
Citation: Songsomboon, K.;

Crawford, R.; Crawford, J.; Hansen,

J.; Cummings, J.; Mattson, N.;

Bergstrom, G.C.; Viands, D.R.

Genome-Wide Associations with

Resistance to Bipolaris Leaf Spot

(Bipolaris oryzae (Breda de Haan)

Shoemaker) in a Northern

Switchgrass Population (Panicum

virgatum L.). Plants 2022, 11, 1362.

https://doi.org/10.3390/

plants11101362

Academic Editors: Tomislav Duvnjak

and Aleksandra Sudarić
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Abstract: Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield
reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study
aimed to determine the resistant populations via multiple phenotyping approaches and identify
potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern
association panel. The disease resistance was evaluated from both natural (field evaluations in
Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and
leaf disk assays). The most resistant populations based on a combination of three phenotyping
approaches—detached leaf, leaf disk, and mean from two locations—were ‘SW788’, ‘SW806’, ‘SW802’,
‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’. The GWAS from the association
panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N,
and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging
from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the
potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins,
homeostatic proteins, anti-apoptotic proteins, and ABC transporter.

Keywords: disease resistance; Bipolaris leaf spot; switchgrass; genome-wide association

1. Introduction

Switchgrass (Panicum virgatum L.) is a perennial biomass crop native to North America.
Biomass and other agronomic traits have been the focus of breeding programs [1–4].
Although many diseases have been reported to cause deleterious effects on yield, research
on disease resistance, especially breeding for the resistance, is scarce. Only 47 of the 2328
research articles directly related to diseases in switchgrass [5]. Bipolaris oryzae (Breda de
Haan) Shoemaker (teleomorph: Cochliobolus miyabeanus) is one of the major fungi causing
Bipolaris leaf spot (BLS) in switchgrass that can reduce biomass by 70% [6]. To manage the
disease, breeding is one of the most economical approaches [7].

The natural distribution of switchgrass stretches latitudinally across North America
east of the Rocky Mountains. By simple morphological differentiation, switchgrass can
be separated into two groups of upland and lowland ecotypes. Upland ecotypes are well
adapted to higher latitudes and have higher drought tolerance, whereas lowland ecotypes
provide higher yield and require more water [8]. The more in-depth genetic diversity
was revealed by the Network-Based single nucleotide polymorphism (SNP) discovery
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protocol [9]. It suggested the differentiation of switchgrass groups by isolation-by-ploidy,
the migration from south to north, and the incidence of tetraploid upland from octaploid
upland. Such a large diversity of switchgrass populations can provide a source of disease
resistance [10].

Plant-pathogen interactions are complicated. The basal defense is initiated when con-
served molecular signatures of pathogens called pathogen-associated molecular patterns
(PAMPs) are recognized by plant pattern recognition receptors (PRRs). Such a recogni-
tion activates PAMP-triggered immunity (PTI). Successful pathogens can suppress PTI
by secreting virulent effector proteins. These effectors then trigger the second line of de-
fense called effector-triggered immunity (ETI), mediated by resistance R genes [11]. In
a biotrophic pathogen, a gene-for-gene interaction between resistance R genes of plant
and avirulent (Avr) genes of the pathogen results in a hypersensitive response leading
to local programmed cell death and stopping colonization conferring resistance. Since
B. oryzae is a necrotrophic pathogen [12], the interaction between switchgrass and the
fungus was modeled potentially as an inverse gene-for-gene model [13]. In general, the
pathogen secretes necrotrophic effectors as host-selective toxins (HST), such as SnTox1
from Stagonospora nodorum, T-toxin from Cochliobolus heterostrophus, and HC-toxin from C.
carbonum [14–16]. The toxins interact with host sensitivity genes, resulting in a compatible
susceptible interaction to trigger host cell death [17]. Such an interaction is known as
effector-triggered susceptibility (ETS). Although crude extract from B. oryzae was proposed
to contain HST [18], the toxin has never been characterized. Instead, according to a com-
parative genome study [19] and screening on a wide range of hosts [20,21], B. oryzae does
not produce any HST but produces ophiobolin A and B as a non-host-selective toxin [22],
triggering many pathways such as reactive oxygen species (ROS) detoxification, protein
phosphorylation, and ethylene production [23,24].

Such an ETS interaction suggested that susceptible cultivars can rapidly screen for
pathogens carrying the necrotrophic effectors [25]. Breeding for the improvement of
resistance to BLS can be done by eliminating susceptible alleles from the population.
However, the recurrent phenotypic selection for the resistance in upland switchgrass
cultivars ‘Shelter’ and ‘Cave-in-Rock’ for two cycles of selection did not improve resistance
to BLS [26]. The screening was done in a seedling stage; therefore, future breeding for
the resistance with different screening methods, in different growth stages, and in bigger
populations was suggested. Identification of resistant genotypes or populations is still in
need.

To accelerate breeding for disease resistance, genomics-assisted breeding is an impor-
tant approach [27]. Basically, it begins with gene identification, isolation, cloning, functional
characterization, validation, and utilization. There are two main approaches to identify
resistance genes in a diverse population: linkage mapping and genome-wide association
studies (GWAS). Although GWAS cannot confirm the causal polymorphism, it depends on
linkage disequilibrium (LD) that potentially links between the markers and the causal poly-
morphisms. The diversity panel contains high allelic diversity and ancestral recombination
events resulting in a finer resolution than linkage mapping [28]. The technique has been
used to dissect flowering time in switchgrass [29]. Although GWAS has never been used
to dissect disease resistance in switchgrass, it has successfully dissected resistance to leaf
rust caused by Puccinia triticina Eriks., tan spot caused by Pyrenophora tritici-repentis (Die.)
Shoemaker and stripe rust caused by Puccinia striiformis in wheat (Triticum aestivum L.) [25].
Despite no resistance genes to BLS identified in switchgrass, there were 13 SNP markers
from quantitative trait loci (QTLs) linked with the resistance in rice [30,31]. This study will
provide the first dissection of the resistance to BLS in switchgrass.

The objectives of this study were (1) to determine genotypes from the northern switch-
grass association panel that can be candidates for resistance to BLS, (2) to dissect the
resistance to BLS in the association panel via GWAS, and (3) to explore the genes linked
to the significant markers from the GWAS to determine potential candidate genes for
resistance to BLS.
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2. Results
2.1. Phenotyping and Correlation between Traits

The association panel of 478 genotypes from 66 populations was evaluated for the
severity of BLS from the mean of Bipolaris lesion percentage from detached leaf assay
by vision (DTVI), by image analysis (DTIA), the severity from the leaf disk assay by
vision (DSVI), by image analysis (DSIA), mean of two locations (Ithaca, New York and
Phillipsburg, Philadelphia), the highest scores between two locations (MTL), mean in New
York (NY), the highest score in NY (MNY), mean in Philadelphia (PA), and highest score
in PA (MPA) based on population (rank). ‘Population’ in this study meant a seed source
with a specific origin and, in some cases, breeding history. ‘Genotype’ meant the individual
plants propagated from populations.

