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Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional
functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example,
internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thor-
oughly investigated.The effects of such engineering parameters on biological cultures have been addressed in only a few preceding
studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method.
A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient
and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engi-
neering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality
of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their
calculation procedure in addition to the modeling techniques in TE bioreactors.

1. Introduction

Tissue engineering aims to generate three-dimensional (3D)
artificial tissues. Its consequential task is to regenerate human
tissue or develop cell-based substitutes for tissue in order
to restore, reconstruct, or improve tissue functions [1, 2].
Achieving biological and mechanical functionality of the
newly formed tissue is paramount for tissue engineered struc-
tures. Yet current research often focusses on form rather than
function. Regeneration of functional organs demands inten-
sive researches and studies in every aspect of TE [3], since
creating a functional tissue requires the efficient growth of
various types of cells on a single 3D structure [2].

Bioreactors can aid the production of functional 3D
tissues as follows: (1) by maintaining a desired uniform cell
concentration within the scaffold during cell seeding, (2) by
controlling microenvironmental parameters (e.g., tempera-
ture, pH, pressure, oxygen tension, metabolites, regulatory
molecules, shear stress, and electrical pacing) and aseptic
parameters (e.g., feeding, waste removal, and sampling), (3)
by facilitating mass transfer [4–7], and more importantly (4)
by allowing for automated processing steps.

Moreover, each special type of tissue structure and pro-
duction procedure (e.g., skin, bone, blood vessel, cartilage,
and myocardium) necessitates a unique kind of bioreactor
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design which requires both biological and engineering con-
ditions to be addressed along with reliability, reproducibility,
scalability, and safety issues [8–10].

In this review, key technical challenges between biological
parameters and engineering parameters are recognized along
with an overview of present mathematical modeling and
monitoring of tissue growth carried out in the Research
Center for New Technologies in Life Science Engineering at
University of Tehran (UTLSE) to help deal with ongoing chal-
lenges.

2. Engineering Parameters in
TE Bioreactor Design

Generally, the major responsibilities of a bioreactor are to
provide a biomechanical and a biochemical environment that
controls nutrient and oxygen transfer to the cells and meta-
bolic products from the cells [11–13]. Mass transfer problems
(e.g., oxygen and nutrient supply and removal of toxic meta-
bolites) must always be taken into account. The size of most
engineered tissues is limited as they do not have their own
blood system and the cells are only nourished by diffusion
[14, 15]. Since tissue constructions should have larger dimen-
sions to become functional, mass transfer limitation can be
considered as one of the greatest engineering challenges [1].

Moreover, biomechanical stimuli such as shear stress can
be applied throughout the bioreactor by means of culture
medium flow [10, 16]. In this condition, nutrient and waste
transfer are automatically regulated by the flow of the growth
medium. Other types of mechanical stimuli can also be
applied to tissue constructs using a bioreactor, including axial
compression or tensile forces [11].

Although biomechanical stimuli have many advantages
for tissue engineering, mechanical stimuli can also induce
tissue degradation, by alterations in the synthesis of matrix
[16]. All in all, the response of some types of cells to mechan-
ical stress causes radical changes to the tissue structure and
composition which leads to alterations in tissue functionality.

In the following section, some of the engineering param-
eters which help providing physical stimulation to TE con-
structs in order to enhance tissue formation and their con-
comitant challenges are specified.

2.1. Mass Transfer through Bioreactors. The major obstacle
that hinders practical application of 3D cell seeded constructs
is mass transfer [5]. After distributing cells throughout
porous scaffolds, a key challenge is the maintenance of cell
viability, especially within the interior of the construct dur-
ing prolonged culture. Nutrients, oxygen, and regulatory
molecules have to be efficiently transferred from the bulk cul-
ture medium to the tissue surfaces (i.e., external mass trans-
fer) as well as to the interior cells of the tissue construct (i.e.,
internal mass transfer). In addition, metabolites and CO

2
are

to be removed from the cells within the tissue to the bulk
medium.While externalmass transfer rates depend primarily
on hydrodynamic conditions in a bioreactor, internal mass
transfer rates may depend on a combination of diffusion and

convectionmechanisms (typically induced bymediumperfu-
sion or scaffold deformation). Internal mass transfer depends
strongly on the scaffold’s structure and porosity, the overall
cell or scaffold construct size, and the diffusion rate through
the biomaterial [17, 18].

