in the clinical
application of MSC transplantation [16]. Obviously, this study will be of great significance. Based on the
structural characteristics and bioactivity of kukoamine, the study will provide a novel candidate
for MSC transplantation therapy and many diseases involved in oxidative stress. It will also
contribute to better understand the antioxidant mechanisms of kukoamine, as well as other spermine
derivatives or phenolic alkaloids. Moreover, this work will give evidence of (positional) isomeric effect
in antioxidants.

2. Results and Discussion

It has been reported that oxidative damage lowers the viability of bmMSCs and limits their
transplantation in clinical applications [17]. Oxidative damage is well known to result from the
accumulation of ROS such as H2O2 molecules and •OH radicals. H2O2 molecules can transform into
•OH radicals via the Fenton reaction, under the catalysis of Fe2+ [18]. Thus, the mixture of H2O2

and Fe2+ is sometimes termed as the Fenton reagent. In fact, the Fenton reagent can also be found in
bmMSCs [19]. In our study, the Fenton reagent was used to induce oxidative damage of bmMSCs.
These Fenton reagent-damaged bmMSCs were assigned as the model group. As seen in Figure 2,
the model group showed only 39.6 ± 0.6% cellular viability, and the control group (without Fenton
reagent treatment) displayed 100% cellular viability. However, when the Fenton reagent-damaged
bmMSCs were further incubated with kukoamine A (or B) at 56.5–188.4 µM, the cellular viabilities were
concentration-dependently restored. These data suggest that both kukoamines possess cytoprotective
effects in Fenton-damaged bmMSCs. Such cytoprotective effects can be partly responsible for the
neuroprotective effects mentioned above, and predict that kukoamines may be a therapeutic candidate
in bmMSCs transplantation for clinical applications in nervous system diseases.
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Figure 2. Protective effects of kukoamine A and B against Fenton-induced damage in bmMSCs,
as measured in the MTT assay. These data represent the mean± SD (n = 5). * p < 0.05 vs. model. The Fenton
reagent (FeCl2 plus H2O2) was used to generate •OH radicals. MTT, 3-(-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide.

Our previous study pointed out that such cytoprotective effects are usually related to antioxidant
(especially ROS-scavenging) effects [20]. In order to explore this possibility, we performed a PTIO•
assay, a simple method newly developed by our team [21]. Similar to cellular ROS (e.g., •OH or
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•O2
−), a PTIO• radical is an oxygen-centered radical. However, it can exist stably in aqueous solution

(or buffer), and PTIO• scavenging can be easily measured in chemical solutions (or buffer). As shown in
Figure 3, both kukoamine A and B showed concentration-dependent increases in PTIO• scavenging up
to 100 µg/mL. These data indicated that kukoamine A and B could directly scavenge ROS, and direct
ROS-scavenging may be one of the mechanisms in their antioxidant action.

As shown in Figure 3B and Table 1, under different pH values (pH 4.0, 5.0, 6.0, 7.0, and 7.4),
each kukoamine presented different dose-response curves and different IC50 values. In general,
lower buffer pH values resulted in higher observed IC50 values. Such pH effects suggested that
the PTIO•-scavenging actions of kukoamines may be involved in the proton-transfer (H+-transfer)
pathway, and kukoamines have proton-transfer ability during direct ROS-scavenging processes. This is
partially supported by the fact that, in the reaction of PTIO• with ascorbic acid, proton-transfer
(or •H-transfer) signal was observed by HPLC-MS [21]. Kukoamine A and B, however, are thought to
partly ionize to give rise to H+ ion; and massive H+ ion in solution may suppress the H+ ionization
from phenolic kukoamines to lower the antioxidant potential [22].

On the other hand, even in the pH 4.0 or pH 5.0 buffers, kukoamines still exhibited good
concentration-dependent scavenging abilities (Figure 3). PTIO• scavenging at below pH 5.0 has been
proposed to be an electron-transfer process as demonstrated by cyclic voltammetry [23]. Therefore,
kukoamine A and B have electron-transfer potential. This possibility was further confirmed by evidence
from the Cu2+-reducing assay (Figure 4A), an electron-transfer-based metal reducing reaction.