The results from the detached leaf showed that ‘ECS.6’ had the lowest severity and
‘SW115’ had the highest severity among populations (Table S1). When comparing among
genotypes, ‘SW788.05’ showed the lowest severity, whereas ‘SW63.05’ showed the highest
severity (Table S2). The result from the leaf disk assay showed that ‘SW803’ showed the
lowest severity, and ‘SW38’ showed the highest severity. In the genotype-based comparison,
‘High Tide.02’ showed the lowest severity. Eighty-one genotypes showed the highest
severity. In artificial inoculations, both detached leaf and leaf disk assays suggested that
the lowland ecotypes (DTVI 43%, DTIA 21%, DSVI 43%, and DSIA 70%) were significantly
more resistant than upland ecotypes (DTVI 61%, DTIA 39%, DSVI 67%, and DSIA 89%)
(p-value < 0.05) (Table S3).

In the field evaluation based on the mean of the severity score (0 to 5) from two
locations, ‘Shelter’ showed the lowest severity (0.44) and ‘SW787’ showed the highest
severity. However, when considering each location, different populations performed
differently. In comparison between NY and PA, Wilcoxson’s rank test of the severity
showed significant difference between the two locations (p-value = 0.042). The re-ranking
incidence across locations indicates the significant GxE effect [32]. In NY, SW803 showed
the lowest severity (0.22), and ‘SW787’ showed the highest severity (3.0). Whereas in PA,
‘Shelter’ showed the lowest severity (0.33), and ‘Pathfinder’ showed the highest severity
(2.9). Between the two locations, ‘SW123’, ‘SW33’, ‘SW793’, ‘SW781’, ‘High Tide’, and
‘Timber’ had the lowest MTL at 3 (resistant), and 41 populations had the highest MTL at
5 (susceptible). In NY, ‘SW123’, ‘SW128’ and ‘ECS.6’ had the lowest MNY at 2, and 32
populations had the highest MNY at 5. In PA, ‘SW115’, ‘SW802’, ‘SW31’, and ‘SW43’ had the
lowest MPA at 2, and 19 populations had the highest MPA at 5. Although each phenotyping
approach cannot determine a single resistant population, a ranking of detached leaf, leaf
disk, and mean from two locations showed that ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’,
‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’ were always in the lowest severity
group and can be the source of resistance (Table S1). When comparing ecotypes, the field
evaluation of means between two locations showed a trend of more resistance in lowland
than upland ecotypes significantly (Figure S1 and Table S1). The difference between lowland
and upland ecotypes also occurred in NY and PA. The severities based on genotypes in
each phenotyping approach were listed (Table S2).

Broad-sense heritabilities (H2) in different groups of genotypes were similar across
groups with some variations (Table 1). For example, H2 from DSIA in upland was only 0.14
while other groups had around 0.40. Although the severity from different phenotyping
approaches in different groups had significantly moderate to high H2, H2 of severity from
two locations was zero. This was supported by the significantly different mean of severity
from two locations, NY and PA (Figure S1 and Wilcoxson p-value = 0.042). The different
rankings did not only show in the field evaluation, but the other phenotyping approaches
also gave different rankings of resistance from DTIA, DSIA, and mean from two locations
and correlation among the traits (Figure S2 and Wilcoxson’s p-value < 2.2 × 10−16). For
example, from 478 genotypes, ‘KY1625_07’ ranked 27th from DTIA but ranked 329th in
DSIA and 100th in mean from two locations. Such differences led to a low correlation
among approaches. The r2 between DTIA and DSIA was only 0.1 and between DTIA and
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the mean of two locations (TL) was 0.03 (Figure 1). In contrast to these low correlations,
there were high correlations in DTVI-DTIA (r2 = 0.84) and DSVI-DSIA (r2 = 0.85). There
was no correlation between BLS resistance and other agronomic or biomass quality traits
(Figure S3).

Table 1. Broad-sense heritability of each trait in each group.

Traits
H2 ± s.e.

478
Genotypes 4X 8X Lowland Upland

Severity from the detached leaf via
vision (DTVI) 0.76 ± 0.02 0.84 ± 0.04 0.66 ± 0.06 0.87 ± 0.03 0.71 ± 0.05

Severity from the detached leaf via
image analysis (DTIA) 0.74 ± 0.06 0.78 ± 0.05 0.72 ± 0.03 0.81 ± 0.06 0.68 ± 0.02

Severity from the leaf disk assay via
vision (DSVI) 0.76 ± 0.05 0.70 ± 0.02 0.74 ± 0.05 0.35 ± 0.04 0.63 ± 0.04

Severity from the leaf disk assay via
image analysis (DSIA) 0.5 ± 0.04 0.33 ± 0.06 0.52 ± 0.04 0.45 ± 0.05 0.14 ± 0.03

Severity in the field of the two locations 0.003 ± 0.06 0.003 ± 0.04 0.1 ± 0.05 0.001 ± 0.08 0.08 ± 0.06

Severity in field from NY 0.32 ± 0.05 0.31 ± 0.05 0.29 ± 0.04 0.38 ± 0.03 0.29 ± 0.04

Severity in field from PA 0.61 ± 0.04 0.68 ± 0.03 0.52 ± 0.02 0.78 ± 0.05 0.51 ± 0.03
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Figure 1. Correlation plot among BLUPs of severity from the detached leaf via vision (DTVI), via
image analysis (DTIA), from leaf disk assay via vision (DSVI), via image analysis (DSIA), the highest
score between two locations (MTL), mean from the two locations (TL), minerals total ash, in vitro
dry matter digestibility, cell wall concentration, and ethanol conversion per day from a previous
study [33].

Additionally, Qst-Fst comparisons were used to investigate whether the mean differ-
ence of each phenotype among populations is greater than the expected mean difference
under genetic drift. None of the traits (DTVI, DTIA, DSVI, and DSIA) has Qst-Fst signifi-
cantly more than zero (Figure S4), showing no positive selection for resistance to BLS in
populations.
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2.2. Linkage Disequilibrium, Principal Component Analysis and Admixture

To determine the intervals that were potentially linked to the significant markers from
GWAS, linkage disequilibrium (LD) decay was estimated by plotting the allele frequency
correlations (R2) against the physical distance in base pairs (Figure 2). In the full set of 478
genotypes, the LD decayed sharply within 20 kb and reached a plateau background within
50 kb. Therefore, in this study, we focused on genes within the 20 kb from the significant
SNPs.
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Figure 2. Scatter plot showing the linkage disequilibrium (LD) decay by plotting physical distance in
base pairs against the LD estimate as correlations (R2) in 478 genotypes. The LD (blue curve) decays
rapidly within 20 kb (solid red line) and reaches background levels around 50 kb (dashed red line).

Based on the principal component (PC) analysis and admixture, there was a population
structure in this association panel (Figure 3a). From PC1 and PC2, upland and lowland
ecotypes separated from each group. Moreover, within the lowland ecotype, the latitude of
the lowland can be distinguished to lowland north and south groups. The separation of the
upland ecotype can also be noticed in PC1 and PC3 that the upland north was grouped
apart from the other upland. Besides ecotypes, ploidy levels can be differentiated into
groups. Both lowland north and south, and upland north genotypes were tetraploid (4X),
while the upland east and upland west genotypes were octaploid (8X). In total, PC1, PC2,
and PC3 explained the variance due to the population of 49.35%. The admixture (Figure 3b)
also showed the distinction among five gene pools, including lowland North, lowland
South, upland East, upland North, and upland West.
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Figure 3. (a) The 478 switchgrass genotypes from the Northern Association Panel showed the
different distributions based on ecotype and region from principal component analysis (PC). Colors
represented different ecotypes, and shapes represented different ploidy levels. Percentage variances
explained by PCs were in parentheses. The lowland ecotype can be differentiated into two regions
from PC1 and PC2, and the upland ecotype can be grouped into three regions from PC1 and PC3. (b)
Admixture also showed the separations of the genotypes into five gene pools.