Improving the scaffold design will aid efficient mass
transfer. For example, a laminar flow within tubular struc-
tures locatedwithin a scaffoldmay be beneficial for the gener-
ation of large TE constructs but requires the development of
advanced bioreactor systems.

Amongst mass transfer mechanisms stated previously,
oxygen transfer is a matter of the utmost importance due to
poor solubility of oxygen in culture medium [9, 19, 20]. In
addition, the diffusive penetration depth of oxygen within
tissues in vivo is in the range of only 100 to 200 𝜇m [19].Thus,
maintaining the balance between oxygen delivery to cells and
their oxygen consumption is critical, considering this diffu-
sive distance. Therefore, the oxygen tension adjustment is a
critical matter in the design process of any bioreactor [21].

In applications germane to TE, the oxygen demand will
fluctuate each time. During the initial expansion phase, cell
density increases with time, and consequently, the overall
demand for oxygen also increases. Cells may change from
a proliferative state to the state of differentiation during the
later stages of the culture. This change has implications for
oxygen transfer, since proliferating cells typically have a
higher oxygen demand per cell than differentiating cells [2].
Therefore, during the differentiation phase, the oxygen
demand is likely to decline gradually.

A culture can be aerated by one, or a combination, of the
followingmethods: surface aeration, direct sparging, indirect
and/or membrane aeration (diffusion), medium perfusion,
increasing the partial pressure of oxygen, and increasing the
atmospheric pressure [22].The transport of dissolved oxygen
in a bioreactor occurs in three regions as follows:

(a) bulk fluid phase of the bioreactor (global mass trans-
fer),

(b) from the bulk to the surface of the aggregated cells
(internal mass transfer),

(c) through the aggregated cells (external mass transfer).

In the first step, at the gas-liquid interface, the rate of oxygen
entering themedium is limited by the relatively low solubility
of oxygen in aqueous medium. The scalar concentration
distributions in the vessel for the global mass transfer depend
on the flow field of the vessel and the net rate of consumption
or production [23, 24]. Therefore, the oxygen concentration
in the fluid experienced by the cells is a result of the balance
between the oxygen delivery across the medium layer called
the oxygen transfer rate (OTR) and the rate of oxygen
consumption by cells named the oxygen uptake rate (OUR).
Therefore, the oxygen concentration can be ten times lower
as one would anticipate based on the equilibrium within the
gas phase [25]. Oxygen availability has vigorous effect on
cell culturing kinetics. For instance, increasing the amount of
dissolved oxygen (DO) which can be done by increasing the
OTR may lead to improve secondary metabolism too. The
rate of OTR highly affects the liquid phase mass transfer
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coefficient (𝑘
𝐿
𝑎) and, then, the productivity. Therefore, it is

essential to determine the DO level in the bioreactor [24, 26–
28].

There are different methods for assessing the amount of
oxygen delivered from the air to the culture environment
(Table 2).The sulfite system is one in which transformed oxy-
gen content from air to the aqueous solution is determined
by means of the oxidation of sodium sulfite to sodium sulfate
by oxygen. It could characterize the completing point of the
reaction by means of a pH indicator, since the sulfate ions
have more acidic activity than the sulfite ones. This method
was applied in the presence of cobalt catalyst for determining
the OTR and for studying the function of a perfusion
bioreactor designed by UTLSE. It was concluded that oxygen
delivery is appropriate and the bioreactor readily supplies the
minimum required oxygen of the various cells. By consider-
ing the calculated OTRmax of 0.012mol/L/hr and the largest
𝑘
𝐿
𝑎 = 0.02 L/s, calculations showed that bioreactor supplies

the required oxygen of culturingmore than 1010 CHO cells in
the 80mL culturing volume [29].

