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Purpose: To evaluate the potential for artificial intelligence-based video analysis to
determine surgical instrument characteristics when moving in the three-dimensional
vitreous space.

Methods: We designed and manufactured a model eye in which we recorded chore-
ographed videos of many surgical instruments moving throughout the eye. We labeled
each frame of the videos to describe the surgical tool characteristics: tool type, location,
depth, and insertional laterality. We trained two different deep learning models to
predict each of the tool characteristics and evaluated model performances on a subset
of images.

Results: The accuracy of the classification model on the training set is 84% for the x–y
region, 97% for depth, 100% for instrument type, and 100% for laterality of insertion. The
accuracy of the classification model on the validation dataset is 83% for the x–y region,
96% for depth, 100% for instrument type, and 100% for laterality of insertion. The close-
up detection model performs at 67 frames per second, with precision for most instru-
ments higher than 75%, achieving a mean average precision of 79.3%.

Conclusions: We demonstrated that trained models can track surgical instrument
movement in three-dimensional space and determine instrument depth, tip location,
instrument insertional laterality, and instrument type. Model performance is nearly
instantaneous and justifies further investigation into application to real-world surgical
videos.

Translational Relevance: Deep learning offers the potential for software-based safety
feedback mechanisms during surgery or the ability to extract metrics of surgical
technique that can direct research to optimize surgical outcomes.

Introduction

Retina surgery is performed in the closed confines
of the eye and all surgical manipulations are performed
manually by a trained surgeon. To achieve the goals
of surgery, the surgeon uses microsurgical instru-
ments and a microscope to visualize the intraocu-
lar contents through the pupil of the eye. Other
than human observers and surgeons, there are no
safety mechanisms to prevent error. Further, each

surgeon performs surgery with subjectively optimized
ergonomics and mechanics. Therefore, no methodol-
ogy exists to objectively optimize surgical techniques
aimed to restore and optimize human vision. We
envision that artificial intelligence (AI) can enhance
surgeon performance and extract objective data about
surgical techniques. In this work, we briefly review
limitations in performing objective surgical research,
the use of AI in health care, and the use of deep learn-
ing (DL) in surgery. Second, we propose and evalu-
ate a method, using AI, to objectively tract surgical
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instruments in the three-dimensional (3D) volume of
the eye.

Objective Research in Surgery

Unbiased medical research in human popula-
tions is designed around patient randomization,
blinding patients and clinicians to intervention, and
standardizing interventions and clinical end points.
Even in medicine, where pharmacological treatment
protocols are more easily standardized than medical
procedures, real-world medical outcomes do not
match the outcomes achieved in large controlled
clinical trials. This mismatch between real-world
practice and clinical trials is largely because real-world
practice does not ubiquitously recapitulate rigid clini-
cal trial protocols.1 Real-world experience in medicine
does, however, provide valuable guidance to clinical
care.2,3

Within medicine, research in surgical fields is
uniquely susceptible to bias4 because surgeons cannot
be blinded to their intervention, and surgical inter-
ventions cannot be precisely standardized from one
surgeon to the next. Like medical research that studies
large cohorts of real-world patients, we believe that
valuable information to guide surgical procedures is
available for extraction from real-world surgical videos.
The major limitation to studying real-world surgery is
that no tool exists to data from surgical videos objec-
tively. One method to study videographic data is to
annotate videos and train computer vision systems to
identify details from the video. A recent review5 of
challenges facing annotation of surgery videos identi-
fied limitations in the skill level of graders (annota-
tors), intergrader variability, and insufficient degrees
of objectivity in the assessment of surgical perfor-
mance. Therefore, there is a need for developing
objective and reproducible methods to study surgical
videos, and AI offers an avenue for objective surgery
evaluation.