Molecules 2018, 23, x FOR PEER REVIEW  4 of 13 

 

directly scavenge ROS, and direct ROS-scavenging may be one of the mechanisms in their antioxidant 

action. 

As shown in Figure 3B and Table 1, under different pH values (pH 4.0, 5.0, 6.0, 7.0, and 7.4), each 

kukoamine presented different dose-response curves and different IC50 values. In general, lower 

buffer pH values resulted in higher observed IC50 values. Such pH effects suggested that the PTIO•-

scavenging actions of kukoamines may be involved in the proton-transfer (H+-transfer) pathway, and 

kukoamines have proton-transfer ability during direct ROS-scavenging processes. This is partially 

supported by the fact that, in the reaction of PTIO• with ascorbic acid, proton-transfer (or •H-

transfer) signal was observed by HPLC-MS [21]. Kukoamine A and B, however, are thought to partly 

ionize to give rise to H+ ion; and massive H+ ion in solution may suppress the H+ ionization from 

phenolic kukoamines to lower the antioxidant potential [22]. 

On the other hand, even in the pH 4.0 or pH 5.0 buffers, kukoamines still exhibited good 

concentration-dependent scavenging abilities (Figure 3). PTIO• scavenging at below pH 5.0 has been 

proposed to be an electron-transfer process as demonstrated by cyclic voltammetry [23]. Therefore, 

kukoamine A and B have electron-transfer potential. This possibility was further confirmed by 

evidence from the Cu2+-reducing assay (Figure 4A), an electron-transfer-based metal reducing 

reaction. 

 

Figure 3. Concentration-response curves for kukoamine A and B in PTIO• scavenging at various pH 

values (pH 4.0, 5.0, 6.0, 7.0, and 7.4) (Trolox concentration response was measured only at pH 7.4 as a 

positive control. The concentration-response curves of Trolox are shown in Supplementary 1. Each 

value is expressed as the mean ± SD, n = 3; The IC50 values were detailed in Table 1). 

Of course, the electron and proton may be transferred together; a mechanism known as the 

hydrogen-atom-transfer (HAT) process [24]. To test this possibility, DPPH• scavenging was 

measured. In the DPPH• scavenging reaction, the HAT pathway has been proven to be 

indispensable, despite the fact that electron-transfer, sequential proton loss electron transfer (SPLET), 

proton-coupled electron transfer (PCET), electron-transfer, and radical adduct formation (RAF) may 

also take place [25–29]. The fact that kukoamine A and B could effectively scavenge DPPH• (Figure 

4B), implies that kukoamines possessed HAT potential as a direct antioxidant mechanism. After 

interacting with the HAT pathway, kukoamines may further react with DPPH• causing a RAF 

reaction [30]. 

To explore the RAF possibility, the reaction mixture of kukoamine A with DPPH• was 

investigated using HPLC–ESI–MS/MS analysis. Two MS peaks (m/z 922, 713) relevant to RAF have 

been found (Figure 5A). The peak at m/z 922 was proposed to be the molecular ion peak of the 

kukoamine A-DPPH• adduct; while the peak at m/z 713 was its fragment (Figure 5B). However, the 

observed peak strengths were very low. In the product of kukoamine B with DPPH•, however, no 

RAF was observed by HPLC–ESI–MS/MS analysis. These data suggest that the RAF reaction served 

as a minor antioxidant mechanism [30]. 

Figure 3. Concentration-response curves for kukoamine A (A) and kukoamine B (B) in PTIO•
scavenging at various pH values (pH 4.0, 5.0, 6.0, 7.0, and 7.4) (Trolox concentration response was
measured only at pH 7.4 as a positive control. The concentration-response curves of Trolox are shown
in Supplementary 1. Each value is expressed as the mean ± SD, n = 3; The IC50 values were detailed in
Table 1).