2.2. Mechanical Stimulation. The field of TE gradually recog-
nizes the importance of mechanical stimuli (e.g., mechanical
compression, mechanical stretch, hydrodynamic pressure,
and fluid flow) in the maturation of organs [5]. Mechanical
stimulation is one of particular interest for musculoskeletal
tissue engineering, cartilage formation, and cardiovascu-
lar tissues [30–35]. Mechanical interactions during tissue
growth, between different components, that is, cells, water,
and scaffold material, can determine whether cells form cell
aggregates or disperse throughout the scaffold [36–38]. Selec-
tion of optimal physical parameters is complicated by a vari-
ety of cell types, scaffolds, forces, applied regimes, and culture
medium available.

Cells in aggregates are exposed to higher shear stresses
than single cells due to their large particle diameter [39]. It is
widely accepted that shear stress has a dominant impact on
tissue function and viability. Different values are reported for
themaximal sustainable shear stress for different types of cells
[40, 41]. Indeed, high shear stress on the surface of the scaf-
fold, caused by a flowof fluid, can peel off attached cells and in
this condition, tissue growth is significantly slower compared
with static cultures.

Simply, orientation and function of the cells is affected by
fluid flow shear stress. Shear stress is a particular interesting
stimulus formammalian cell cultures becausemany cell types
are responsive to shear stress [42–45]. For instance, it was
observed that shear stress affected endothelial cell prolifer-
ation and oriented them toward flow direction [31].There are
many qualitative means for investigating fluid flow, which are
summarized in Table 3.

In addition, the secretion of biological factors by stem
cells can be increased by biomechanical forces.Therefore, it is
important to acquire an understanding of themechanisms by
which hemodynamic forces are detected and converted into
a sequence of biological responses within the cells [46]. For
instance, changes in pressure or shear stress induce the rapid

release of nitric oxide (NO) from the vascular endothelium
[47–49]. Studies at UTLSE in a simple parallel plate flow
chamber showed that NO production by Human umbilical
vascular endothelial cells (HUVECs) is fluid shear stress rate
dependent (data not shown).

In fact, the determination of how mechanical forces can
be utilized is a challenge for bioreactor design in order
to reach the proper environment necessary to produce the
desired tissue engineered product. Pulsatile perfusion biore-
actors integrated with elastic polymeric scaffolds enhance
development and differentiation of small tissue engineered
blood vessels [50–53]. Furthermore, custom-designed biore-
actors utilizing biaxial strain for the mechanical stimulation
of skeletal tissues were developed [54, 55].

2.3. Electrical Stimulation. In addition to mechanical stimuli
commonly arising in tissue engineering context, electrical
stimulation or even combined approaches incorporating
electrical/mechanical cues need to be provided in vitro for
obtaining an appropriate functionality of engineered tissue.
Electrical stimuli are currently mainly applied in the field of
cardiac tissue engineering to regenerate the infarcted area
after heart failure [56, 57]. Radisic et al. [58] showed that
electrical waves in a square form with frequency of 1Hz and
power of 5V/cm can induce contractile properties in cardiac
TE constructs. The disruption of regularity of ions in an
electrically affected construct leads to redistribution of charge
which can then alter the pH gradient in the media which can
be used to tailor specifically enhanced cellular function [59].
Finally, electrical pacing associated with mechanical cues in
the culture when applied to the electrospun cardiac con-
structs resulted in better alignment, elongation, and upregu-
lation of cardiac proteins compared with static cultures [60].

3. Comparison between Different
Types of TE Bioreactors Based on
Engineering Parameters

Bioreactors that are currently widely used in TE are static
and mixed flasks, rotating wall, and perfusion bioreactors.
These bioreactors offer three distinct flow conditions (static,
turbulent, and laminar), and hence a different rate of nutrient
supply to the surface of tissue construct [24]. They also differ
in mass transfer and shear stress rates experienced by the
cultured cells. Table 1 compares engineering parameters of
different TE bioreactors.

Although static culture is simply designed and operated,
there are nutrient diffusion limitations with large constructs
since both external and internalmass transfer are undertaken
by diffusion [9, 11, 22]. Statically cultured constructs often
have a heterogeneous structure and composition, including a
necrotic central region and dense layers of viable cells encap-
sulating the construct outer edge [17].This condition appears
due to concentration gradients, with local depletion of nutri-
ents and accumulation of waste materials [18].

Cell survival and assembly on many surfaces of engi-
neered tissues can be improved by construct cultivation in
stirred flask bioreactors [61–65]. Within such flasks, scaffolds
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Table 1: Comparison of engineering parameters in different TE bioreactors.