2.3. Genome-Wide Association and Candidate BLS Resistance Genes

We conducted GWAS with five subsets of genotypes, including 478, 4X, 8X, lowland,
and upland. Most of the single phenotypes did not show significant Manhattan peaks
or theoretically expected QQ-plots. To improve the association analysis, multiple com-
binations of BLS severity approaches were implemented. The full set of 478 genotypes
conducted the GWAS with the combination of three traits of DTVI, DTIA, and DSIA, which
showed 14 significant peaks over the FDR threshold (Figure 4a and Table 2).

To compare with reported BLS resistance genes from QTLs in rice [30], 13 SNPs on
three rice chromosomes within the LD of 200 kb were examined (Table S4). There were 278
genes linked to these markers. Among them, 172 genes were annotated with 134 biological
functions. The most frequent biological functions were Leucine-rich repeat family protein
(6), peroxidase precursor (6), transposon protein (6), nucleotide-binding sites–leucine rice
repeats (NBS-LRRs) type disease resistance protein (5), MYB family transcription factor (3),
dirigent (2), pentatricopeptide repeat (PPR) domain (2), fasciclin domain-containing protein
(2), flavin monooxygenase (2), and heavy metal associated domain (2). There were 151
genes from 278 genes that showed 16.7 hits on average from BLAST against the P. virgatum
genome v.4.1 (Table S5). The most hits of 207 were on Chr07N. The fewest hits of 58 were
on Chr04N.

In a tetraploid group, the two-approached combination of DSVI and MNY provided
three significant peaks with the expected QQ-plot (Figure 4b). Interestingly, one peak of
SNP Chr07N_61547213 on chromosome 7N from tetraploid group overlapped with the
same peak in GWAS from the 478 group. In the octaploid group, the two-approached
combination of DTVI-DSIA showed one significant peak on chromosome 9N (Figure 4c). In
the lowland group, the best GWAS was from the single trait mean of two locations yielding
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eight peaks (Figure 4d). In the upland group, the combination of DTIA-MTL gave the two
most significant peaks on chromosome 1k and 7K (Figure 4e).Plants 2022, 11, x FOR PEER REVIEW 7 of 24 
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Figure 4. (Left) Manhattan plot showed genetic association of (a) DTVI-DTIA-DSIA in 478 genotypes,
(b) DSVI-MNY in 4X genotypes, (c) DTVI-DSIA in 8X genotypes, (d) mean TL in lowland genotypes,
(e) DTIA-MTL in upland genotypes. The black dashed line represented the FDR threshold (0.1),
and the red dashed line represented the Bonferroni correction threshold. On the x-axis, the physical
positions of the SNPs were aligned in 18 chromosomes of P. virgatum. (Right) Quantile-quantile (QQ)
plots between the distributions of observed to expected p-values for GWAS of each trait combination
in each genotype group. Abbreviations: BLUPs of severity from the detached leaf via vision (DTVI),
BLUPs of severity from the detached leaf via image analysis (DTIA), BLUPs of severity from the leaf
disk assay via vision (DSVI), BLUPs of severity from the leaf disk assay via image analysis (DSIA),
mean of field evaluation of BLS in two locations (mean TL), the highest score of BLS in NY (MNY),
and the highest score of BLS in the two locations (MTL).



Plants 2022, 11, 1362 8 of 21

Table 2. Markers significantly associated with resistance to Bipolaris leaf spot in five GWAS analyses.

Cases SNP Chromosomes p-Value Distance from
Genes (bp)

P. Virgatum
Gene Orthologous Genes Identity Predicted

Functions

47
8-

D
TV

I-
D

TI
A

-D
SI

A

Chr02K_29538993 Chr02K 3.30 × 10−6 1083 Pavir.2KG226200 Pahal.B01583.1 Pha 99.6

Zinc-binding
finger, Glycosyl

transferase,
cellulose

biosynthesis

Chr02N_74508772 Chr02N 1.76 × 10−5 899 Pavir.2NG397900 Pahal.B03217.1 Pha 97.2
GDP-fucose
protein O-

fucosyltransferase

Chr02N_79645558 Chr02N 1.00 × 10−5 1496 Pavir.2NG424700 Sobic.002G259700.1 Sbi 98.4

Pyruvate
dehydrogenase

(acetyl-
transferring)

Chr02N_88427045 Chr02N 5.70 × 10−6 1046 Pavir.2NG500000 Pahal.B04009.1 Pha 100 Casein kinase II,
beta subunit

Chr03K_26598614 Chr03K 9.25 × 10−6 1239 Pavir.3KG329700 Sevir.3G174000.1 Svi 90.6 DNA polymerase
III

Chr03K_28867984 Chr03K 8.31 × 10−6 788 Pavir.3KG358400 Sevir.3G185400.1 Svi 93.3 Serine
aminopeptidase

Chr04N_47494808 Chr04N 8.29 × 10−6

235 Pavir.4NG267200 Sobic.010G215800.1 Sbi 78.2
OSIGBa0118P15.3
relating to protein
hydrolase activity

8698 Pavir.4NG267500 LOC_Os06g44890.1 Osa 93.3
Villin as an

anti-apoptotic
protein

Chr05K_5450256 Chr05K 7.26 × 10−6 47 Pavir.5KG028600 Pahal.E04447.1 Pha 97.5 Tetratricopeptide
repeat

Chr05K_90814719 Chr05K 8.62 × 10−7 321 Pavir.5KG482000 Zm00008a014067_T0 Zma 94.9 ABC transporter

Chr07K_50656672 Chr07K 1.22 × 10−5 207 Pavir.7KG196600 Zm00008a007144_T01 Zma 95.2
Interleukin-1

receptor-associated
kinase

Chr07K_56339702 Chr07K 4.94 × 10−6
756 Pavir.7KG255200 Pahal.G01334.1 Pha 92.1 Uncharacterized

ACR, COG1399

930 Pavir.7KG255000 LOC_Os04g44320.1 Osa 84.2 Oligopeptide
transporter protein

Chr07N_48546809 Chr07N 9.13 × 10−7 524 Pavir.7NG240300
* LOC_Os04g39430.1 Osa 88.1

Cytochrome P450
CYP4/CYP19/CYP26

subfamilies

Chr07N_61547213 Chr07N 2.18 × 10−7 571 Pavir.7NG322400 LOC_Os04g51350.1 Osa 91.1 PPR repeat family

Chr09N_106831822 Chr09N 5.42 × 10−6

20 Pavir.9NG844100 Sobic.001G445100.1 Sbi 73.5
Putative

uncharacterized
protein

9902 Pavir.9NG844200 GRMZM2G118497_T0 Zma 98.5
Mitochondrial Fe2+
transporter MMT1
and metal tolerate

4X
-D

SV
I-

M
N

Y

Chr03K_8647071 Chr03K 3.12 × 10−6 733 Pavir.3KG095300 Sobic.009G005500.1 Sbi 93.6
Histone

acetyltransferases
subunit 3

6957 Pavir.3KG095200 Sobic.009G005400.1 Sbi 96.8
Peroxisomal

membrane protein,
ABC transporter

Chr03N_12119852 Chr03N 7.69 × 10−7 2038 Pavir.3NG101800 LOC_Os12g22284.1 Osa 89.3 ABC-2 type
transporter

Chr07N_61547213 Chr07N 1.66 × 10−6 571 Pavir.7NG322400 LOC_Os04g51350.1 Osa 91.1 PPR repeat family

8X-
DTVI-
DSIA

Chr09N_3891068 Chr09N 2.66 × 10−7 535 Pavir.9NG061100 Sobic.001G040600.1 Sbi 94.3

DNA
topoisomerase

(ATP-hydrolyzing),
dirigent
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Table 2. Cont.

