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Background and objectives: Lower vitamin status has been linked to cognitive deficits,

pending mechanistic elucidation. Serum 25-hydroxyvitamin D [25(OH)D], folate and

cobalamin were explored against brain volumes and white matter integrity (WMI).

Methods: Two prospective waves from Healthy Aging in Neighborhoods of Diversity

Across the Life Span (HANDLS) study were primarily used [Baltimore, City, MD,

2004–2015, N = 183–240 urban adults (Agev1: 30–64 years)]. Serum vitamin 25-

hydroxyvitamin D [25(OH)D], folate and cobalamin concentrations were measured at

visits 1 (v1: 2004–2009), while structural and diffusion Magnetic Resonance Imaging

(sMRI/dMRI) outcomes were measured at vscan: 2011–2015. Top 10 ranked adjusted

associations were corrected for multiple testing using familywise Bonferroni (FWER <

0.05) and false discovery rates (FDR, q-value < 0.10).

Results: We found statistically significant (FWER < 0.05; β±SE) direct associations of

25(OH)D(v1) with WM volumes [overall: +910 ± 336/males: +2,054 ± 599], occipital

WM; [overall: +140 ± 40, males: +261 ± 67 and Agev1 > 50 years: +205 ± 54];

parietal WM; [overall: +251 ± 77, males: +486 ± 129 and Agev1 > 50 years: +393

± 108] and left occipital pole volume [overall: +15.70 ± 3.83 and above poverty: 19.0 ±

4.3]. Only trends were detected for cobalamin exposures (q < 0.10), while serum folate

(v1) was associated with lower mean diffusivity (MD) in the Anterior Limb of the Internal

Capsule (ALIC), reflecting greater WMI, overall, while regional FA (e.g., cingulum gyrus)

was associated with greater 25(OH)D concentration.
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Conclusions: Among urban adults, serum 25(OH)D status was consistently linked

to larger occipital and parietal WM volumes and greater region-specific WMI. Pending

longitudinal replication of our findings, randomized controlled trials of vitamin D

supplementation should be conducted against brain marker outcomes.

Keywords: 25-hydroxyvitamin D, folate, cobalamin, brain volumes, white matter integrity, cognitive aging,

health disparities

INTRODUCTION

A possible beneficial effect of several vitamins on cognition
has been suggested (Beydoun et al., 2014a). Vitamin D is a
steroid hormone that regulates calcium homeostasis. Serum 25-
hyrdoxyvitamin D [25(OH)D], or vitamin D status, is primarily
determined by sunlight skin exposure and secondarily by
dietary and supplemental intakes (Buell and Dawson-Hughes,
2008). Vitamin D’s active form (1,25-dihydroxyvitamin D3)
maintains and stabilizes intracellular signaling pathways involved
in memory and cognition (Eyles et al., 2013) by increasing VDR
(Guo et al., 2016) and LRP2 expression in the choroid plexus and
helping clear neurotoxic β-amyloids (Deane et al., 2004; Carro
et al., 2005) involved in Alzheimer’s disease (AD) pathogenesis
(Roher et al., 1993). Vitamin D-related gene polymorphisms
and lower vitamin D intake and status were linked to cognitive
decline in epidemiological studies (Annweiler et al., 2016; Kuzma
et al., 2016; Beydoun et al., 2018; Goodwill et al., 2018) and to
markers of brain atrophy and poor white matter integrity (WMI)
(Buell et al., 2010; Annweiler et al., 2013, 2015b; Michos et al.,
2014; Prager et al., 2014; Brouwer-Brolsma et al., 2015; Del Brutto
et al., 2015; Moon et al., 2015; Karakis et al., 2016; Littlejohns
et al., 2016; Al-Amin et al., 2019). Vitamin D’s neuroprotective
role is likely mediated through the expression of neurotrophins,
neurotransmitters, and suppression of inflammatory cytokines
(Buell and Dawson-Hughes, 2008; Miller, 2010; Etgen et al.,
2012).