Of course, the electron and proton may be transferred together; a mechanism known as the
hydrogen-atom-transfer (HAT) process [24]. To test this possibility, DPPH• scavenging was measured.
In the DPPH• scavenging reaction, the HAT pathway has been proven to be indispensable, despite the
fact that electron-transfer, sequential proton loss electron transfer (SPLET), proton-coupled electron
transfer (PCET), electron-transfer, and radical adduct formation (RAF) may also take place [25–29].
The fact that kukoamine A and B could effectively scavenge DPPH• (Figure 4B), implies that
kukoamines possessed HAT potential as a direct antioxidant mechanism. After interacting with
the HAT pathway, kukoamines may further react with DPPH• causing a RAF reaction [30].

To explore the RAF possibility, the reaction mixture of kukoamine A with DPPH•was investigated
using HPLC–ESI–MS/MS analysis. Two MS peaks (m/z 922, 713) relevant to RAF have been found
(Figure 5A). The peak at m/z 922 was proposed to be the molecular ion peak of the kukoamine
A-DPPH• adduct; while the peak at m/z 713 was its fragment (Figure 5B). However, the observed
peak strengths were very low. In the product of kukoamine B with DPPH•, however, no RAF was
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observed by HPLC–ESI–MS/MS analysis. These data suggest that the RAF reaction served as a minor
antioxidant mechanism [30].
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Figure 5. HPLC-MS results of the reaction mixture of kukoamine A with DPPH• radicals: (A) main
RAF peaks of kukoamine A with DPPH•; (B) MS elucidation of radical adduct of kukoamine A
with DPPH•. (The MS spectra of kukoamine A and relevant MS spectra elucidation are shown in
Supplementary 2).

Besides direct ROS-scavenging potential, indirect antioxidant potential was also studied.
The so-called indirect antioxidant potential is actually Fe2+-chelation [24], because chelating catalyst
Fe2+ can greatly reduce •OH generation. In fact, modulation of metal homeostasis and the inhibition
of the Fenton reaction have been considered as one possible mechanism [31]. To test the Fe2+-chelation
ability, the mixtures of kukoamines with excessive Fe2+ were analyzed using UV-vis spectra. As seen
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in Figure 6A, the reaction mixture of kukoamine A and Fe2+ generated stronger peak absorption than
kukoamine A or Fe2+ solution alone. Meanwhile, the solution turned green in color. Similar changes
were also observed in the experiment with kukoamine B (Figure 6B). These changes clearly indicated
the occurrence of a Fe2+-chelating reaction. Thus, there is a possible Fe2+-chelation (i.e., indirect
antioxidant) during the antioxidant process. Previous reports [31] show the dihydrocaffeoyl moiety
acts as the ligand in Fe2+-chelation, thus, Fe2+-chelation reactions can be proposed as shown in Figure 7.
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Figure 6. The experimental results of UV-vis-spectra analysis of Fe2+-chelation with kukoamine A and B.
(A) kukoamine A; (B) kukoamine B; (C) solution appearances. ( 1©151.0 mmol/L Fe2+; 2© 0.2 mmol/L
kukoamine A; 3© reaction mixture of 151.0 mmol/L Fe2+ with 0.2 mmol/L kukoamine A for 0 min;
4© reaction mixture of 151.0 mmol/L Fe2+ with 0.2 mmol/L kukoamine A for 30 min; 5© reaction

mixture of 151.0 mmol/L Fe2+ with 0.2 mmol/L kukoamine A for 60 min; 6© 0.2 mmol/L kukoamine B;
7© reaction mixture of 151.0 mmol/L Fe2+ with 0.2 mmol/L kukoamine B for 0 min; 8© reaction mixture

of 151.0 mmol/L Fe2+ with 0.2 mmol/L kukoamine B for 30 min; 9© reaction mixture of 151.0 mmol/L
Fe2+ with 0.2 mmol/L kukoamine B for 60 min).
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Based on the above mechanistic studies, it can be presumed that kukoamines may exert their
ROS-scavenging actions via multiple mechanisms. These mechanisms include direct pathways (such
as proton-transfer, electron-transfer, HAT, and RAF), and an indirect pathway (i.e., Fe2+-chelation).
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This presumption is further supported by the findings of •OH-scavenging and •O2
−-scavenging

assays, two multi-pathways-based radical reactions [32–34]. As seen in Figure 4C,D, each of the
kukoamines could successfully scavenge •OH and •O2

− radicals, which are two free radicals occurring
in Fenton-treated cells.