Cases SNP Chromosomes p-Value Distance from
Genes (bp)

P. Virgatum
Gene Orthologous Genes Identity Predicted

Functions

lo
w

la
nd

-m
ea

n
T

L

Chr01K_36400224 Chr01K 3.08 × 10−6

1354 Pavir.1KG225400 Sobic.004G141800.2 Sbi 96
Similar to

Os02g0469200
protein

10,167 Pavir.1KG225100 Sevir.1G159400.1 Svi 88 MORC family
ATPases

Chr05N_24540124 Chr05N 5.43 × 10−6 1020 Pavir.5NG192000 Sevir.5G038000.1 Svi 100 COP9 signalosome
complex

Chr05N_35504012 Chr05N 2.47 × 10−6 360 Pavir.5NG248900 Sevir.5G193800.1 Svi 88.5
Basic leucine
zipper (bZIP)

transcription factor

Chr05N_84742282 Chr05N 5.20 × 10−6 1309 Pavir.5NG476900 Zm00008a032406_T01 Zma 71.5 TB2/DP1, HVA22
family

Chr06N_14870066 Chr06N 2.40 × 10−6 1766 Pavir.6NG083100 Sevir.6G037200.1 Svi 97.6 Homeobox-leucine
zipper protein

Chr07N_22055455 Chr07N 1.89 × 10−5 1088 Pavir.7NG091000 Sobic.010G276700.1 Sbi 98.2 Sucrose synthase

Chr09N_17627471 Chr09N 1.47 × 10−5 2258 Pavir.9NG173600 Pahal.I02469.1 Pha 92.7
Phytochrome-

interacting factor
4

Chr09N_82637734 Chr09N 1.16 × 10−6 1030 Pavir.9NG499500 Zm00008a001876_T01 Zma 95.3 Alpha/beta
hydrolase family

up
la

nd
-D

TI
A

-M
TL

Chr01K_61692577 Chr01K 1.52 × 10−6 6831 Pavir.1KG372200 Sobic.010G272700.1 Sbi 53.6 Exo70 exocyst
complex subunit

2646 Pavir.1KG372200 Zm00008a022268_T01 Zma 95.9 Nicotinamidase

Chr07K_54502620 Chr07K 4.48 × 10−6 3810 Pavir.7KG238800
* LOC_Os04g43730.1 Osa 73.6

Calcium-binding
EGF domain
(EGF_CA),

Wall-associated
receptor kinase
galacturonan-

binding

* P. virgatum genes that overlap with the BLAST hits from BLS resistance genes from Oryza sativa, Osa gene from
Oryza sativa, Pha gene from Panicum hallii, Sbi gene from Sorghum bicolor, Svi gene from Setaria viridis, Zma gene from
Zea may.

In this study, therefore, we focused on five selected GWAS analyses, including 478-
DTVI-DTIA-DSIA, 4X-DSVI-MNY, 8X-DTVI-DSIA, lowland-mean TL, and upland-DTIA-
MTL (Figure 4). In total, there were 27 significant peaks (one overlapped between 478 and
the lowland group) across 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N,
and 9N. Accumulatively, when we considered phenotypic variance explained (PVE) by all
27 significant SNP markers for each trait, PVE of DSIA was the highest at 26.52% and PVE
of DTIA was the lowest at 3.28% (Table 3).

Table 3. The phenotypic variance explained (PVE) (adjusted PVE) by accumulative 27 significant
SNP markers across all analyses for each approach.

Traits PVE (Adjusted PVE)

DTVI 11.68 (6.38)

DTIA 8.76 (3.28)

DSVI 25.03 (20.53)

DSIA 30.68 (26.52)

mean TL 15.73 (10.67)

MNY 15.74 (10.68)

MTL 13.7 (8.52)

In 478-DTVI-DTIA-DSIA, the significant markers were on chromosomes 2K, 2N, 3K,
4N, 5K, 7K, 7N, and 9N. These 14 SNP markers explained phenotypic variances for DTVI,
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DTIA, and DSIA of 4.25, 1.77, and 22.62%, respectively (Table S6). In 4X-DSVI-MNY, there
were three SNPs on chromosome 3K, 3N, and 7N, accumulatively explaining 9.78% of
DSVI and 11.31% of MNY. In 8X-DTVI-DSIA, only one significant marker showed on
chromosome 9N, explaining 0.64% of DTVI and 11.31% of MNY. In lowland-mean TL, the
eight significant markers were on chromosomes 1K, 5N, 6N, 7N, and 9N, explaining 45%
of mean TL. In up-DTIA-MTL, the significant markers were on chromosome 1K and 7K
explaining 5.03% of DTIA and 7.77% of MTL. The PVEs of each SNP in each subgroup and
each trait were reported in Table S7.

In addition to the effect size of each SNP on each trait via PVE, the direction and
inheritance of genotypic effects were shown in the format of the allele combination effect
of each SNP on phenotypes (Figure 5). Of 27 SNPs, there were 11 SNPs that showed
dominant effects, such as Chr05K.5450256 (Figure 5a), Chr02N.79645558, Chr07k.50656672,
to name a few. Five SNPs showed overdominance, including Chr07N.61547213 (Figure 5b),
Chr09N.106831822, Chr05K.90814719, Chr09N.106831822, and Chr09N17627471. Only
Chr07N.48546809 showed an additive effect on DSIA as it contributes to the trait with PVE
at 2.31% (Figure 5c).

Plants 2022, 11, x FOR PEER REVIEW 11 of 23 
 

 

mean TL 15.73 (10.67) 

MNY 15.74 (10.68) 

MTL 13.7 (8.52) 

In 478-DTVI-DTIA-DSIA, the significant markers were on chromosomes 2K, 2N, 3K, 

4N, 5K, 7K, 7N, and 9N. These 14 SNP markers explained phenotypic variances for DTVI, 

DTIA, and DSIA of 4.25, 1.77, and 22.62%, respectively (Table S6). In 4X-DSVI-MNY, there 

were three SNPs on chromosome 3K, 3N, and 7N, accumulatively explaining 9.78% of 

DSVI and 11.31% of MNY. In 8X-DTVI-DSIA, only one significant marker showed on 

chromosome 9N, explaining 0.64% of DTVI and 11.31% of MNY. In lowland-mean TL, the 

eight significant markers were on chromosomes 1K, 5N, 6N, 7N, and 9N, explaining 45% 

of mean TL. In up-DTIA-MTL, the significant markers were on chromosome 1K and 7K 

explaining 5.03% of DTIA and 7.77% of MTL. The PVEs of each SNP in each subgroup 

and each trait were reported in Table S7. 