Review of AI in Medicine and Ophthalmology

Recently, AI has gained popularity in medical
sciences and is a common topic in medical meetings.6
Common applications include matching patient
symptoms to appropriate physician,7 diagnostic
methods,8 drug discovery,9 and patient prognosis.10
DL,11,12 the modern rebranding of neural networks
in which networks of simple interconnected neurons
are trained to carry various tasks, is currently the
dominant component of AI. In biomedical imaging, to
analyze images, DL algorithms distinguish themselves
by learning relevant features directly from training

data and use them for classification, regression, and
other tasks and has been used in many biomedical
imaging tasks13–19 in our group alone. We further have
used DL to assist advanced two-photon imaging20 and
predict visible spectrum color images from infrared
images.21 DL applications in ophthalmology are
rapidly expanding across imaging modalities and
diseases.8,22–29

DL in Surgery

DL has been applied in surgical fields with great
success and has gained popularity in diverse surgical
specialties, including gynecology, digestive surgery,
cardiology, and urology. Trained models may aid
and improve surgical execution with high precision
and address some of the technological challenges
present in some surgical procedures. A metanaly-
sis study, combining results from 2289 papers used
DL methods to evaluate surgeries, revealed that
laparoscopy cholecystectomy was the most consis-
tent surgery, achieving greater than 90% accuracy
rates. They summarized that surgical procedures with
simple workflow and well-defined automated phase
of recognition can be performed with high accuracy,
but more complex surgical procedures remained
more challenging.30 Additional reviews of DL
applied to surgery highlight its potential to optimize
preoperative planning and intraoperative perfor-
mance,31 as well as the prediction of postoperative
outcomes.32

The application of AI to ocular surgery is relatively
nascent, but remains an attractive option with signif-
icant potential. DL was reported for use in cataract
surgery to track the pupil, identify the surgical
phase, and provide tools to provide real-time visual
feedback.33,34 The use of DL to aid surgery in the
larger 3D volume of the posterior chamber has
not been reported. Ophthalmology, for a number
of reasons, is uniquely positioned to study surgical
techniques from surgical videos. First, the eye is an
enclosed space with little mobile anatomy (unlike the
abdominal and thoracic cavities). Second, unlike the
confines of the cranial vault, gastrointestinal tract,
or heart, the eye is filled with a clear media. Third,
visualizing anatomic landmarks during ophthalmic
surgery is rarely obscured by bleeding. Finally, most
ophthalmic surgery is performed using a high-quality
surgical microscope that standardizes video record-
ing parameters. Retina surgery is one of the most
challenging surgical procedures owing to the limited
access to a small surgical volume and sensitivity of
tissues to incident light and mechanical forces. There-
fore, tools to mitigate human errors and identify
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optimal surgical techniques could optimize visual
outcomes.

To evaluate the potential of AI/DL for surgical
instrument tracking in eye surgery, we engineered an in
vitro model eye to collect videographic data of surgical
instrument movements in the eye. We then trained an
AI system to analyze the videos of surgical instrumen-
tation moving in vitro.

Methods

Computer-aided Design andModel Eye
Fabrication

We designed a model eye using Fusion 360
(Autodesk, ver. 1.8) (Fig. 1a).We 3D printed a negative
mold of the model eye using a polylactic acid filament
(Hatchbox, Omaha, NE) on a Prussa i3 MK3S fused
deposition modeling printer (Prussa, Prague, Czech
Republic). We then poured a polydimethyl siloxane
mixture into the negative mold and allowed to cure
overnight at room temperature. We demolded the
polydimethyl siloxane from the mold and epoxy glued
it to a three-prong 3D printed ring that sits on top of
another 3D printed staircase ring used to adjust the
height of the model eye over the underlying retinal
image. The staircase ring positioned the model eye
at incremental distances from the underlying retinal
image. We inserted three 23G vitreoretinal surgical
cannulas (Alcon, Fort Worth, TX) into the model eye
approximately 4 mm posterior to the viewing field.

Illumination Pattern of Surgical Instruments

To choreograph instrument movements in the
model eye, an Arduino microcontroller was used to
control a 12 light-emitting diode ring light (Adafruit,
New York, NY) and a mini audio speaker to produce
an audible tone between each choreographed segment.
The ring light-emitting diode produced light inside the
semitranslucent model eye by sequentially transillumi-
nating each of the four quadrants. This practice yielded
images of surgical instruments moving throughout the
model eye with illumination from four different angles.
Changes in light color from white to red, and sound
emitted by the metronome were programmed to occur
every 4 seconds to indicate when the surgeon should
move the surgical instrument from one region and
depth to the next region and depth. The assembled
model eye with programmed illumination ring and
microcontroller is shown in Figure 1b.

