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With the rapid increase in publicly available sequencing data, healthcare professionals are
tasked with understanding how genetic variation informs diagnosis and affects patient
health outcomes. Understanding the impact of a genetic variant in disease could be used
to predict susceptibility/protection and to help build a personalized medicine profile. In the
United States, over 3.8 million newborns are screened for several rare genetic diseases
each year, and the follow-up testing of screen-positive newborns often involves
sequencing and the identification of variants. This presents the opportunity to use
longitudinal health information from these newborns to inform the impact of variants
identified in the course of diagnosis. To test this, we performed secondary analysis of a 10-
year natural history study of individuals diagnosed with metabolic disorders included in
newborn screening (NBS). We found 564 genetic variants with accompanying phenotypic
data and identified that 161 of the 564 variants (29%) were not included in ClinVar. We
were able to classify 139 of the 161 variants (86%) as pathogenic or likely pathogenic. This
work demonstrates that secondary analysis of longitudinal data collected as part of NBS
finds unreported genetic variants and the accompanying clinical information can inform the
relationship between genotype and phenotype.
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1 INTRODUCTION

From the development of Sanger Sequencing in 1977 (Sanger et al., 1977) to the advent of Next-
Generation Sequencing (NGS) in 2005 (Shendure et al., 2005), the availability of low-cost genetic
information has markedly expanded. As of 13 September 2021, the NCBI Reference Sequence
Database (RefSeq) reported the submission of 40, 213, 945 transcript reads across 113,002 organisms
(O’Leary et al., 2016). With the obstacles of high sequencing cost and intensive labor to generate data
mostly overcome, genomics faces new hurdles: the interpretation and use of genetic variants to aid
clinical decision-making (Krier et al., 2016). The importance of determining genotype-phenotype
correlations to impact health outcomes has been reported in many publications (Trefz et al., 1993;
Arnold et al., 2010; LD et al., 2016; Hsu et al., 2019) and current efforts to interpret genotype-
phenotype correlations prefer to use population-specific biobanks, such as the All of Us Program
(Denny et al., 2019) and the UK Biobank (Sudlow et al., 2015). The mining of these biobanks for
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variant and health information is a valuable resource for
informing the relationship between genotype and phenotype,
and improving the treatment, management, and health
outcomes in individuals with a genetic disease.

To investigate another resource for determining the clinical
relevance of variants, we conducted secondary analysis of a
longitudinal data set of individuals identified with a rare
genetic disease through newborn screening (NBS) for
information about treatment and disease course. In the
United States, NBS is a multi-component system of prenatal
education, neonatal screening, clinical referral and diagnosis, and
long-term medical management. A federal advisory committee
recommends which conditions to screen, but the composition of
screening panels is determined by state based NBS programs. The
majority of screened conditions are inborn errors of metabolism
(IEM), and 44 IEM disorders are currently included in the
Recommended Uniform Screening Panel (RUSP) (Federal
Advisory Committees, 2021). Variant and health information
from a completed, 10-year natural history study of IEMs, called
Inborn Errors of Metabolism Collaborative (IBEMC) (Berry et al.,
2010; SA et al., 2016), was analyzed to find unpublished variants
and review health information. The IBEMC dataset provides the
potential for variant interpretation (Pena et al., 2016) using data
from subjects that have had genetic testing for their condition and
information about their clinical course collected over time.

2 MATERIALS AND METHODS

2.1 Newborn Screening Translational
Research Network (NBSTRN)
NBSTRN is a resource for investigators engaged in newborn
screening related research led by the ACMG and is funded by a
contract from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development (NICHD) and is a key
component of the NICHD Hunter Kelly Newborn Screening
Research Program (U.S. Code, 2021). The NBSTRN develops
data tools and resources to facilitate both primary and secondary
research efforts (Lloyd-Puryear et al., 2019) (https://nbstrn.org/).
This effort utilized the Longitudinal Pediatric Data Resource
(LPDR), one of the NBSTRN data tools housed in a Federal
Information Security Modernization Act (FISMA) moderate
environment, for the secondary analysis of the IBEMC data set
(IBEMC MCAD Cohort; IBEMC PKU Cohort).