In addition to the effect size of each SNP on each trait via PVE, the direction and 

inheritance of genotypic effects were shown in the format of the allele combination effect 

of each SNP on phenotypes (Figure 5). Of 27 SNPs, there were 11 SNPs that showed dom-

inant effects, such as Chr05K.5450256 (Figure 5a), Chr02N.79645558, Chr07k.50656672, to 

name a few. Five SNPs showed overdominance, including Chr07N.61547213 (Figure 5b), 

Chr09N.106831822, Chr05K.90814719, Chr09N.106831822, and Chr09N17627471. Only 

Chr07N.48546809 showed an additive effect on DSIA as it contributes to the trait with PVE 

at 2.31% (Figure 5c). 

 

Figure 5. Examples of changes in DSIA associated with alleles at selected candidate SNP among 478 

genotypes. The “*” behind the SNP names mean P. virgatum genes that overlap with the BLAST hits 

from BLS resistance genes from Oryza sativa. (a) Chr05K.5450256 showed a dominant effect. (b) 

Chr07N.61547213 showed an overdominant effect. (c) Chr07N.48546809 showed an additive effect. 

The effects of three different allele combinations were tested at alpha = 0.05. “ns” means non-signif-

icant, “*” means significant at alpha 0.05, “**” means significant at alpha 0.01, “***” means significant 

at alpha 0.001, and “****” means significant at alpha 0.0001. 

When we compared these significant SNP markers from GWAS to the potential can-

didate genes for resistance to BLS in rice, Chr07N_48546809, on chromosome 7N from 478-

DTVI-DTIA-DSIA linking with Pavir.7NG240300 overlapped with the BLAST hit from 

LOC_Os04g39430.1 on rice chromosome 4 from AE11005627 marker (Tables S4 and S5). 

Moreover, Chr07_54502620, on chromosome 7K from up-DTIA-MTL linking with 

Pavir.7KG238800 overlapped with the BLAST hit from LOC_Os04g43730 on rice chromo-

some 4 from ad04009558 marker. 

3. Discussion 

Figure 5. Examples of changes in DSIA associated with alleles at selected candidate SNP among
478 genotypes. The “*” behind the SNP names mean P. virgatum genes that overlap with the BLAST
hits from BLS resistance genes from Oryza sativa. (a) Chr05K.5450256 showed a dominant effect.
(b) Chr07N.61547213 showed an overdominant effect. (c) Chr07N.48546809 showed an additive
effect. The effects of three different allele combinations were tested at alpha = 0.05. “ns” means
non-significant, “*” means significant at alpha 0.05, “**” means significant at alpha 0.01, “***” means
significant at alpha 0.001, and “****” means significant at alpha 0.0001.

When we compared these significant SNP markers from GWAS to the potential candi-
date genes for resistance to BLS in rice, Chr07N_48546809, on chromosome 7N from
478-DTVI-DTIA-DSIA linking with Pavir.7NG240300 overlapped with the BLAST hit
from LOC_Os04g39430.1 on rice chromosome 4 from AE11005627 marker (Tables S4 and
S5). Moreover, Chr07_54502620, on chromosome 7K from up-DTIA-MTL linking with
Pavir.7KG238800 overlapped with the BLAST hit from LOC_Os04g43730 on rice chromo-
some 4 from ad04009558 marker.

3. Discussion
3.1. The Most BLS Resistant Population

Since the various phenotyping approaches yielded various resistant populations, it
was challenging to determine the most resistant candidates for further breeding. Based
on the field evaluation, BLUPs from two locations were zero due to zero broad-sense
heritability. The different trend for BLS resistance between two locations was confirmed by
the significant rank test. This re-ranking incidence suggested that the resistance was under
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effects between two locations [32,34]. If the mean of field scores were used, the upland
‘Shelter’ should be considered one of the most resistant populations across two locations
with a mean of 0.44. The high resistance of ‘Shelter’ from field evaluation explained the
reason in the prior study that it cannot be improved for resistance to BLS via recurrent
phenotypic selection in seedlings. However, the one of most susceptible ‘SW787’ had a
mean score of 2.33 out of 5. This suggested the low natural inoculation in 2017. When
comparing each location, ‘SW803’ showed the lowest severity in NY but had the highest
score in PA at 2.11. Therefore, this location variation needs to be reduced.

To lessen the GxE effect on the BLS, artificial inoculation was conducted in the labo-
ratory. To handle the variation among sets and unbalanced design [35–38], BLUPs were
used by fitting the effect from the set as a fixed effect. With the high correlation between
vision and image analysis, the latter approach was recommended for the future BLS eval-
uation due to repeatability and reanalysis [39]. For the sake of comparison, the mean of
percentage lesion from image analysis was considered. In the detached leaf approach, the
lowest severity population from DTIA was ECS.6 at 8%, but the population appeared very
susceptible to DSIA at 94%. These supported the low correlation among all three disease
evaluation approaches. The low correlation between laboratory and field evaluations
could be explained by the different disease pressure between the two conditions. The
natural inoculation in the field varied by the weather condition of each year, whereas the
laboratory inoculation was conducted with a high inoculum concentration to maximize
the disease pressure that each genotype can respond to. Another counterintuition was the
low correlation between detached leaf assay and leaf disk assay. This can be the result
of the different ratios of leaf area to inoculum. The detached leaf assay used a 5-cm long
whole leaf applied by spraying inoculum, whereas the leaf disk assay used only an 8-mm
bored leaf section and a 2-microliter inoculum droplet on a single location. The difference
between spraying and droplet was also shown in the assessment of early blight (Alternaria
solani) in tomatoes [40].

The Qst-Fst of all phenotypes showed that none of them has gone under positive
selection across five ecotypes. This neutrality was not expected as most of the resistance
genes were hypothesized to be under natural selection [41–45]. However, neutral evolution
of resistance genes like NBS-LRRs can be undergone in a relaxed selective constraint.
For example, when pathogens are absent or at low frequency, the resistance genes may
experience much weaker or no cost of resistance [46]. Such a low disease pressure can be
noticed by means of field evaluation that the highest severity was only 2.33 from 5 (the
most severe).

3.2. Dissecting BLS Resistance

There were only two significant SNP markers that overlap with the BLAST hits of candi-
date resistance genes from rice Chr07N_48546809 from the 478 GWAS and Chr07K_54502620
from upland GWAS (Table 2 and Table S6). Chr07N_48546809 linked to Pavir.7NG240300
encoding for cytochromes P450, which involved diverse oxidation reactions and triter-
pene synthesis [47]. The most well-known triterpene against the fungal disease was
Avenacins in oats (Avena spp.). Chr07K_54502620 linked to Pavir.7KG238800 encoding
for EGF_CA, which has been proved to be the main structure of ZmWAK conferring
resistance to maize head smut by controlling the galacturonan-binding for cell wall media-
tion [48]. In addition to genes overlapping with the BLAST hits of the resistance rice genes,
Chr07N_61547213 showed a significant peak in both 478 and 4X GWAS. The SNPs linked
with Pavir.7NG322400 encoding for PPR repeat, which was one of the potential resistance
genes in rice. These PPR repeat families were commonly known for disease resistance
genes [49]. Pavir.2NG397900 encoding GDP-fucose protein O-fucosyltransferase relating to
cell wall development and disease resistance [50].