Moreover, folate and cobalamin (vitamin B-12) are essential
in remethylation of homocysteine (Hcy), a sulfur amino acid
with neurotoxic and excitotoxic properties (Kruman et al., 2000),
yielding methionine (Bottiglieri, 2005; Troesch et al., 2016). Hcy
was recently shown in animal studies to increase tau protein
phosphorylation, truncation, and oligomerization, an evidence of
direct involvement in AD’s second pathological hallmark, namely

Abbreviations: AA, African Americans; ALIC, Anterior Limb of the Internal

Capsule; C-TRIM, Core for Translational Research in Imaging @ Maryland; DTI,

Diffusion Tensor Imaging, dMRI, Diffusion MRI; FA, Fractional Anisotropy;

FWER, Familywise Error Rate, FDR, False Discovery Rate; FLAIR, Fluid-

Attenuated Inversion Recovery; FOV, Field of View; GM, Gray Matter; HANDLS,

Healthy Aging in Neighborhoods of Diversity across the Life Span study; HS, High

School; LRP2, Megalin gene; MP-RAGE, Magnetization prepared rapid gradient

echo; MRI, Magnetic Resonance Imaging; MD, Mean Diffusivity; MRV, Medical

Research Vehicle; MMSE, Mini-Mental State Examination; MICO, Multiplicative

intrinsic component optimization; MUSE, Multi-atlas region Segmentation

utilizing Ensembles; OCM, One-Carbon Metabolism; ROI, Regions of Interest;

25(OH)D, Serum 25-hydroxyvitamin D; FOL, Serum folate; B-12, Serum vitamin

B-12; Hcy, Homocysteine; SA, Sensitivity Analysis; sMRI, Structural MRI; TR,

TRACE; US, United States; VDR, Vitamin D receptor gene; WMI, White Matter

Integrity; WM, White Matter.

neurofibrillary tangles (NFTs) (Shirafuji et al., 2018). Hcy is also
converted to cysteine via a vitamin B6-dependent mechanism
(Troesch et al., 2016). Importantly, folate and cobalamin status
were inversely associated with age-related cognitive decline
(McCaddon and Miller, 2015; Smith and Refsum, 2016), with
cobalamin further exhibiting direct associations with brain
volumes and WMI (Erickson et al., 2008; Vogiatzoglou et al.,
2008; De Lau et al., 2009; Pieters et al., 2009; Lee et al.,
2016). A recent trial demonstrated beneficial effects of B-vitamin
supplementation on brain magnetic resonance imaging (MRI)
measures and cognitive function longitudinally (De Jager et al.,
2012; Douaud et al., 2013). Furthermore, nutritional biomarkers
may work synergistically to improve cognitive outcomes (Min
and Min, 2016; Moretti et al., 2017). Since socio-demographic
factors relate to both nutrition and cognition (Beydoun et al.,
2014b; Berg et al., 2015;McCarrey et al., 2016;Weuve et al., 2018),
studying relations of vitamin D, folate and cobalamin with brain
MRI measures, while stratifying by relevant sociodemographic
factors is key.

This study examines associations of serum 25(OH)D, folate
and cobalamin concentrations with brain volume and WMI
among a diverse sample of urban adults, while stratifying by
sex, age, race, and poverty status. We hypothesized that first-
visit serum 25(OH)D, folate, and cobalamin (and annual rate
of change over time) would directly correlate with global and
regional gray and white matter (WM and GM) brain volumes
and regional WMI measured at one follow-up visit (vscan), after
a mean follow-up of 5.7 years. Analyses also explored brain
regions’ sensitivity to lower vitamin status, differentially by socio-
demographic factors.

METHODS AND MATERIALS

Database
Using area probability sampling, a socio-demographically diverse
sample of middle-aged White and African-American urban
adults (Age v1: 30–64 years) from thirteen contiguous census
tracts of Baltimore was recruited into the Healthy Aging of
Neighborhoods of Diversity across the Life Span (HANDLS)
study (Evans et al., 2010). HANDLS is an on-going prospective
cohort study, initiated in 2004 by the National Institute on Aging.
Potential participants were interviewed and identified by random
selections of address listings within each census tract (Evans et al.,
2010). Participants were invited to join HANDLS if they met
the following criteria: (1) between ages 30–64; (2) not currently
pregnant; (3) not within 6 months of active cancer treatment;
(4) not diagnosed with AIDS; (5) capable of providing written
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FIGURE 1 | Study participant schematic: HANDLS 2004–2013 and HANDLS-SCAN 2011–2015a. 25(OH)D, 25-hydroxyvitamin D; B-12, Vitamin B-12 (cobalamin);

dMRI, Diffusion magnetic resonance imaging; HANDLS, Healthy Aging in Neighborhoods of Diversity Across the Life Span; k, average number of repeats; sMRI,

Structural/volumetric magnetic resonance imaging. aVisit 1 refers to HANDLS 2004–2009; Visit 2 refers to HANDLS 2009–2013; and HANDLS-SCAN visit (vscan) was

carried out between 2011 and 2015.

informed consent, thus excluding individuals with probable
dementia or very low literacy among others; (6) with a valid
government-issued identification and a verifiable address (Evans
et al., 2010).