2.2 Inborn Errors of Metabolism Information
System (IBEM-IS)
To discover unpublished genetic variants that may be implicated
in the manifestation of IEMs, data from the Inborn Errors of
Metabolism Information System (IBEM-IS) were examined. The
IBEM-IS data were collected and managed in the IBEM-IS at
Michigan Public Health Institute. The data set included
phenotypic and genotype data on individuals with one of 42
NBS screened disorders. The original study was observational,
resulting in only a subset of cases reported as having a genotype
based on the following three factors as reported by the IBEMC: 1)

the clinical relevance of genotyping as determined by the
clinician, 2) the willingness of insurance providers to cover
genotyping, and 3) the desire of patients to know his/her
genotype (SA et al., 2016). The IBEM-IS collects information
from subjects that could be used for secondary analysis and
includes data categories such as demographic information,
disease presentation, clinical diagnosis, treatments and
interventions (Berry et al., 2010; SA et al., 2016). At the
conclusion of the 10-years study, the IBEMC dataset was
deidentified and transferred to the LPDR for secondary use by
the research community. We accessed the IBEM-IS via the LPDR
on 10 July 2018, and successfully analyzed data from 32 diseases
and 1904 subjects.

2.3 Classification Guidelines
ClinVar, a repository of genetic variants and their correlation to
medically important phenotypes (MJ et al., 2018), was used as the
reference database for variants. Multiple publications have noted
the importance of updating ClinVar with newly discovered
variants and its importance in understanding the clinical
implications of human variation (Harrison et al., 2016; Danos
et al., 2018; Wain et al., 2018; Wei et al., 2018) Using ClinVar as a
reference for published genotypes, each gene data set was
exported from ClinVar for genes associated with diseases in
the IBEM-IS from November 28–29, 2018, with the exception
of Citrullinemia (CIT), extracted on 14 November 2018.

According to ClinVar (National Library of Medicine, 2019),
submissions must assign standard terms for clinical significance
as designated by ACMG/AMP (Richards et al., 2015) and this
includes assignments for the consequence of the variant as
Benign, Likely Benign, of Uncertain Significance, Likely
Pathogenic, or Pathogenic. Although ClinVar establishes these
terms as standard formats for reporting clinical significance,
ClinVar does not calculate nor verify the assignment of these
terms to submitted variants (Representation of clinical
significance in ClinVar and other variation resources at
NCBI). ClinVar designates the task of assigning a clinical
significance term to the submitter, with exceptions for
submissions from OMIM and early submissions before
standard terms were required. In these instances, ClinVar
calculated and verified the clinical significance of submitted
variants.

We used the American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular
Pathology (AMP) variant interpretation guidelines (Richards
et al., 2015), to build evidence for accurate variant
classification and used the IBEM-IS data points shown in
Table 1. The ACMG/AMP publication provided a method for
ascertaining the strength of evidence for determining a variant’s
correlation with a disease phenotype. Points of evidence include
population data, computational and predictive data, functional
data, segregation data, de novo data, allelic data, other databases,
and other data. Varying types of data and observations correlate
to either pathogenic or benign criteria, which are incorporated
into the final determination of significance. The classification
criteria used in this analysis can be seen in Table 2. PS3
(functional assay) and PP4 (well-characterized phenotype)
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criteria were assigned to 161 unpublished variants found in the
IBEM-IS dataset, due to each patient in the data set having a
confirmatory diagnostic test and well-known disorder.
Unmapped variants were not assigned any criteria.
Unpublished variants are described as variants that have not
been submitted to ClinVar and unmapped variants are variants
that did not map to any transcripts listed in the RefSeq database.
Because all subjects enrolled in IBEMC were diagnosed using
functional blood metabolite or enzyme assays through their
newborn screen and confirmatory diagnostic testing, the
variants for these subjects were classified as PS3. All diseases
in the IBEMC study have been well-characterized and display a
specific early-onset phenotype, deserving the attribution of PP4.
All other criteria were determined based on the clinical
information available for each variant. Mutalyzer (Lefter et al.,
2021), a web-based tool for mapping variants to reference
sequences, was used to validate the unpublished variants
found in the IBEM-IS (Supplementary Table S1). ClinVitae
(Invitae | Clinvitae, 2019) was used as a secondary source of
published variants. ClinVitae is a database reporting variants
from Clinvar, Emory Genetics Laboratory Variant Classification
Catalog, Invitae, ARUP Mutation Databases, Kathleen
Cunningham Foundation Consortium, and Carver Mutation
Database. FATHMM (Shihab et al., 2013) and SNPS&GO