Bioreactor type General
descriptions

Mass
transfer

mechanism

Shear
stress Special usage Tissue Considerations

Static culture
Batch culture
with no flow of
nutrient

Diffusion
(high) Very low Cell

proliferation —

Homogeneous
structure of cell
constructs and
nutrient diffusion
limitations

Stirred flasks

Magnetically
stirring of
medium

Convection
(high) High

Dynamic
seeding of
scaffolds

Cartilage

Appropriate
scaffold and
balance between
increasing mass
transfer and
modulating shear
stresses

Rotating wall Rotating at a
speed so the
constructs in the
reactor are
maintained
“stationary” in a
state of
continuous free
fall

Convection
(high) Low

Tissue
constructs
which need
dynamic
laminar flow

Cartilage, bone
and skin

Operating
conditions (e.g.,
speed of rotating)
especially for
growing large
tissue mass

Perfusion

Flow of medium
over or through
a cell population
or bed of cells

Convection
(moderate)

and
diffusion
(high)

Moderate

Tissues
physico-
chemicaly
and environ-
mentally
relevant to
human
tissues

Epithelial cells,
intestinal, bone,
cartilage, and
arteries

Seeding and
attachment of
human cells
especially within
the scaffold body

are attached to needles hanging from the lid of the flask
for dynamic seeding. Convective flow, generated by a mag-
netic stirrer bar, allows continuous mixing of the medium
surrounding the construct [24]. This environment improves
nutrient diffusion and promotes cell proliferation throughout
the constructs in comparison to static condition. However,
the shear forces acting on the constructs are heterogeneous,
which prevents homogenous tissue development [11].

In order to enhance external mass transfer under a lam-
inar flow condition, the tissue engineered constructs can be
cultivated in rotating wall bioreactors [63, 65–67]. Dynamic
laminar flow of rotating bioreactors generally improves prop-
erties of the peripheral tissue layer. Also, in such bioreactors,
no fibrous capsule is formed, but the limitations of the
diffusional transfer of oxygen to the construct interior still
remain [24]. As compared to the turbulent flowwithin stirred
flasks, the dynamic laminar flow in rotating wall vessels
contributes to reduced levels of shear stress experienced by
cells on the construct. Amongst other, this aides the forma-
tion of cartilaginous tissues containing higher amounts of

more uniformly distributed glycosaminoglycans (GAG) and
collagen [18, 68].

In addition, a key point to note is that convective transfer
around and through an engineered tissue at the proper flow
rate can dissipate gradients of nutrients and maintain tissue
mass [69]. In a novel strategy, Yu et al. [70] mixed micro-
spheres of different densities in order to vary andmodify flow
velocity within a scaffold through the rotatingwall bioreactor.
Compared to static three-dimensional controls, culturing rat
primary calvarial cells under dynamic flow conditions in a
rotating system reveals a more uniform distribution of cells
in the scaffold interior and also enhances phenotypic protein
expression and recuperates mineralized matrix synthesis. In
addition, Zhang et al. [71] recognized that scaffolds seeded by
human fetalmesenchymal stem cell (hfMSC) reached cellular
confluence earlier with greater cellularity and also conserved
high cellular viability in the core of them compared to a static
culture.

Perfusion bioreactors are used in order to force culture
medium through the pores of solid porous 3D scaffolds,
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thereby enhancing nutrient transport and providingmechan-
ical stimuli to the cells (e.g., [63, 65, 101–104]). In such
systems, oxygen and nutrients are supplied to the construct
interior by both diffusion and convection. The flow rate can
be optimized with respect to the limiting nutrient, which is
mostly oxygen due to its low solubility in culturemedium [24,
105]. Perfusion of chondrocyte-seeded scaffolds was reported
to elevate GAG synthesis and retention within the extracel-
lular matrix (ECM) [106], as well as a uniform distribution
of viable human chondrocytes. A perfusion system can
provide a well-defined physicochemical culture environment
which has great potential to generate cartilage grafts [68] or
vascular grafts of clinically relevant size [107, 108]. Bioreactors
that perfuse the culturemedium directly through the pores of
a scaffold enhancemass transfer rate not only at the construct
periphery but also within the internal pores. This can poten-
tially eliminate mass transfer limitations. Perfusion biore-
actors can offer greater control of mass transfer than other
conventional systems but the potential for flow to follow a
preferential path through the construct still remains a prob-
lem. This phenomenon happens particularly for scaffolds
with a wide pore size distribution and nonuniformly devel-
oping tissues, leaving some regions poorly nourished, while
others are perfused strongly.