However, in the above five spectrophotometry-based antioxidant assays (i.e., PITO•-scavenging
assay, Cu2+-reducing assay, DPPH•-scavenging assay, •OH-scavenging assay, and •O2

−-scavenging
assay), there are substantial differences in antioxidant levels between kukoamine A and B. Generally,
kukoamine B presented lower IC50 values than kukoamine A (Table 1), meaning that kukoamine
B has higher antioxidant potentials than kukoamine A via proton-transfer, electron-transfer,
and HAT mechanisms.

Table 1. The IC50 values of kukoamine A and B in various antioxidant assays.

Assays kukoamine A µg/mL (µM) kukoamine B µg/mL (µM) Trolox

PTIO•-scavenging (pH 7.4) 74.9 ± 2.3 (140.1 ± 4.3 a,B) 78.1 ± 2.6 (148.6 ± 5.0 a,B) 83.8 ± 5.4 (333.3 ± 21.5 b)
PTIO•-scavenging (pH 7.0) 63.1 ± 1.4 (118.9 ± 2.6 b,A) 15.6 ± 3.2 (29.4 ± 6.1 a,A) ND
PTIO•-scavenging (pH 6.0) 163.7 ± 14.5 (308.4 ± 27.2 b,D) 69.0 ± 4.1 (130.0 ± 7.6 a,B) ND
PTIO•-scavenging (pH 5.0) 147.3 ± 27.0 (277.6 ± 51.0 b,C) 94.4 ± 13.4 (177.9 ± 25.3 a,C) ND
PTIO•-scavenging (pH 4.0) 162.7 ± 3.3 (306.5 ± 6.1 b,D) 110.8 ± 9.4 (208.8 ± 17.7 a,D) ND

Cu2+-reducing 5.5 ± 0.2 (10.3 ± 0.3 b) 4.7 ± 0.2 (8.9 ± 0.3 a) 7.04 ± 0.1 (28.1 ± 0.5 d)
DPPH•-scavenging 46.0 ± 0.4 (86.6 ± 0.7 c) 39.1 ± 0.4 (73.7 ± 0.7 b) 14.5 ± 0.8 (58.1 ± 3.0 a)
•O2

--scavenging 213.0± 2.7 (401.4 ± 5.0 b) 147.6 ± 1.8 (278.2 ± 3.4 a) 111.9 ± 0.6 (447.2 ± 2.3 c)
•OH-scavenging 89.0 ± 1.7 (167.7 ± 3.2 b) 78.6 ± 4.7 (146.9 ± 8.8 a) 101.6 ± 4.0 (405.8 ± 16.0 c)

The IC50 value (in µg/mL unit) was defined as the final concentration of 50% radical inhibition or relative reducing
power, calculated by linear regression analysis, and expressed as the mean ± SD (n = 3). The linear regression was
analyzed by Origin 6.0 professional software. The IC50 value in µM units, with different superscripts (a, b, c, or d)
in the same row, and (A, B, C, or D) in the same column, are significantly different (p < 0.05). Trolox is the positive
control. N.D., not detected.

As mentioned above, kukoamine A and B are positional isomers. The only difference between them
is the dihydrocaffeoylation position. Thus, the difference in antioxidant levels can only be attributed to
the positional isomerization. Such positional isomeric effect is assumed to be from the interaction
between functional groups, such as a macrocycle by a hydrogen bridge between the hydrogen of
the chelate and middle N-atom, or a field inductive effect between the dihydrocaffeoyl moiety and
middle N-atom. Field inductive effects, however, have been reported to affect hydrogen abstraction
(i.e., hydrogen-atom-transfer) or proton dissociation (i.e., proton-transfer) of phytophenols [35–38].
Of course, the detailed interactions may be complicated and require further investigation in the future.