(Calabrese et al., 2009; Capriotti and Altman, 2011) web-based
computational prediction tools were used to predict the
functional effects of variants reported. FATHMM is a web-
based evolutionary conservation prediction tool that is used to
predict the functional consequence of both coding and non-
coding variants. SNPS&GO is a web-based protein structure/
function prediction tool that assesses the functional impact of
coding variations.

2.4 Pipeline Structure
To analyze the IBEM-IS data within the LPDR, a Python-based
(v2.7.16) (Python, 2019) script was used to extract patient
information and compare variants to ClinVar. Python is a
high-level, object-oriented programming language allowing
users to interact with dynamic data and interface with open-
source libraries. Much of the script utilized data frames and
analysis tools provided by Pandas library. Pandas is an open-
source Python package used to analyze structured data and is
considered a powerful data manipulation and analysis tools
(pandas, 2019). The script references the IBEM-IS data set and
ClinVar gene extracts through saved comma-separated values
(CSV) files. The pipeline was built around essential processes, that
were needed to analyze the data thoroughly and are expanded
upon in the following sections.

TABLE 1 | Variant classification criteria and supporting data Source(s). The ACMG/AMP Evidence-Based Criteria (Richards et al., 2015) was used to determine supporting
data sources. No supporting data was generated for the “Population Data” criteria defined by the ACMG/AMP guidelines. Supporting data for other evidence-based
criteria were found using computational tools (Calabrese et al., 2009; Capriotti and Altman, 2011; Shihab et al., 2013), within in the long-term follow-up dataset (Segregation
Data, De novo Data), reported by other databases (Invitae | Clinvitae, 2019), or assumed from the nature of newborn screening/the disease (Functional Data, Other Data).

ACMG/AMP
evidence-based criteria

Supporting data source

Population Data No population data was generated
Computational and Predictive Data FATHMM(Shihab et al., 2013), SNPS&GO (Calabrese et al., 2009; Capriotti and Altman, 2011)
Functional Data All cases confirmed by newborn screen and supplemental testing
Segregation Data Family history
De novo Data Family history
Allelic Data For autosomal recessive disorders, it is assumed that reported variants were reported in trans
Other Database ClinVitae (Invitae | Clinvitae, 2019)
Other Data Analyzed disorders have been established as genetically based, supporting a distinctive phenotype for gene

TABLE 2 |Number of variants assigned a pathogenicity criterion. The ACMG/AMP guidelines have various clinical significance criteria, that when combined, result in a clinical
significance classification. ACMG/AMP scoring criteria are show on the left, with the number of variants assigned that criteria shown on the right. Percentages calculated
from the total number of unpublished variants (n = 161).