It is confirmed that cartilage-like matrix synthesis by
chondrocytes, chondrocyte growth, and differentiation and
deposition of mineralized matrix by bone cells are enhanced
by direct perfusion bioreactors [109]. It is worth to notice
that the flow rate in the microenvironment of cells is to a
great extent responsible for the changes ofmediumperfusion.
Therefore, to optimize a perfusion bioreactor for tissue engi-
neering applications, the balance between the extent of
nutrient supply, the transport ofmetabolites to and away from
cells, and the fluid-induced shear stress effects on cells located
at the surface and in the porous structures of the scaffold
should be considered [17, 21, 105].

In order to gain a better understanding on how physi-
cal factors modulate tissue development, it is necessary to
integrate bioreactor studies with quantitative analyses and
computational modeling of changes in mass transfer and
physical forces experienced by cells [17].

4. Mathematical Modeling of
Engineering Parameters

Mathematical modeling in terms of fundamental physical
and biochemical mechanisms can be used to justify exper-
imental results and determine future research directions
[110–113]. Relatively few mathematical modeling studies have
focused on bioreactor culture of cell-seeded porous struc-
tures for TE [114, 115].

In the first stage, numerical simulation plays an important
role in prediction of the global dynamic response in different
parts of bioreactors.Moreover, numerical evaluation provides
insight into local hydrodynamic changes in tissue constructs
in order to generate quantitative anticipation of the tissue
development within a bioreactor system [116]. Finally, with
the aid of recently available computational tools, variables

0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22

0 2 4 6 8 10 12

O2-sensor results
Model results

f1

f4

f7

f9

Fermentation time (h)

Pa
rt

ia
l p

re
ss

ur
e o

f o
xy

ge
n 

(p
O
2
) (

ba
r)

Figure 1: Comparison between unsteady state model and experi-
mental results for the partial pressure of oxygen in the headspace
of the ventilation flasks f1, f4, f7, f9 (sterile plug dimensions in f1 <
f4 < f7 < f9) is obtained for the fermentation of C. glutamicum DM
1730 on 10 g/L glucose and 21 g/L MOPS (𝑉

𝐿
= 10mL, 𝑛 = 400 rpm,

𝑇 = 30
∘C, 𝑑
𝑜
= 5 cm, 𝑌

𝑥/𝑠
= 0.48, 𝑌

𝑥/𝑜2
= 53 g/mol, RQ = 1 where

𝑑
𝑜
,𝑉
𝐿
,𝑌
𝑥/𝑠
,𝑌
𝑥/𝑜2

, and RQ are shaking diameter, filling volume, yield
of biomass with respect to substrate, yield of biomass with respect to
oxygen, and respiration quotient, resp.).

(e.g., flow fields of a particular bioreactor design [117, 118],
incorporation of the mechanics of the scaffold material [119],
and the sufficiency of bioreactor cultures [117, 120, 121], shear
stresses and mass transfer in scaffold-containing bioreactors
[118, 122]) can be estimated.

As an example, Sengers et al. [3] in their review concen-
trated on the contribution of computational modeling as a
framework to obtain an integrated understanding of key pro-
cesses including nutrient transfer, matrix formation, dynam-
ics of cell population, cell attachment and migration, and
local mutual interactions between cells.

4.1. Nutrient and Mass Transfer. The amount of delivered
oxygen is a significant factor in designing the cell culture
bioreactors. One major obstacle preventing proper under-
standing of oxygen tension in TE constructs is a lack ofmath-
ematical models that can predict which parameters are ben-
eficial for avoiding oxygen limitation and increasing oxygen
diffusion across serial resistances [114, 118, 121]. This problem
was resolved at UTLSE by applying traditional convective
mass transfer models combined with Maxwell-Stefan diffu-
sion mass transfer equation.