Moreover, such positional isomeric effects were found to affect Fe2+-chelation capacity, an indirect
antioxidant mechanism. As seen in Figure 6, solution 7© exhibited a stronger UV-vis spectral peak
than solution 3©, while solution 5© displayed a stronger UV-vis spectral peak and darker color than
solution 9©. These differences indicated that kukoamine B had kinetic and thermodynamic advantages
over kukoamine A in the Fe2+-chelation reaction. As shown in Figure 1, in the linear-chain kukoamine
A molecule, the two dihydrocaffeoyl moieties are too distant to jointly chelate Fe2+, hence they can
only chelate Fe2+ individually; In the branched-chain kukoamine B molecule, the two dihydrocaffeoyl
moieties can not only individually but also jointly chelate Fe2+, because the two dihydrocaffeoyl
moieties can possibly surround some Fe2+ in solution. As a result, kukoamine B exhibited higher
Fe2+-chelating levels than did kukoamine A.

The advantages in direct and indirect antioxidant potentials make kukoamine B superior to
kukoamine A in terms of cytoprotective effects (Figure 2).

3. Materials and Methods

3.1. Chemicals

Kukoamine A (CAS 75288-96-9, C28H42N4O6, MW. 530.7, 97%, Supplementary 3) and kukoamine B
(CAS 164991-67-7, C28H42N4O6, MW. 530.7, 97%, Supplementary 3) were obtained from Chengdu
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Biopurify Phytochemicals Ltd. (Chengdu, China). DPPH• (1,1-diphenyl-2-picrylhydrazyl radical),
Trolox (±-6-hydroxyl-2,5,7,8-tetramethlyhromane-2-carboxylic acid), pyrogallol and neocuproine
(2,9-dimethyl-1,10-phenanthroline) were purchased from Sigma Aldrich Trading Co. (Shanghai, China);
D-2-deoxyribose and ABTS [2,2′-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid diammonium salt)]
were obtained from Amresco Co. (Solon, OH, USA). Methanol and water were of HPLC grade.
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl (MTT) were purchased from Gibco (Grand Island, NY, USA); CD44 and Proteinase K
were purchased from Wuhan Boster Co., Ltd. (Wuhan, China). All other chemicals used were of
analytical grade.

Four-week old Sprague-Dawley (SD) rats were obtained from the Animal Center of Guangzhou
University of Chinese Medicine. These experiments were performed under the supervision of the
Institutional Animal Ethics Committee of the Guangzhou University of Chinese Medicine (Approval
number 20170306A).

3.2. Protective Effect against Fenton-Induced Damage to bmMSCs (MTT Assay)

bmMSCs culture was carried out according to our previous report [39] with slight modifications.
bmMSCs at passage 3 were detected for cell homogeneity based on CD44 expression by flow cytometry
(Figure 8). The protective effect of kukoamines against •OH radical-induced bmMSCs damage was
evaluated using the MTT assay [40]. The experimental protocol is briefly illustrated in Figure 9.

Figure 8. Experimental procedures for the preparation and culture of bmMSCs.

Figure 9. Experimental procedures for the MTT assay. Each test was repeated in five independent wells.
Fenton reagent: FeCl2 (100 µM) followed by H2O2 (50 µM); MTT: 5 mg/mL in PBS, 20 µL; PE-1420
Bio-Kinetics reader: Bio-Kinetics Corporation, Sioux Center, IA, USA.
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3.3. PTIO•-Scavenging Assay

The PTIO•-scavenging assay was conducted based on our previously published method [21].
The experimental procedures are briefly described in Figure 10. The PTIO• inhibition percentage was
calculated as follows:

Inhibition% =
A0 −A

A0
× 100% (1)

where A0 is the absorbance at 560 nm of the control without the sample, and A is the absorbance at
560 nm of the reaction mixture with the sample. The above experiment was repeated using phosphate
buffers with different pH values (including pH 4.0, 5.0, 6.0, and 7.0).

Figure 10. Experimental procedures for the PTIO•-scavenging assay. The above experiment was
repeated using phosphate buffers with different pH values, including pH 4.0, 5.0, 6.0, 7.0 and 7.4.