ACMG/AMP evidence found
in LPDR

Number
of variants (n = 161)

PVS1 (Null Variants) 43 (26.7%)
PS3 (Functional Studies) 150 (93.1%)
PM3 (Cis/trans confirmation) 66 (41.0%)
PM5 (Novel missense at same position as published pathogenic variant) 13 (8.1%)
PM6 (De novo) 2 (1.2%)
PP1 (Segregation Analysis) 7 (4.3%)
PP3 (Computational in silico data) 77 (47.8%)
PP4 (Phenotype to support variant) 150 (93.1%)
PP5 (Found in reputable database) 23 (14.3%)
BP4 (Computational in silico data) 1 (0.6%)
BP7 (Synonymous variants) 4 (2.5%)
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2.4.1 Review Case Level Data
The IBEM-IS has over 8,228 subjects reporting longitudinal data
distributed across 7,300 data fields. To facilitate data set analysis,
the entire IBEM-IS dataset was divided into disorder category
tables (amino acid disorders, fatty acid oxidation disorders, etc.)
then subsequently further divided into disease-specific tables. In
addition to making the data set more manageable, this process
helps to confirm that a patient’s diagnosis was submitted
correctly. Once the data was sorted, the total number of
subjects with the disease was calculated and each patient’s
record was checked for the submission of a variant. In IBEM-
IS, variants were reported in one of two formats: 1) the selection
of published genotypes and 2) a custom text submission. Variants
at this stage were also checked for nonvalid variant submissions,
such as “none” or “negative”, to streamline comparison to
ClinVar extracts. If a variant was found in the patient’s
record, it was saved and used for comparison.

2.4.2 Convert ClinVar Variants
ClinVar reports variants using the Human Genome Variation
Society (HGVS) format, which describes the genetic variant (i.e.
c.549A > C) and the resulting protein variant (i.e., p.
Phe256Leu)27. ClinVar also requires that the variant be
submitted containing the reference sequence accession code to
which the variant was mapped. There was not a uniform variant
reporting format in the IBEM-IS data and most submissions
consisted of only a genetic or a protein variant, not including both
elements of the HGVS format. When included as protein
variants, most variants were reported using single-letter amino
acid codes and position in the protein, i.e. F256L. The HGVS
segment in the ClinVar variant was converted to the single-letter
amino acid code format to reconcile the two protein reporting
formats during analysis.

2.4.3 Compare Genotypes to ClinVar Database and
Deduplicate
Variants found in the IBEM-IS were compared to published ClinVar
variants. If the IBEM-IS variant matched a ClinVar variant, the
variant was appended to the disease-specific published list. If the
IBEM-IS variant did not match a ClinVar variant, the variant was
appended to the disease-specific unpublished list. The records
containing variants not found in ClinVar were manually re-
checked and used for the next step in the pipeline.

2.4.4 Extract Clinical Data
When a variant was not found in ClinVar, the patient’s record was
searched for clinical data. Clinical data of interest were NBS result,
family history, treatment, medical management, and allelic (cis/trans
testing) data to aid in determination of recessive phenotypes. These
clinical data points were selected according to the ACMG/AMP
guidelines (Richards et al., 2015). If clinical data was discovered in
the patient’s record, it was extracted and saved.

2.4.5 Output Check and Variant Classification
To archive all results obtained from the pipeline, an output text
file (.txt) was saved with information for each disease. The output
text file contains the clinical data associated with each variant, the

locally compiled published and unpublished list of variants, and
the total number of subjects found in the disease-specific table.
After the output text file is exported, a manual check of variants is
needed to ensure variant comparison accuracy. After the output
verification, the information was compiled for pathogenicity
classification using the ACMG/AMP guidelines. Classified
variants will be submitted to the ClinVar repository.

2.5 Time-Stamped Analysis
To perform a time-stamped analysis, ClinVar was searched on 1
October 2021 for the 33 genes in which the 150 variants were
classified. ClinVar records were searched by gene name and all
variants associated with the gene were downloaded. The 150
classified variants in this study were checked for inclusion in the
updated ClinVar search. Variants that were found were analyzed
for classification accuracy by comparing the ClinVar
classification to the classification given in this study.