The reliability of the model can be examined by compar-
ing the model results obtained with sulfite experiments done
with four geometries of shake flasks (Figure 1).

As can be seen from Figure 1, the value for the 𝑝O
2
is

0.2095 bar at the onset of the experiment. Oxygen partial
pressure decreases over time as the chemical reaction pro-
ceeds. The flasks with the greater sterile plug dimensions
represent lower mass transfer rates which resulted from hin-
dered diffusion. This gives rise to a lower partial pressure of
oxygen [84, 85, 123, 124].
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Yan et al. [114] developed a novel mathematical model to
represent the glucose and oxygen distribution and the cell
growth in a 3D cell-scaffold construct in a perfusion bioreac-
tor. Numerical methods are employed to solve the equations
involved, with a focus on investigating the effect of various
factors such as culturing time, porosity, and flow rate, which
are controllable in the scaffold fabrication and culturing proc-
ess, on cell cultures.

Along these lines, Pisu et al. [125] proposed an improved
description of oxygen consumption and GAG production by
bovine chondrocytes, which is thoroughly related to cellular
metabolism.The latter is simulated through appropriate pop-
ulation balance models which include cellular anabolic and
catabolic rates.

Abdollah and Das [126] presented a general modeling
framework to characterize nutrient (oxygen and glucose)
transfer in a hollow fiber membrane bioreactor (HFMB) for
bone tissue growth.The framework relied on solving coupled
Navier-Stokes and the Maxwell-Stefan convection-diffusion-
reaction equations. It is indicated that due to multicompo-
nent interactions, mass severe transfer limitations may arise
severely when inlet concentration of nutrients, molecular size
of the solutes, and wall membrane thickness are increased.

Rivera-Solorio and Kleis [23] used a mathematical model
to investigate the local mass transfer of dissolved oxygen to
the surface of freely suspended cell aggregates in a bioreactor
operating in microgravity. They simulated the mass transfer
in systems inwhich cultured cells are attached to smallmicro-
carriers in a rotating bioreactor in simulated and real micro-
gravity.

Also, Yu et al. [127] evaluated oxygen transfer in a micro-
bioreactor for animal cell suspension culture using the com-
mercial software Fluent. They proposed two correlations in
order to calculate the liquid-phase oxygen transfer coefficient
and the minimum oxygen concentration in a microbioreac-
tor, to provide insight into choosing the proper operating
parameters in animal cell culture.

4.2. Fluid Flow. Tobetter realize the effect of fluid flowduring
tissue regeneration, a number of studies using computational
fluid dynamic (CFD) have been accomplished [128–134].
TheseCFD studies revealed detailed profile of pressure, veloc-
ity, flow fields, shear stresses, and oxygen transfer in tissue
culturing chambers of various bioreactor designs.This is very
useful for the design optimization of internal geometric con-
figurations of bioreactors [116].

Lawrence et al. [16] explored the effect of reactor geom-
etry on flow fields using the computational fluid dynamics
software Comsol Multiphysics 3.4. The Brinkman equation
was used to model the permeability characteristics within
the chitosan porous structure. Results showed significant
increase in pressure with reduction in pore size, which could
limit the fluid flow and nutrient transport.

Subsequently, flow characteristics are analyzed using
either Darcy’s equation [135] or the Brinkman equation con-
sidered as an extension of Darcy’s equation. The Brinkman
equation accounts for both viscous and drag forces in the
porous medium. It can be reduced to either Navier-Stokes
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Figure 2: Radial velocity distribution in a shaken 24-wells biore-
actor that illustrates inhomogeneous map of radial velocity at the
interface of liquid and air.

equation or Darcy’s law if forces become dominant. The
Brinkman equation is as follows [16]:

𝜇∇
2
𝑢
𝑠
−
𝜇

𝑘
𝑢
𝑠
= ∇𝑝, ∇𝑢

𝑠
= 0, (1)

where 𝑘 the permeability of the porous medium, 𝑢
𝑠
denotes

the fluid superficial velocity vector, 𝑝 the fluid pressure,
and 𝜇 is the effective viscosity in the porous medium. Non-
porous sections of a bioreactor were modeled as incompress-
ible Navier-Stokes regions. The permeability of the porous
medium (𝑘) is a geometric characteristic of the porous
structure at several length scales.The Navier-Stokes equation
together with continuity equation provides an essential tool
to investigate the mechanical behavior of fluid in shaken bio-
reactors.