Although the rest of the significant peaks are unique within each group of GWAS,
we considered the biological functions for the resistance over the fixation of the alleles in
each population for a better resistance mechanism. In the full set of 478, on chromosome
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2N, Pavir.2KG226200 was predicted to function as a zinc-binding RING finger. The zinc
finger domains had the broad-spectrum nature of rice blast resistance gene Pi54 classed
as NBS-LRR, which played an important role in effector-triggered immunity (ETI) [51].
Moreover, this gene also encoded glycosyltransferase, which was responsible for cell wall
synthesis and modification, leading to disease resistance [52]. Pavir.2NG424700 encoded
for pyruvate dehydrogenase, which was a key protein in a tricarboxylic acid cycle. This
suggested the high energy-intensive resistance response as happened in wheat leaf rust
(Puccinia triticina Eriks) [53]. Pavir.2NG500000 encoded for casein kinase II. The protein
itself did not confer the resistance, but it was often found as many motifs in Mlo [54],
which was identified to provide broad resistance to powdery mildew in barley [55]. On
chromosome 3K, Pavir.3KG329700 encoded DNA polymerase III, mainly known for DNA
replications and repairing DNA damaged by hydrogen peroxide [56]. The DNA repair pro-
cess was a part of the plant immune response [57], especially in the infection of B. oryzae that
hydrogen peroxide was shown to accumulate in a leaf [23]. Pavir.3KG358400 encoded for
serine aminopeptidase that conferred no resistance but played a major role in necrosis [58].
On chromosome 4N, Chr04N_47494808 was more closely linked to Pavir.4NG267200,
which was predicted to have a hydrolase activity. The further gene, Pavir.4NG267500,
was encoded for Villin, which was tissue-specific actin modifying protein responsible for
anti-apoptotic activity suppressing necrosis [59,60]. On chromosome 5N, Pavir.5KG028600
encoded for tetratricopeptide repeat, which was one of five domains of the SGT1 resis-
tance gene in Arabidopsis [61]. Pavir.5KG482000 encoded for ATP-binding cassette (ABC)
transporter. There are many subgroups of ABC. In Arabidopsis, the mutant lacking the
ABC transporter of penetration3/pleotropic drug resistance8 (PEN3/PDR8) conferred non-
host susceptibility to Blumeria graminis, suggesting that the ABC transporter was involved
in exporting secreted toxins from the fungus and fungal suppressor from the host [62].
Moreover, in wheat, the ABC suggested the exportation of mycotoxin, conferring resis-
tance to Fusarium head blight [63]. On chromosome 7K, Pavir.7KG196600 encoded for
interleukin-1 receptor-associated kinase, which was the pathogen recognition resulting in
plant response [64]. Pavir.7KG255000 encoded for oligopeptide transporter protein, which
was also shown in rice QTL resistance to rice blast (Manaporthe grisea) [65]. Lastly, on chro-
mosome 9N, Pavir.9NG844200 encoded for Mitochondrial Fe2+ transporter MMT1. Despite
no direct report of resistance, mitochondria were proven to control redox homeostasis
under stress [66].

In GWAS from 4X-DSVI-MNY, on chromosome 3K, Pavir.3KG095200 encoded for
both peroxisomal membrane protein and ABC transporter. Due to the high involvement
of reactive oxygen species (ROS) in the infection of B. oryzae [67], peroxidase played an
important role in the pathogen-associated molecular pattern-triggered immunity (PTI) [68].
Additionally, Pavir.3NG101800 on chromosome 3N encoded ABC transporter.

The GWAS from 8X-DTVI-DSIA yielded only one significant SNP on chromosome
9N. Pavir.9NG061100 encoded for DNA topoisomerase and, more importantly, dirigent.
Dirigent protein conferred resistance by the lignin and lignan synthesis [69]. The lignin
synthesis was expected to relate to BLS resistance by strengthening cell walls [70].

In GWAS from lowland mean of two locations, on chromosome 1K, the further linked
Pavir.1KG225100 encoded for MORC family-ATPases. This protein was the key component
compromising the recognition of Turnip Crinkle Virus (CRT1) in Arabidopsis that was
required for PTI, basal resistance, no-host resistance, and systemic acquired resistance [71].
On chromosome 5N, Pavir.5NG192000 encoded for COP9 signalosome complex. Interest-
ingly, this signalosome complex interacts with SGT1, indicating the disease resistance [61].
Pavir.5NG248900 encoded basic leucine zipper (bZIP) transcription factor, which was a key
modulator in hypersensitive response and salicylic acid [72]. Pavir.5NG476900 encoded
for abscisic-acid-induced TB2/DP1, which was responsible for membrane turnover and
reduced unnecessary secretion against Southern corn leaf blight by Cochliobolus heterostro-
phus (Drechs.) Drechs. in maize [73]. On chromosome 6N, Pavir.6NG083100 encoded
homeobox-leucine zipper protein playing an important role in responses to abscisic acid
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under stress [74], transcriptional regulation for disease resistance in rice [75], and pro-
grammed cell death [76]. On chromosome 7N, Pavir.7NG091000 encoded sucrose synthase.
The hexose sensing was important to activate defense-related genes as well as repression of
photosynthetic genes [77]. On chromosome 9N, Pavir.9NG173600 encoded Phytochrome-
interacting factor 4. The photoreceptors in plants played an essential role in hydrogen
peroxide and ROS in the cell resulting in disease response [78]. Lastly, Pavir.9NG499500
encoded for alpha/beta hydrolase, which was a diversely biochemical protein family
involving the activation of hydrogen peroxide [79].

In the last GWAS from upland DTIA-MTL, Chr01K_61692577 was linked to two
interesting genes. First, Pavir.1KG372200 encoded Exo70 exocyst complex subunit, which
was required for recognizing the avirulent effector AVR-Pii from rice blast resulting in
ETI [80]. The other linked gene was Pavir.1KG372200 encoding for Nicotinamidase, which
showed resistance to tomato mosaic virus [81].

In conclusion, the resistance to BLS from the different phenotyping approaches with
low correlations suggested that resistance was sensitive to phenotyping methods in different
conditions. Although it is difficult to standardize the phenotyping approach that can take
into account all conditions, ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’,
‘SW803’, ‘SW795’, ‘SW805 should be considered as candidates for resistance. To increase the
statistical power in SNP detection, the five subgroups of populations were conducted with
multi-trait GWAS. The full population of 478 genotypes showed the most SNP markers that
can be considered as potential candidate genes related to resistance to BLS with reasonable
biological functions. Additionally, the SNP markers from the other subgroups provided
a broader resistance mechanism. Nevertheless, one needs to be prudent regarding the
utilization of these markers. The dependency of multi-trait GWAS to yield significant SNP
peaks brought the challenge for genomic-assisted breeding for resistance to BLS.

When we considered biological functions from the GWAS regardless of subgroups and
trait combinations, the defense mechanisms against BLS were complicated and multifaceted,
probably controlled by multiple small-effect alleles. The defense mechanism started from
basal defense via cell-wall mediated proteins and PTI via peroxidase. Then, ETI depending
on NBS-LRR and PPR repeat took place. The responses to necrosis were suppressed by
homeostasis and anti-apoptotic proteins. To our knowledge, this was the first research to
dissect the resistance to BLS in switchgrass. With the current power of detection within
the population, multi-trait GWAS can provide functional insight into the resistance within
multiple subgroups of genotypes.

4. Materials and Methods
4.1. Switchgrass in the Northern Association Panel

The switchgrass used in this study has been developed for accelerating breeding
progress, especially for bioenergy traits at northern latitudes [9,33]. The association panel
consisted of 478 genotypes from 66 populations representing the mostly upland northern
population and some southern lowland population (Table S8). ‘Population’ in this study
means a seed source with a specific origin and, in some cases, breeding history. Six to ten
seeds from each population were planted into individual plants called ‘genotypes.’ The
association panel was initially planted in Ithaca, NY, in 2008, and then vegetatively cloned
and planted in a randomized, complete block design with three replicates in 0.9 m spaced
planting in Ithaca, NY, USA and Phillipsburg, PA, USA, in 2016. No fungicide has been
applied to the field.