3 RESULTS

3.1 LPDR Data Summary
2,124 subjects were enrolled in the IBEM-IS when the data was
transferred to the LPDR for secondary use. Of these enrolled,
1904 subjects had a diagnosis of one of the 32 diseases that were
successfully analyzed to determine if genetic variants had been
reported. Ten diseases were not analyzed due to either no
genotype or unpublished variants reported for a patient.
Genotyping was performed on 982 (51.6%) out of 1904
subjects with a diagnosis of one of 32 analyzed diseases. Of
the analyzed diseases, 10 (31.3%) were categorized as amino
acid disorders, 8 (25%) were fatty acid oxidation disorders, 11
(34.4%) were organic acid disorders, and 3 (9.4%) were
categorized as other disorders. Table 2 lists the number of
subjects for each condition and the categorization of variants
in ClinVar. These data show that data collected by observational
studies and maintained by the NBSTRN contain diverse
disease data.

3.2 Classification of 150 Variants With
Supporting Clinical Information
Among the 982 subjects where a genetic variant was recorded in
the LPDR, 564 individual variants were identified. Of those
variants, 403 (71.5%) were present in ClinVar and 161 (28.5%)
variants were not found in the ClinVar database. The 161
unpublished variants were reported in 29 diseases, shown in
Supplementary Table S2. The clinical data from subjects with
these 161 variants was used to build evidence for variant-disease
correlation. The breakdown of the ACMG/AMP scoring criteria
assigned to unpublished variants is shown in Table 2. While
mapping variants to reference sequences, 11 variants were
discovered that were reported with an incorrect reference
amino acid at the submitted protein residue position. These
incorrect submissions were confirmed with FATHMM (Shihab
et al., 2013) and SNPS&GO (Calabrese et al., 2009)
(Supplementary Table S3, S4). These 11 variants were not
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further analyzed nor assigned a classification. The remaining 150
variants (93.1%) mapped to reference sequences were attributed PS3
and PP4 pathogenicity criteria due to the nature of the disease
dataset being studied (Supplementary Table S5). Ninety-one
variants were classified as Likely Pathogenic and were assigned
using the “Likely Pathogenic 2” (one strong and one to two
moderate) and “Likely Pathogenic 3” (one strong and more than
two supporting) combination criteria. 41 variants were classified
according to “Likely Pathogenic 2” and 50 were classified according
to “Likely Pathogenic 3”. Moderate and supporting classification
criteria were obtained from computational prediction (PM5 and
PP3), discovery in other databases (PP5), segregation (PP1), de novo
(PM6), and allelic (PM3) data. The distribution of variants assigned
these criteria can also be found in Table 3. During analysis, 11
variants discovered did not have enough clinical information to
assign a classification. These 11 variants were attributed with PS3
and PP4 classification criteria but did not have additional
information necessary to determine a classification, thus, they
remain as Variants of Uncertain Significance (VUS). These data
show that the LPDR contains undescribed variants and the clinical
data needed to classify them.

Forty-eight of the 161 variants were found to have evidence
supporting classification as Pathogenic. A total of 44 predicted
null variants were discovered across 20 diseases, which were
attributed with PVS1 pathogenicity criteria. PVS1 and PS3
attributed variants satisfied the “Pathogenic 1a” combination
requirements for classifying the variant as Pathogenic. Four
variants were classified as Pathogenic according to
combination criteria for “Pathogenic 3b”, using two moderate
(PM1-6) classification criteria and two supporting (PP1-PP5)
criteria. These data show that the LPDR contains substantial
numbers of pathogenic variants that have remained undescribed.