Video Recording

Videos were recorded using a Zeiss Lumera and
Resight viewing system (Karl Zeiss Meditech, Dublin,
CA) (Fig. 1c). Five 23G instruments were used: vitrec-
tor, forceps (in two variants: closed and opened), soft
tip, loop, and laser probe (Alcon). Videos of instru-
ment manipulation throughout the surgical field were
recorded in nine regions and four depths (Fig. 1d) with
instruments inserted through the right- and left-hand
cannulas.

Video Processing and Data

After the videos were recorded, each video was
trimmed to the exact same starting point in the illumi-
nation sequence. Then the videos were processed by a
Python script that extracted frame images at a rate of
30 frames per second. Additionally, the script labeled
each video frame image with the tool type, x–y region,
zone depth, and tool laterality. There are five tool types,
nine regions, four depth levels, and two laterality values.
For the machine learning experiments described in this
article, we used 34 videos, corresponding with a total
of 103,437 frames, with an average of 3042 frames per
video.

Models

After some experimentation, we designed and
trained two models: a classification model and a close-
up detection model (Table). The outputs of the classi-
fication model are purely categorical and comprise the
type of instrument, the instrument’s depth estimating
the proximity to the retina surface (far, intermediate,
near to the retina, and contact with the retina), the
x–y location of the instrument’s tip quantized to the
nine regions outlined in Figure 1d, and the laterality.
When the instrument is in the near or contact depth
zones, the close-up discrimination model is used to
identify the precise location of the instrument’s tip.
The outputs of the discrimination model include both
categorical variables correspondingwith a finer grained
description of the instruments (e.g., open or closed)
and continuous variables corresponding to x–y coordi-
nates.

Classification Model
For the classification model, the data were split

equally between training and validation sets. The classi-
fication model is used to classify each frame accord-
ing to the following labels: x–y region, depth zone, tool
type, and tool laterality. This model uses the ResNet-
18 architecture.35 It is trained for 100 epochs with a
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learning rate of 0.01. The region prediction is used
when the tool is in the intermediate and far depth zones
and the tool x–y location prediction is made for near
and contact depth zones. Because ResNet-18 is a deep
model, there is a tendency for the model to overfit.
To overcome the overfitting, we added weight decay
with a lambda of 0.0005, as well as data augmentation
methods described elsewhere in this article.

Close-up Detection Model
Images of instruments moving throughout the

model eye were randomly selected (N = 251 for each
instrument). The instrument tip was labeled manually
in seven classes (Fig. 2) and then used to train the detec-
tion model. The detection model is used when the tool
is in the near or contact depth zones, where a precise
location of the tip is desirable. We trained a YOLOv5-

Figure 1. Model eye for data collection. (a) Computer-aided design and dimensions of model eye. (b) Three-dimensional printed model
eye positioned beneath surgical microscope with ring light-emitting diode positioned on top of the model and Arduino microcontroller.
(c) Vitreoretinal surgeon recording videos of surgical instrument movements inside the model eye. (d) Schema for moving six different
surgical instrument types in nine x–y regions and four depth zones.
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Table. Summary of Datasets and Models Used to Predict Surgical Tool Characteristics in the Model Eye

based object detection neural network36 to accomplish
the precise tip location detection task. YOLOv5 is
a two-stage detector, which is composed of a Cross
Stage Partial Network37 as the backbone to initially
extract the features, Path Aggregation Network38 plus
a Feature Pyramid Network39 as the neck to aggre-
gate the features, and a series of convolutional layers
and fully connected layers as the head to output the
detection results. Regularly, the backbone of YOLOv5
is pretrained on a large dataset, such as ImageNet,40
to allow the network to preliminarily learn common
features from general natural images. However, the
in vitro dataset of simulated eye surgery images is
a special dataset with images that may differ signif-
icantly from natural images. Therefore, we trained
the YOLOv5-based object detection neural network
without using pretrained weights.

Data Augmentation

To improve the generalization capabilities of the
models and avoid overfitting, we apply data augmen-
tation strategies to create additional relevant data.
The augmentation transformations we applied include
brightness jitter, contrast jitter, saturation jitter, hue
jitter, random grayscale, random cropping, left–right

flip, translation, scale, and mosaic. Figure 3 provides
a sample of comparison of raw images and their
augmented counterparts. Data augmentation transfor-
mations were applied randomly to each training batch
at training time.