4.2. Disease Evaluation and Phenotype Processing

Since the recurrent phenotypic selection for resistance to BLS cannot improve the
trait from screening in the seedling stage [26], the phenotypic evaluations in this study
were explored in a mature stage under different conditions. Bipolaris leaf spot has been
evaluated in the fields to determine the resistance in natural incidence under different
environments and in the laboratory to minimize environmental effects on the resistance.
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Field evaluation was conducted in the same week in both locations in August 2017. Each
plant was visually evaluated by a single person to reduce the variance among persons, the
severity ranging from 0 to 5 as 0 = 0% BLS, 1 = 1–10% BLS, 2 = 11–25% BLS, 3 = 26–50%
134 BLS, 4 = 51–75% BLS, and 5 = 76–100% of the leaf area of the whole plant with BLS. In
addition to field evaluation, to minimize environmental effects, an artificial inoculation
in the laboratory was conducted. Disease severity was evaluated by detached leaf and
leaf disk assay by taking leaf samples from one replicate of genotypes in Ithaca, NY. In the
detached leaf assay, three healthy leaves were randomly selected from 30 cm below the top
of the shoot to control the same stage of leaf development. The leaves were cut into five
centimeters, washed with deionized water, placed in a pre-wet petri dish bedded with filter
paper, and kept cold in a cooler in the field, then refrigerated overnight.

The inoculum was prepared from a subculture of a single conidium isolated from
a ‘Carthage’ switchgrass leaf in the warm season biofuels field experiment in Ithaca, NY
(Waxman, 2011). The day after collecting the detached leaf, the three-week-old plate
was flooded, filtered via gauze, and the concentration adjusted to 105 conidia·mL−1 by
hemocytometer with two drops of Tween-20 per 100 mL. An airbrush pressuring at ten
psi was used to spray inoculum on each dry-surfaced adaxial side of the leaf on each
plate. After letting the droplets of inoculum dry and firmly attached to the leaf surface,
the plates were then sealed with paraffin tape to maintain high moisture conditions. Each
plate contained three detached leaves from one genotype. The plates were placed on the
table randomly and kept at room temperature with 12-h light for seven days showing
necrotic lesions (Figure 6). In each set of the experiment, 85 to 200 genotypes were sampled
with some overlapping genotypes in one to three duplicated plates and additional non-
inoculated plates as controls. The leaf samplings were done weekly from May to June
2017 and controlled the similar stage of a leaf by sampling from the same height from the
top. A total of seven sets of the experiment eventually covered all 478 genotypes. The
disease evaluation was conducted by vision and image analysis software. Both evaluations
were based on a percentage of leaves covered with lesions. The evaluation by vision was
from 0 to 100% with a 10% increment. Then, each leaf was dried and scanned with a
flatbed scanner (Canon CanoScan LiDE 700F manufactured by Canon Inc, Tokyo, Japan) at
a resolution of 1200 dpi, and images were saved in .tiff format. The best linear unbiased
predictions (BLUPs) were applied to extract random effects of the genotypes fitting the
experiment factor as a fixed effect [35–38].
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Figure 6. Detached leaf assay and leaf disk assay; (a) sealed plates of detached leaves under 12-h
light 25 ◦C; (b) control inoculated and (c) inoculated leaves at seven dpi were taped on white paper
with QR code label for scanning for image analysis. (d) A plate example of leaf disk assay at seven
dpi. Each plate consisted of 28 leaf disks. SW43_09 was used as a resistant check and SW122_02 as a
susceptible check. Two control leaf disks (yellow circles) and two inoculated leaf disks (red circles)
were included in all plates. The rest of the leaf disks (24) consisted of eight genotypes with three
replicates placed in a consecutive row from left to right.
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In the leaf disk evaluation, all 478 genotypes were collected on the same day in August
2017 by cutting the same age leaves from each genotype and keeping them refrigerated
overnight. On the next day, the leaves were washed with deionized water, surface dried,
bored by keeping the midrib in the middle into an 8-mm disk, and placed on a water
agar plate. There were 28 leaf disks in each plate, including four check disks (control and
inoculated disks of resistant ‘SW43_09’ and susceptible ‘SW122_02’) and three replicated
disks of eight genotypes (Figure 6d). The inoculum was prepared the same way described
above. For each leaf, 2 µL of inoculum was dropped in the middle of the right side of the
leaf. After letting the droplet dry, all 64 plates were sealed with paraffin tape to keep high
moisture, randomly placed on a table, and kept under 12-h light at room temperature. The
disease evaluation was conducted at seven dpi both by vision and image analysis software.
The percent of leaf disk covered with lesions and necrotic tissue was assessed by a vision
from 0% to 100% with 10% increments. Moreover, on the same day, a photo was taken of
each plate with a digital DSLR Canon Rebel T6 DSLR camera with a resolution of 2644 ×
3084 in .JPG.

Images from both detached leaf and leaf disk assays were analyzed using ImageJ
macro (the settings available upon request). In brief, each detached leaf or leaf disk was
measured for total leaf area and total necrosis lesion area (yellow and black area). The
percentage of the area covered with lesions was computed by dividing the total necrotic
lesion area by the total leaf area.

Package ‘LME4’ [82] in R was used to calculate BLUPs from various disease evalua-
tions. For the field evaluation, BLUPs were computed based on each location separately
and on the two locations combined using genotypes nested in populations and replicates
as random effects in each location model and populations as a fixed effect. BLUPs for the
two locations combined were fitted genotype nested in population, replicates, locations,
the interaction between genotypes and location, as random effects, and populations as
a fixed effect. In addition to generating BLUPs from field evaluation, the highest score,
which was the most severe symptoms observed from each location and two locations over
replicates, were used due to successful QTLs of resistance to foliar symptoms caused by
potato virus Y in autotetraploid potato (Solanum tuberosum L.) [83]. The highest scores
were used on the assumption that in the field, there was a chance that some replicates
may expose or avoid the pathogens differently. The maximum scores were considered the
worst response of each genotype. For disease evaluations under laboratory conditions,
since all phenotypes were expressed as percentages to leaf area, log transformation was
performed before computing BLUPs. For the detached leaf assay, BLUPs were computed
with experiment, genotype nested in populations, the interaction between genotypes and
experiment, plates within the experiment, and leaf replicates of genotypes as random
effects and populations as a fixed effect. For the leaf disk assay, BLUPs were calculated
with plates as a fixed effect and genotype, replicates within plates, and genotype within
plates as random effects and populations as a fixed effect. Broad-sense heritability was
estimated from variances in each model, and standard error was computed by the bootstrap
approach 1000 times (Supplement file). Moreover, phenotypic correlations were computed
between resistance to Bipolaris leaf spot to the other 20 morphological and biomass quality
traits from a previous study [33], such as plant height, anthesis date, acid detergent lignin,
minerals, ethanol·g−1 dry weight, etc.

Therefore, the resistance to BLS was evaluated via three approaches—detached leaf,
leaf disk, and field evaluation—providing phenotyped traits including BLUPs of detached
leaf percent lesion via vision and image analysis (DTVI and DTIA), BLUPs of leaf disk
percent lesion via vision and image analysis (DSVI and DSIA), the highest score from two
locations, NY and PA (MTL, MNY, and MPA).