3.3 Time-Stamp Analysis Demonstrates the
Continual Expansion of ClinVar
To determine whether our novel variants had been submitted to
ClinVar since the original analysis, we performed an updated

search of ClinVar (Methods) for variants in the 33 genes from our
analysis. The updated search returned an additional 7,469
variants, resulting in a total of 14,556 variants (original plus
updated). Of the 150 novel variants we classified in the original
analysis, eight had since been submitted to ClinVar
(Hypergeometric test; p = 1.61e-05). We compared the
pathogenicity classification in ClinVar for the eight variants
(Table 4). Four of the eight variants (GCDH:c.776C > T
(p.Ser259Leu), GCDH:c.880C > T (p.Arg294Trp), GALT:
c.601C > T (p.Arg201Cys), ASL:c.1366C > T (p.Arg456Trp))
were classified as Pathogenic or Likely Pathogenic in ClinVar and
are additionally supported by the classification in this study. The
remaining four of eight variants are classified as Uncertain
Significance or Conflicting Interpretations of Pathogenicity in
ClinVar. The time-stamp analysis demonstrates that ClinVar is a
continually changing resource of genotype-phenotype
characterizations and that data collections like the IBEM-IS
contribute to this ongoing effort.

4 DISCUSSION

This study is the first to use secondary analysis of health
information from a NBS longitudinal dataset housed in the
LPDR to classify variants. In addition to collecting variant data
used in the diagnosis of individuals, longitudinal databases also
capture follow-up visits describing the treatment plan and
additional clinical testing data. By analyzing these databases, we
have the opportunity to expand our knowledge of genotype-
phenotype correlations, determine the clinical relevance of
variants, and reduce the number of VUSs complicating
interpretation of variants in reference variant databases.

This work demonstrates that longitudinal data contained in
resources like the NBSTRN LPDR should be considered of high
value to the research and clinical communities. The LPDR offers a
unique ability to access both NBS and clinical data of subjects
with a confirmed diagnosis. The LPDR also offers another unique
advantage to understanding genotype-phenotype correlations:
subjects are followed from the neonatal period over an
extended period with clinical data medical management over
the lifespan of diagnosed individuals. This method of continuous
data capture can be used to determine if patient genotypes are
relevant to disease outcomes or could help direct clinical care
based on past findings. The LPDR should, therefore, be useful in
translating genetic variant findings into clinical action. While our
effort focused on the secondary analysis of IEMs, the NBS
community is beginning to accelerate efforts to capture long-
term follow-up (LTFU) data on all NBS conditions. Methods and
approaches like the one described here, can be applied to these
new efforts to enhance broad understanding of clinical relevance
of variant data captured in newborns and further inform public
policy regarding the utility of genome sequencing in newborn
screening.

Of note, the IBEM-IS did not mandate the use of HGVS
variant in data capture and did not recommend any
standardization of formatting. The lack of uniformity between
variant submissions was a difficult task to overcome in this

TABLE 3 | Classification of the 161 unpublished variants according to ACMG/
AMP guidelines. By combining the criteria shown in Table 3, variants were
assigned a clinical significance. The classification definitions are: 1) Pathogenic, a
variant that is “actionable” and may affect clinical decision making regarding
management, treatment, or surveillance, 2) Likely Pathogenic, meaning
“greater than 90% certainty of a variant . . . being disease-causing” (Richards
et al., 2015), 3) Variant of Unknown Significance (VUS), meaning the data was
either conflicting or did not report information that fulfilled the ACMG/AMP
criteria, and 4) Unmapped variants, referring to variants in the data set that
reported incorrect reference amino acids.

ACMG/AMP classification Number
of variants (n = 161)