Results

We designed and 3D printed a model eye in which
we recorded videos using an ophthalmic surgery micro-
scope of vitreoretinal surgery instruments moving
throughout the 3D volume of the eye. Each frame
from the video was isolated and labeled to specify the
location of the surgical tool’s tip in 3D space, the type
of surgical tool, and the laterality for inserting the
surgical instrument into the model eye. A classification
and a close-up detection model were used to predict
characteristics for each surgical instruments moving in
the model eye.

Classification

The dataset for the classification task consisted of
34 videos with an average of 3043 frames per video. We
split the dataset frames between training and testing
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Figure 2. (a) Manual labeling strategy for different surgical tools. Green indicates rigid instrument tips. Blue indicates instrument tips when
the instrument is open (forceps) or extended (loop). (b) Examples of manually labeled instrument tips used to train the AI detection model.

sets with a ratio of 50:50. The original images were
resized into a size of 224 × 224 pixels, and then we
applied various augmentation strategies while train-
ing the model. We used accuracy as the metric for
measuring the models’ performance. The accuracy of
the classification model on the training set was 84% for
x–y region, 97% for depth, 100% for instrument type,
and 100% for laterality of insertion. The accuracy of
the classification model on the validation dataset was
83% for x–y region, 96% for depth, 100% for instru-
ment type, and 100% for laterality of insertion. Figure
4 shows the confusion matrices for the classification
task. The model inference time is 0.9 ms to preprocess
each input frame and output its classification results

using one Nvidia TitanX GPU. The trained model
can perform real-time classification and process 1111
frames per second.

Close-up Detection

The confusion matrix for the precision in detecting
the instrument’s tip is presented in Figure 5a. The
YOLOv5 model outputs a mean average precision of
79.3% when the threshold is set to 0.5, with a range
extending from 62% to 94%. The average precision
calculated for most instrument types is greater than
75%, except for the loop tip (62%), which is almost
transparent. The model inference time is 14.9 ms to
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Figure 3. Side-by-side examples of raw and augmented images.

Figure 4. Confusionmatrices for the classificationmodel in predicting region, zone, tool type, and tool laterality. Depth zone is color coded
as illustrated in Figure 1d. Results computed on validation samples.



Artificial Intelligence to Track Retina Surgery TVST | January 2023 | Vol. 12 | No. 1 | Article 20 | 8

Figure 5. Close-up detection model’s performance for instrument tip detection. (a) Confusion matrix for instrument tip detection
computed on validation samples. (b) Precision–recall curve for the instrument tip detection computed on validation samples. Color coding
is according to instrument type and instrument status (when applicable), as shown in the figure key (far right). Confidence scores correspond
with the white text in each colored box of the figure key.

Figure 6. Examples of instrument detection with color-coded depth and a gray circular shadow overlying the instrument tip.

preprocess each input frame and output its detection
results using one Nvidia TitanX GPU. The trained
model can perform real-time detection and process
67 frames per second. The precision–recall results
for detection are presented in Figure 5b, where the
confidence score of each detected object is provided
adjacent to the legend labels. A confidence score of
0 means the least confidence and 1 means the most
confidence. In short, the trained close-up detection
model achieves precise and real-time detection of all
given instruments.

Real-time Visual Feedback

To demonstrate one possible real-time rendering to
display data about surgical tool manipulations in a 3D
space, we evaluated a series of videos and predicted
the location and type of surgical tools (Fig. 6). Surgi-
cal tool type is displayed in the lower right corner,
distance to the retinal surface is outlined in the top right
corner, and the rim of the surgical view is highlighted
with a color-coded ring indicating predicted tool depth.
Finally, a faint gray shadow identifies the instrument

tip location. For all instruments the tip detection was
worst for the loop as seen in Figure 6. A video demon-
strating real-time model predictions with instrument
location feedback rendered in the same way as Figure
6 (Supplementary Movie S1). Regardless of location
of illumination direction, the models perform consis-
tently to identify instrument 3D location and instru-
ment type.

Discussion

We sought to evaluate the feasibility for trained AI
models to detect surgical instrument characteristics as
they moved within the 3D volume of the eye. We devel-
oped an artificial eye within which to record videos
of surgical instruments moving throughout 3D space
(Figs. 1a–d). Using data procured in the artificial eye,
we demonstrated that AI can accurately identify surgi-
cal instrument type and location moving throughout a
simulated 3D space. The AI renders a real-time analy-
sis to enhance visualizing in the artificial surgical field
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of view (Fig. 6) and performs very well at predicting
multiple instrument characteristics (Figs. 4 and 5).