Our research center began intensive studies of hydrody-
namics applying CFD in shaken microbioreactors including
24-well plates, shaken at various shaking frequencies. For
instance, schematics of the liquid phase fraction and radial
velocity profiles at 0.7 cm distance from the bottom plane are
shown in Figures 2 and 3 at shaking frequency of 200 rpm.

Output data from phase fraction simulation gave insight
in the gas-liquid interfacial surface area, which then helps
to determine the exact mass transfer coefficient (𝑘

𝐿
𝑎) values.

Furthermore, the mean radial velocity at the interface pro-
vides a guideline for obtaining wall shear stress within the
entire domain of the bioreactor.

The outcomes of shear stress simulation experiments
confirm that themagnitude of thismechanical quantity rarely
exceeds 1 Pa at the bottom of the plate. This value of shear
stress can be withstood by most mammalian cells [136].

In addition, a novel flow chamber was developed in our
research center to assess the effect of fluid flow on the effi-
ciency of nutrient transport and the endothelial cell stability.
This chamber exhibits the major features of a standard paral-
lel flow bioreactor in which a circular silicon scaffold is cen-
trally located. To accomplish this, CFD was used to discretize
mathematical equations. Energy dissipation rate (EDR) and
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Results:
Zone 3: 4.385741e − 004
Total: 4.386741e − 004

X Y

Z

Figure 3: Volume fraction distribution in a shaken 24-wells bioreac-
tor that allows accurate prediction of gas-liquid interface area within
the shaking bioreactor.

shear stress were plotted versus position in the cylinder at a
flow rate of 75 mL/min (Figure 4).

For either plots of EDR and shear stress, a symmetrical
pattern reveals that a homogeneous distribution of these
mechanical characteristics of flow exists. However, for EDR
data, some values deviate slightly between both sides of the
cylinder because of a flow maldistribution which is due to a
mild turbulence over the scaffold.

After completion of simulations, cell experiments were
conducted for a 1 hr period. These experiments showed that
at a volumetric flow rate of 75mL/min, the cell viability and
stability are maintained, but no specific cell orientation is
present (Figure 5).

In general, computational fluid dynamics applications in
bioreactor development can be extended to new designs such
as a novel perfusion bioreactor developed at UTLSE.

In order to assess mechanical as well as oxygen char-
acteristics of this novel perfusion bioreactor, scientists at
UTLSE used CFD to determine fluid velocity as well as
pathlines features of the flow. Figure 6 further describes the
computational attributes of the system.

The initial approximation of fluid flow dynamics attained
withCFD is extremely beneficial in reducing time and costs of
development of the bioreactor [29].

Yu et al. [137] applied a CFD model to simulate the
flow and oxygen concentration fields in a microbioreactor, in
which a small magnetic bar was placed in a culture well to
enhance the medium mixing. It was found that the hydro-
dynamic environment could be appropriate for animal cell
culture when the microbioreactor operated at a stirrer rotat-
ing speed of 300 rpm and working volume of 4mL.

Bilgen and Barabino [138] took advantage of CFD mod-
eling to characterize the complicated hydrodynamic environ-
ment of a wavy-walled bioreactor applied for cultivation of
tissue-engineered cartilage structures.They also analyzed the
changes in the flow field when TE constructs are present in
the bioreactor. The flow-induced shear stress experienced by

engineered constructs cultivated in the wavy walled bioreac-
tor was much lower than that of spinner flask. The radial or
axial position of the constructs canmodulate this shear stress.

Lawrence et al. [16] used rectangular and circular biore-
actors with three different inlet and outlet paradigms. By the
use of CFD, geometries were simulated in two cases, with
and without the presence of a porous structure. Residence
time distribution analysis using the change of a tracer within
a bioreactor revealed nonideal fluid distribution characteris-
tics. The result represented a significant increase in pressure
with a decrease in pore size, which could lead to low fluid flow
and nutrient transfer limitation.