3.4. Cupric Ions (Cu2+) Reducing Antioxidant Power (CUPRAC) Assay

The CUPRAC assay was adapted from Apak’s method [41]. In brief, 125 µL CuSO4 aqueous
solution (10 mM), 125 µL neocuproine ethanol solution (7.5 mM) and (750 − x) µL CH3COONH4

buffer solution (100 mM, pH 7.0) were added to test tubes followed by different volumes of samples
(0.1 mg/mL, x= 30–150 µL). Then, the total volume was adjusted to 1000 µL with the buffer and mixed
vigorously. Absorbance against a buffer blank was measured at 450 nm after 30 min. The relative reducing
power of the sample as compared with the maximum absorbance was calculated using the formula:

Relative reducing effect% =
A−Amin

Amax −Amin
× 100% (2)

where Amax is the maximum absorbance at 450 nm and Amin is the minimum absorbance in the test.
A is the absorbance of the sample.

3.5. DPPH•-Scavenging Assay

The DPPH•-scavenging activity was evaluated by the method [42]. Briefly, 100 µL of DPPH•
solution (0.1 mM) was mixed with 50 µL sample ethanol solution of various concentrations.
The mixture was kept at room temperature for 30 min, and then the absorbance was measured
at 519 nm against ethanol (as a blank). The DPPH• inhibition percentage was calculated based on the
formula presented in Section 3.3.
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3.6. HPLC–ESI–MS/MS Analysis of the Reaction Products of Kukoamine A with DPPH•

Methanol solutions of kukoamine A and DPPH• radical were mixed with each other at a molar
ratio of 1:2, and the resulting mixture was incubated for 30 min at room temperature. The product
mixture was then filtered through a 0.22-µm filter and analyzed by a HPLC-ESI-MS/MS system
equipped with a C18 column (TC-C18, 250 × 4.6 mm, 5 µm, Agilent Technologies Co., Beijing, China).
The mobile phase was utilized for the separation and consisted of a mixture of methanol (phase A)
and water (phase B). The column was eluted at a flow rate of 0.3 mL/min with the following elution
program: 0–18 min, 75–84.5% A; 18–40 min, 85% A; 40–45 min, 75% A. The injection volume was
5 µL and the detection wavelength was set to 227 nm. Further analysis was performed on a triple
quadrupole mass spectrometer (TSQ Quantum Access MAX, Thermo Fisher Scientific Inc., Waltham,
MA, USA) equipped with an electrospray ionisation (ESI) source, which was run in negative mode.
The scan range was 100–1000 m/z. ESI parameters were optimized with direct infusion of dansylated
amine mixture by an external syringe and set as follows: capillary, +2.5 kV; nebulizer pressure, 30 psi;
dry gas flow, 5 arb; dry gas temperature, 180 ◦C. Argon was applied as the collision gas, and the
collision energy was set to 25–35 eV to provide some structural information and to focus ion flux.
High purity nitrogen was used both as a nebulizer gas and a drying gas. Reactants kukoamine A and
DPPH• radical were also comparatively measured under the same conditions.

3.7. Fe2+-Chelating Assay by Ultraviolet-Visible (UV-Vis) Spectra Analysis

The Fe2+-chelating ability was assessed by UV-Vis spectroscopy [28]. In brief, 100 µL sample
methanol solution (1 mg/mL) and 300 µL FeCl2•4H2O aqueous solution (100 mg/mL) were added to
600 µL of methanol-water (1:1, v/v), and mixed well. The resulting mixture was subsequently scanned
using a UV-vis spectrophotometer (Unico 2600A, Shanghai, China) from 200–800 nm in an hour. Next,
200 µL of the supernatant was transferred to a 96-well plate and photographed using a camera.