Pathogenic (Criteria 1a) 44 (27.3%)
Pathogenic (Criteria 3b) 4 (2.5%)
Likely Pathogenic (Criteria 2) 41 (25.5%)
Likely Pathogenic (Criteria 3) 50 (31.1%)
Variants of Unknown Significance (VUS) 11 (6.8%)
Unmapped Variants 11 (6.8%)
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analysis. As more projects are completed and transferred to the
NBSTRN for secondary research, the issue of non-interoperable
variant submissions will worsen unless uniform requirements for
data entry are promoted. As such, it is recommended that data
tools like the LPDR work to educate researchers about
standardized formats, such as the HGVS. Using a standardized
format will allow researchers to spend less time cleaning data and
help ensure the integrity of data within. As the amount of genetic
variant data available continues to grow, researchers and
clinicians will need data tools like the LPDR to determine the
best care for individuals with a variant, offering detailed
phenotypic correlations and presenting a valuable opportunity
for corroboration of the clinical relevance of each genotype.
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Buffalo (Richard Erbe, Melissa Samons); Cincinnati Children’s
Hospital Medical Center (Nancy Leslie, Racheal Powers);
Nationwide Children’s Hospital (Dennis Bartholomew, Melanie
Goff); Oregon Health and Science University (Sandy vanCalcar,
Joyanna Hansen); University of Pittsburgh School of Medicine
(Georgianne Arnold, Jerry Vockley); Children’s Hospital of
Pittsburgh of UPMC (Cate Walsh-Vockley); Medical College of
Wisconsin (William Rhead, David Dimmock, Paula Engelking,

TABLE 4 | Classifications of eight variants identified in time-stamp analysis. Eight variants classified in this study were submitted to ClinVar since the original search for
submissions. The classifications assigned to the eight variants in ClinVar, as well as the review status, and in this study are shown. One star and two-star review statuses
correspond to variants having criteria provided by a single submitter and criteria provided by multiple submitters without conflicting interpretations, respectively.

Variant ClinVar classification Study classification

NM_000159.4 (GCDH):c.776C > T (p.Ser259Leu) Likely Pathogenic (Review Status: 1 star) Likely Pathogenic
NM_000159.4 (GCDH):c.880C > T (p.Arg294Trp) Pathogenic (Review Status: 1 star) Likely Pathogenic
NM_000155.4 (GALT):c.601C > T (p.Arg201Cys) Pathogenic (Review Status: 2 star) Likely Pathogenic
NM_004453.4 (ETFDH):c.731T > C (p.Phe244Ser) Uncertain Significance (Review Status: 1 star) Likely Pathogenic
NM_000016.6 (ACADM):c.92G > A (p.Arg31His) Uncertain Significance (Review Status: 2 star) Uncertain Significance
NM_000018.4 (ACADVL):c.1019G > A (p.Gly340Glu) Uncertain Significance (Review Status: 1 star) Likely Pathogenic
NM_000018.4 (ACADVL):c.1838G > A (p.Arg613Gln) Conflicting Interpretations of Pathogenicity (Review Status: 1 star) Likely Pathogenic
NM_000048.4 (ASL):c.1366C > T (p.Arg456Trp) Pathogenic (Review Status: 1 star) Likely Pathogenic
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Cassie Bird, Ashley Swan); University of Wisconsin (Jessica Scott
Schwoerer, Sonja Henry); West Virginia University (TaraChandra
Narumanchi, Marybeth Hummel, Jennie Wilkins); Sanford
Children’s Specialty Clinic (Laura Davis-Keppen, Quinn Stein,
Rebecca Loman); Michigan Public Health Institute (Cynthia
Cameron, ME, Sally J. Hiner, Kaitlin Justice, Shaohui Zhai).
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Supplementary Table S1 | Results of Sequence Variant Nomenclature according
to the Human Genome Variation Society from Mutalyzer (Wildeman et al., 2008).

Supplementary Table S2 | For each disorder, the number of subjects reporting a
genotype are shown. Unique variants not found in ClinVar were assigned clinical
significance and shown in the number of variants classified as Pathogenic, Likely
Pathogenic, or remain as Variants of Uncertain Significance. Variants were assigned
a clinical significance using data shown in Table 1.

Supplementary Table S3 | Variant pathogenicity predictions provided by FATHMM
(Shihab et al., 2013).

Supplementary Table S4 | Variant pathogenicity predictions provided by
SNPS&GO (Calabrese et al., 2009; Capriotti and Altman, 2011).

Supplementary Table S5 | Detailed scoring assessment for each unpublished
variant identified from the IBEMC.
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