4.3. Cell Growth, Proliferation, andViability. Chung et al. [111]
developed a mathematical model for the static culture of cells
grown on porous scaffolds. Results showed that the overall
cell growth allows cells to spread more uniformly, while it
prevents cells from competing for nutrients at the same site.
They then described a mathematical model to examine the
effects of medium perfusion on the cell-scaffold constructs
[120]. They proposed a three-layer model, highlighting the
enhancement of cell growth by medium perfusion. The
model is quite detailed, involving a cell construct sandwiched
between two fluid layers in order to mimic the culturing
environment of direct perfusion. Although themodel is valu-
able in developing engineered cell constructs, the enormous
number of essential formulas and boundary conditions make
the model cumbersome. Therefore, a compact mathematical
model was to describe cell growth within a porous scaffold
under direct perfusion. Neglecting the two fluid regions
sandwiching the scaffold, themodel contains only the scaffold
region for computational purposes [110].

Shakeel [118] in his thesis developed a model which
describes the key features of the tissue engineering processes
such as the interaction between the cell growth, variation
of material porosity, flow of fluid through the material, and
delivery of nutrients to the cells. The fluid flow through the
porous scaffold and the delivery of nutrients to the cells was
modeled by Darcy’s law and the advection-diffusion equa-
tions, respectively. For modeling the cell growth, a nonlinear
reaction diffusion system was used. The results show that the
distribution of cells and total cell number in the scaffold
depends on the initial cell density and porosity of the scaffold.

A unique set of dynamicalmathematicalmodels was used
to accurately predict metabolite and cell concentration in an
aeratedminiaturized shaking bioreactor atUTLSE.Themajor
advantage of such a mathematical model is that it provides a
robust tool to solve complicated oxygen transfer which unfa-
vorably hampers metabolite production in bioprocesses.

The combination of equations whichmake a link between
liquid phase oxygen concentration and rate of oxygen uptake
with governing equations of cell concentration should be
primarily solved to attain oxygen transfer rate (OTR) with
respect to the course of time.

Figure 6 suggests that as the model microorganism is
undergoing accelerating growth, the oxygen transfer rate
increases until the growth is inhibited and consequently
the OTR falls down significantly. Figure 7 illustrates the
comparison between the model and experimental results for
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Figure 4: Energy dissipation rate (a) and shear stress distribution (b) versus radial position on a scaffold with radius of 1 cm that obviously
represents safe generated shear stress on the scaffold for mammalian cell cultures.
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Figure 5: Schematics of cell morphology (a) before (b) after initiation of flow indicating flow assisted elongation of cells under continuous
flow.
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stress in order to optimize shear stress distribution (b) in a perfusion bioreactor belonging to UTLSE.
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Figure 7: Comparison of OTR resulting from model and from
experiments for a specific aerobic microorganism.The plot provides
evidence of the proximity of OTR values between experimental and
simulation results and of the efficacy of the simulation efforts.

a model microorganism, which suggest that a minor discrep-
ancy between their model and the results exist [139].

5. Conclusion

Engineering parameters occurring in a bioreactor are of equal
importance as biological parameters and should therefore be
investigated thoroughly in order to optimize outcomes of TE
strategies. Internal and external mass transfer (e.g., oxygen,
nutrient, and waste materials transfer) as well as mechanical
stimulation (e.g., fluid flow and shear stress) should be
monitored online. Between different types of bioreactors, the
“Perfusion Bioreactor” is the most convenient for animal cell
cultures on a solid porous scaffold. Perfusion bioreactors offer
both convection and diffusion and can provide nearly in vivo
physiochemical and environmentally stimuli for engineered
tissue constructs.

The operating conditions for diverse bioreactors can be
very different per experiment. Therefore, it is essential to use
mathematical equations andmodeling techniques to simulate
the optimal operating conditions in order to predict the best
outcomes. Using the Brinkman equation along with power-
ful CFD codes can provide for investigating the effects of
engineering parameters on the outcome of biological exper-
iments. In this way, the efficacy of bioreactors, which is very
low at present, can be optimized.
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of CO

2
sensitivity of micro-organisms in shaken bioreactors. II.

Novel online monitoring method,” Biotechnology and Applied
Biochemistry, vol. 57, no. 4, pp. 167–175, 2010.

[85] G.Amoabediny and J. Büchs, “Determination ofCO
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