The classification model accuracy was greatest for
predicting tool type and tool laterality and slightly
lower for predicting region and depth. Overall, the
classification model generalizes well to the data in the
validation dataset.

The close-up detection model average precision for
instrument tip detection was greater than 75%. The
loop tip demonstrated the lowest precision, and this
is most likely because the thin loop wire is signifi-
cantly thinner than most retinal vessels and is, there-
fore, poorly resolved by the surgical video microscope
recording system. The model sometimes predicted the
loop tip to be part of the background image of the
retina.

When the tools were near or in contact with the
retinal surface, we accepted a single output from the
prediction model. However, because both models can
distinguish instrument depths, future implementation
of models predicting instruments in the near and
contact depths may compare the confidence of both
models and use this information to produce more
robust depth inferences. Although the results of this
study are promising, our trained model is neither
suitable for nor capable of evaluating real-word surgi-
cal videos; however, a similar methodology and trained
model based on real-world surgical data should be
developed. Although our training and testing datasets
are influenced by some crossover bias because they
are composed of unique and separate frames from the
same movie, we believe that this pilot study demon-
strates feasibility to train neural networks to detect
multiple instrument parameters in a simulated 3D
intraocular volume.

Mechanical forces from surgical instruments used in
retina surgery are below the tactile perception thresh-
old of the surgeon. Therefore, vitreoretinal surgery is
performed based on visual feedback, rather than tactile
perception.41 The only tool to study forces on the retina
is a force-sensing micropick that detected forces below
tactile sensation and quantified the forces generated
during normal maneuvers from those that may cause
a surgical complication.42 However, specialized force-
sensing instruments are not practical for implemen-
tation during retina surgery. Because humans rely on
visual feedback to infer forces in retina surgery, it may
be possible to determine surgical forces using video
image analysis to determine rates and directions of
instrument movements.

Important contributions using robotic tools in
ocular surgery suggest the potential to marry AI
with robotic surgical tools in the future. Robots have
assisted corneal laceration repair in a porcine eye,43

removal of an epiretinal membrane or inner limit-
ing membrane in a human eye,44 and even image-
guided robot-assisted 3D navigation of a microsurgi-
cal instrument.45 However, the only report of DL in
vitreoretinal surgery came from a conference report
where a pipeline was designed to estimate the relative
distance of the vitreoretinal instrument tips from the
retina surface using Convolutional Neural Networks
and stereo vision recording microscopes with satis-
factory performance.46 Most surgical microscopes are
not equipped with stereo digital video capabilities.
However, the stereovision approach would be valuable
to train a model to use only one of two stereo channels
and make inferences, as described in this work. The
new capabilities created by AI in surgery have broad
potential applications. Surgical safety may be enhanced
in real time by the detection of surgical instrument
proximity to the optic nerve and retinal surface. AI
trained to track surgical phases and instruments used
could be used to automate transcription of an opera-
tive report. An additional significant utility of AI
extracting data from surgical videos may be as an aid
in conducting objective research in surgical techniques
across surgical videos from thousands of surgeons.

Conclusions

AI is increasingly being used in medical image
interpretation. Now AI is moving into more dynamic
imagingmodalities including surgical videography. The
methods and results in this work demonstrate the
feasibility for trained models to accurately detect and
classify microsurgical instruments moving within the
gross and microanatomic confines of the eye. We
demonstrate the strong capabilities for AI to make
multiple simultaneous predictions in simulated artifi-
cial surgical environment. This data supports our long-
term goal to develop software to extract data from
real-world surgery videos and use it to investigate and
improve intraocular surgery. To transition this technol-
ogy to real world surgery, creative tools are needed to
annotate large volumes of surgical imaging.
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Supplementary Material

Supplementary Movie S1. Movie of different
surgical tools moved throughout 3D volume of artifi-
cial eye. The direction of illumination is observed
to change continuously while the instrument tip is
highlighted with a gray circle and the instrument depth
is detected and rendered as a color-coded circle around
the surgical field of view.
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