4.3. Genotyping, Linkage Disequilibrium Analysis and Population Structure

The exome-capture sequencing was conducted as previously described [84]. In short,
the DNA of each genotype was processed via exome-capture using the Roche-Nimblegen
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exome-capture probe set [85] and DNA sequencing. The sequences were aligned to the P.
virgatum genome assembly v.4.1 (P. virgatum v.4.1 [86]) for SNP discovery [87]. The reads
were sorted with PicardTools version 2.1.1 [88] via functions of SortSam and MarkDupli-
cates. Samtools version 1.3.1 [89] was used to pile up files with base alignment quality
disabled and map quality adjustment disabled. In this calling, SNPs were required to be bi-
allelic, sequenced in all samples, be monomorphic in at least two samples, and filtered with
a minimum read mapping quality score of 30 and more than 5X coverage in more than 95%
of the samples. At each SNP, the genotype dosages range from zero to two copies of minor
alleles and can be nonintegers by using the EM algorithm [90]. Naturally, the switchgrass
association panel includes allopolyploid switchgrass: tetraploids (4×), octoploids (8x), and
hexaploids (6x). It was challenging to perform GWAS with polyploid models. In this study,
we modeled them under the assumption of disomic inheritance, similar to the study of
GWAS of flowering time in the previous study [29]. This was because tetraploid switchgrass
was confirmed to have disomic inheritance [91]. Although octaploid switchgrass had four
copies of each homologous chromosome, which made it difficult to precisely determine
heterozygous genotypes, the disomic segregation was used for the model with the caution
of the increasing standard error of estimates in GWAS. Moreover, linkage disequilibrium
(LD) was computed via the ‘-r2’ tag in PLINK as r2 between all SNPs within 1 MB and
recorded all values [92]. Principle component analysis was used to evaluate the population
structure via PCA in the FactoMineR package [93]. Additionally, ADMIXTURE was used
to evaluate population structure with five-fold cross-validation [94].

We were also interested in testing whether the variations in phenotypes were from the
high differentiation across five ecotypes (lowland north, lowland south, upland east, upland
north, upland west) based on Qst-Fst analysis. Estimated Qst-Fsts were computed by R
package “QstFstComp” by bootstrapping 1000 times by sampling random genotypes [95].

4.4. Candidate Genes Based on Resistance in Rice

Since B. oryzae is one of the major pathogens in rice (Oryza sativa), major resistant
QTLs have been identified in recombinant inbred lines (RILs) and doubled haploids (DH)
using restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR)
markers, and sequence-tagged site (STS) [30,31,94]. Three major QTLs in Chromosomes 1,
4, and 11 were then studied further in near-isogenic lines (NILs) and 13 SNP markers linked
with the resistance [30]. The NILs are BC3F5 between indica ‘Tadukan’ (resistance) and
temperate japonica ‘Koshihikari’ (susceptible). According to the previous GWAS in rice,
linkage disequilibrium (LD) was ~100 kb in indica and ~200 kb temperate in japonica [96].
Thus, in this study, the candidate resistance genes were screened from 200 kb around the
13 SNPs from Oryza sativa genome assembly v.7.0 (Oryza sativa v.7.0 [86]). The candidate
genes from rice are listed in Table S6. The sequences of these candidate genes were used to
identify potential homologs in switchgrass using the BLASTP tool on Phytozome and kept
the hits with E-value < 10−10 [86].

4.5. Genome-Wide Association Studies

Genome-wide Efficient Mixed Model Association (GEMMA) [97] was used to imple-
ment a multivariate linear mixed model for GWAS of single- and multiple-phenotyping
approaches for resistance to BLS to analyze each phenotype and combined phenotypes for
improving statistical power [98,99]. Kinship was included as a random effect. Moreover,
the first three principal components (PCs) were included as fixed covariates. The GWAS
was conducted in five groups, including all 478 genotypes, tetraploid (4×), octaploid (8X),
lowland, and upland genotypes, to determine if there were any SNPs linked to specific
switchgrass population. Minor allele frequency (MAF) at 0.05 was used to filter the minor
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alleles. In total, there are 135,791 SNP markers used in association analysis. To correct
multiple testing, the false discovery rate (FDR) was calculated as

FDR =

P
k

(
1 − A

T

)
A
T

(
1 − P

k

) (1)

where P is the p-value tested at 0.1; k is the number of traits in the combination; A is
the number of SNP that were significant at the p-value tested; T is the total number of
SNP tested. The significant markers then were used to determine candidate genes linked
to them within the range of LD and search in JBrowse in P. virgatum v.4.1 in Phytozome
(e.g., if the position of the marker was 4019500 on chromosome 9K and LD was 20 kb,
“Chr09K:4019500..4039500” was used). In case the candidate gene was not fully aligned
within that LD range, we considered the gene as a candidate if 80% of its length was within
the LD range. Since some of the SNP positions could not be aligned to the P. virgatum
genome assembly v.4.1, they were excluded from determining the candidate genes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11101362/s1, Figure S1: Bar chart of mean severity score
from 0 to 5 from two location (top), mean from NY (middle) and mean from PA with standard
error from each 66 population; Figure S2: Bar chart of mean severity from the leaf detachment assay
via image analysis (DTIA) (top), from the leaf disk assay via image analysis (DSIA) (middle) and
mean field severity from two locations with standard error from each of 66 populations; Figure S3:
Correlation plot among BLUPs of severity from the leaf detachment via vision (DTVI), via image
analysis (DTIA), from leaf disk assay via vision (DSVI), via image analysis (DSIA), the highest score
between two locations (MTL), mean from two locations (mean TL), highest score in NY (MNY),
highest score in PA (MPA) and BLUPs of other agronomic and biomass quality traits; Figure S4: The
bootstrapped distributions of Qst-Fst for each phenotypes; Table S1: Phenotype summary of the
severity of Bipolaris leaf spot from mean of Bipolaris lesion percentage from detached leaf assay by
vision (DTVI), by image analysis (DTIA), the severity from the leaf disk assay by vision (DSVI), by
image analysis (DSIA), mean of two locations, highest scores between two locations (MTL), mean in
NY, highest score in NY (MNY), mean in PA, and highest score in PA (MPA) based on population
(rank); Table S2: Phenotype summary of DTI, DTIA, DSVI, DSIA, mean TL, NY and PA, and MTL,
MNY, and MPA based on each genotype (rank) ordered based on DTIA; Table S3: Summary of
P-value from ANOVA tests of different groups of ecotypes in each trait: detached leaf assay by
vision (DTVI), by image analysis (DTIA), the severity from the leaf disk assay by vision (DSVI), by
image analysis (DSIA), mean of two locations, highest scores between two locations (MTL), mean in
NY, highest score in NY (MNY), mean in PA, and highest score in PA (MPA) and their ranks; Table
S4: Candidate genes and their annotated functions for resistance to BLS in rice (Oryza sativa) from
QTLs from Sato et al. (2015) within LD of 200 kb; Table S5: BLAST results from candidate resistance
genes from rice to switchgrass; Table S6: Phenotypic variance explained (adjusted PVE) by set of
significant SNP markers in each subgroup for traits used in each subgroup; Table S7: Phenotype
variance explained (PVE) by each significant SNP markers in each subgroup for each trait; Table S8:
Switchgrass association panel sample information.
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