3.8. Deoxyribose Degradation Assay for •OH-Scavenging

The measurement of •OH radical-scavenging was conducted according to our previously
published method [43]. In brief, the sample ethanol solution (4 mg/mL, 9–45 µL) was separately
added into tubes. After evaporating the sample solutions in the tubes to dryness, 400 µL of phosphate
buffer (0.2 M, pH 7.4) was added to the sample residue. Then, 50 µL deoxyribose (50 mM), 50 µL
Na2EDTA (1 mM), 50 µL FeCl3 (3.2 mM), and 50 µL H2O2 (50 mM) were added. The reaction was
initiated by mixing 50 µL ascorbic acid (1.8 mM) and the total volume of the reaction mixture was
adjusted to 800 µL with buffer. After incubation at 50 ◦C for 20 min, the reaction was terminated
by addition of 250 µL trichloroacetic acid (10%, w/w). The color was then developed by addition
of 150 µL 2-thiobarbituric acid (5%, in 1.25% NaOH aqueous solution) and heated in an oven at
105 ◦C for 15 min. The mixture was cooled and absorbance was measured at 530 nm (Unico 2100
spectrophotometer, Shanghai, China) against the buffer (as a blank). The hydroxyl radical scavenging
activity was calculated based on the formula presented in Section 3.3.

3.9. Superoxide Anion Radical (•O2
−)-Scavenging Assay

The superoxide anion radical (•O2
−)-scavenging assay method was developed by our

laboratory [44]. Briefly, the sample was dissolved in ethanol at 1 mg/mL. The sample solution
(x µL, where x = 0, 50, 100, 150, 200 and 250 µL) was mixed with 2950-x µL Tris-HCl buffer (0.05 M,
pH 7.4) containing Na2EDTA (1 mM). When 50 µL pyrogallol (60 mM in 1 mM HCl) was added,
the mixture was shaken at room temperature immediately. The absorbance of the mixture at 325 nm
was measured (Unico 2100, Shanghai, China) against Tris-HCl buffer as a blank every 30 s for 5 min.
The •O2

− scavenging ability was calculated as:
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Inhibition% =

(
A325nm, control

T

)
−

(A325nm, sample
T

)
(

A325nm, control
T

) × 100% (3)

Here, ∆A325nm, control is the increase in A325nm of the mixture without the sample and
∆A325nm, sample is that with the sample; T = 5 min.

3.10. Statistical Analysis

Each experiment was performed in triplicate; the data were recorded as mean ± SD (standard
deviation). The dose-response curves were plotted using Origin 6.0 professional software (OriginLab,
Northampton, MA, USA). The IC50 value was defined as the final concentration of 50% radical
inhibition (or relative reducing power) [45]. Statistical comparisons were made by one-way ANOVA
to detect significant differences using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA) for windows.
p < 0.05 was considered to be statistically significant.

4. Conclusions

Two isomeric phenolic polyamines, kukoamine A and B, can protect bmMSCs from Fenton-induced
damage through direct antioxidant pathways (including electron-transfer, proton-transfer, hydrogen-atom-
transfer, and RAF), and an indirect antioxidant pathway (i.e., Fe2+-chelation). In these pathways,
kukoamine B always exhibits higher antioxidant levels than kukoamine A. Thus, kukoamine B is
superior to kukoamine A in cytoprotection. These differences can ultimately be attributed to positional
isomeric effects between the two kukoamines.

Supplementary Materials: The following are available online. Supplementary 1: Dose response curves of Trolox
in PTIO assay; Supplementary 2: MS spectra of kukoamine A; Supplementary 3: Certificate analysis of kukoamine
A and B.
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The following abbreviations are used in this manuscript:

ABTS 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt)
bmMSCs bone marrow-derived mesenchymal stem cells
DMEM Dulbecco’s modified Eagle’s medium
DPPH• 1,1-diphenyl-2-picryl-hydrazl radical
FBS fetal bovine serum
FRAP ferric-reducing antioxidant power
HAT hydrogen atom transfer
PTIO• 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical
ROS reactive oxygen species
RAF radical adduct formation
SD standard deviation
TPTZ 2,4,6-tris(2-pyridyl-s-triazine)
Trolox (±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid
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41. Apak, R.; Güçlü, K.; Ozyürek, M.; Esin, K.S.; Erçağ, E. The cupric ion reducing antioxidant capacity and
polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [CrossRef] [PubMed]

42. Li, X.; Lin, J.; Han, W.; Mai, W.; Wang, L.; Li, Q.; Lin, M.; Bai, M.; Zhang, L.; Chen, D. Antioxidant ability and
mechanism of rhizoma Atractylodes macrocephala. Molecules 2012, 17, 13457–13472. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/b922673g
http://www.ncbi.nlm.nih.gov/pubmed/20165796
http://dx.doi.org/10.1074/jbc.M308317200
http://www.ncbi.nlm.nih.gov/pubmed/12954619
http://dx.doi.org/10.1016/j.comptc.2017.02.005
http://dx.doi.org/10.3390/molecules21050604
http://www.ncbi.nlm.nih.gov/pubmed/27171068
http://dx.doi.org/10.1248/cpb.c15-00850
http://www.ncbi.nlm.nih.gov/pubmed/26842908
http://dx.doi.org/10.1021/jo802716v
http://www.ncbi.nlm.nih.gov/pubmed/19275193
http://dx.doi.org/10.3390/molecules21091246
http://www.ncbi.nlm.nih.gov/pubmed/27657022
http://dx.doi.org/10.1039/C7CP01716B
http://www.ncbi.nlm.nih.gov/pubmed/28480927
http://dx.doi.org/10.1016/j.cbi.2014.06.014
http://www.ncbi.nlm.nih.gov/pubmed/24973644
http://dx.doi.org/10.1016/j.jep.2006.04.029
http://www.ncbi.nlm.nih.gov/pubmed/16809011
http://dx.doi.org/10.1021/ja00144a014
http://dx.doi.org/10.1248/cpb.c15-00447
http://www.ncbi.nlm.nih.gov/pubmed/26633020
http://dx.doi.org/10.1021/jo3002134
http://www.ncbi.nlm.nih.gov/pubmed/22475027
http://dx.doi.org/10.1021/acs.jpca.5b10989
http://www.ncbi.nlm.nih.gov/pubmed/26653077
http://dx.doi.org/10.1021/ja5011674
http://www.ncbi.nlm.nih.gov/pubmed/24625033
http://dx.doi.org/10.1038/s41598-017-08024-8
http://www.ncbi.nlm.nih.gov/pubmed/28790397
http://dx.doi.org/10.1021/jo016234y
http://www.ncbi.nlm.nih.gov/pubmed/11950325
http://dx.doi.org/10.1111/j.1365-2184.2007.00431.x
http://www.ncbi.nlm.nih.gov/pubmed/17472727
http://dx.doi.org/10.1002/jccs.201600112
http://dx.doi.org/10.1080/09637480600798132
http://www.ncbi.nlm.nih.gov/pubmed/17135020
http://dx.doi.org/10.3390/molecules171113457
http://www.ncbi.nlm.nih.gov/pubmed/23149564


Molecules 2018, 23, 973 14 of 14

43. Li, X. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl
radical-scavenging. Food Chem. 2013, 141, 2083–2088. [CrossRef] [PubMed]

44. Li, X. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable
for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [CrossRef] [PubMed]

45. Li, X.C.; Mai, W.Q.; Chen, D.F. Chemical study on protective effect against hydroxyl-induced DNA damage
and antioxidant mechanism of myricitrin. J. Chin. Chem. Soc. 2014, 61, 383–391. [CrossRef]

Sample Availability: Sample of the compound kukoamines A is available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foodchem.2013.05.084
http://www.ncbi.nlm.nih.gov/pubmed/23870931
http://dx.doi.org/10.1021/jf204970r
http://www.ncbi.nlm.nih.gov/pubmed/22656066
http://dx.doi.org/10.1002/jccs.201300396
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Chemicals 
	Protective Effect against Fenton-Induced Damage to bmMSCs (MTT Assay) 
	PTIO-Scavenging Assay 
	Cupric Ions (Cu2+) Reducing Antioxidant Power (CUPRAC) Assay 
	DPPH-Scavenging Assay 
	HPLC–ESI–MS/MS Analysis of the Reaction Products of Kukoamine A with DPPH 
	Fe2+-Chelating Assay by Ultraviolet-Visible (UV-Vis) Spectra Analysis 
	Deoxyribose Degradation Assay for OH-Scavenging 
	Superoxide Anion Radical (O2-)-Scavenging Assay 
	Statistical Analysis 

	Conclusions 
	References