Initial examinations were performed in two phases. Phase
1 included the first dietary interview and completion of
various demographic and psychosocial scales. Phase 2,
performed on Medical Research Vehicles (MRV) parked in
participants’ neighborhoods, included the second dietary
interview and various physical, medical, and psychosocial
examinations, including DXA for bone mineral density and
body composition, EKG, intima-media thickness by ultrasound,
personal and family health history, physical examination by a
physician, physical performance by a brief screening battery,
neuropsychological tests, and inventories to assess depressive
symptoms (Evans et al., 2010). Follow-up visits included largely
comparable MRV visits. At visit 2 (v2, 2009–2013), blood draw
analyzed in the same laboratory facility as for visit 1 yielded
similar biochemical and hematological indices that can be
studied longitudinally.

Written informed consent was obtained from all participants.
Study protocols for HANDLS and HANDLS SCAN were
approved by the National Institute on Environmental Health

Sciences Institutional Review Board (IRB) of the National
Institutes of Health. HANDLS SCAN was also approved by the
IRBs of the University of Maryland School of Medicine and the
University of Maryland, Baltimore County.

This study analyzed nutritional biomarker data from visit 1
(v1: 2004–2009) in relation to follow-up data measured in a sub-
sample of Nmax = 258 participants within the HANDLS SCAN
sub-study (vscan: 2011–2015) (Waldstein et al., 2017). Exposure
variables were measured during the Medical Research Vehicle
(MRV) examinations; outcomes were MRI measures of brain
volume and WMI at vscan (Waldstein et al., 2017). The mean
follow-up time between visit 1 and vscan was 5.70 years± 1.90.

Study Sample
The initial HANDLS cohort included 3,720 participants (30–65
years, AAs andWhites, Phase I, visit 1). We included participants
with complete and valid MRI data at follow-up and complete
25(OH)D, folate and cobalamin data at visit 1 and/or visit 2
(Figure 1). Mean ± SD of follow-up time between v1 and v2 was
4.65 years ± 0.93 (range: 0.4–8.2 years). The final sample was
reduced to N = 185–186 for vitamin D and N = 240 for folate
or cobalamin exposures.
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Brain sMRI
A Siemens Tim-Trio 3.0 Tesla scanner was used for MRI
assessments. Magnetization prepared rapid gradient echo (MP-
RAGE) was used to perform volumetric measurements for
anatomical regions. Volumetric measures were estimated for
each region of interest (ROI). Detailed description is provided in
Supplemental Method 1.

In addition to standard axial T1, T2, FLAIR images, a high-
resolution axial T1-weighted MPRAGE (TE = 2.32ms, TR
= 1900ms, TI = 900ms, flip angle = 9◦, resolution = 256
× 256 × 96, FOV = 230mm, sl. Thick. = 0.9mm) of the
brain was acquired for structural imaging. Images were used
as anatomic references and to extract parameters of regional
and whole brain volumes (see Supplemental Table 1). This
study comprehensively examines brain volumes at ascending
segmentation levels.

Brain dMRI
dMRI was obtained using multi-band spin echo EPI
sequence with a multi-band acceleration factor of three
(Supplemental Method 1). Fractional Anisotropy (FA) and
trace (TR, aka mean diffusivity or MD) images were computed
from tensor images. As intact WM generally allows for more
restricted diffusion, higher FA values are indicative of healthier
WMI. Summing eigenvalues for diffusion tensor yields MD, with
higher values indicative of poorerWMI (Jones, 2008). Computed
FA and MD images were aligned to a common template space
via deformable registration using a standard dMRI template (i.e.,
EVE Wakana et al., 2004). Right and left FA and MD values
were averaged for each ROI (see Supplemental Table 2 for list
of ROIs).

Vitamin Status Measures
Participants were asked to fast for ≥8 h prior to the MRV visits,
and specimens in volumes of 2mL serum were collected and
frozen at −80◦C. Similar procedures were adopted for v1 and v2
serum folate and cobalamin, measured using chemiluminescence
immunoassay1 by Quest Diagnostics, Chantilly, VA2, and
previously validated against other automated methods with
coefficient of variation (CV) < 10% (Owen and Roberts, 2003;
Ispir et al., 2015).

25(OH)D were measured using slightly different
methodologies between v1 and v2. For both visits, blood
samples drawn at examination were stored at −80◦C. At v1,
total levels of serum 25(OH)D (in ng/ml; D2 and D3) were
measured using tandem mass spectrometry (interassay CV,
8.6%) at Massachusetts General Hospital, <60 days later, as
recommended for frozen samples (Powe et al., 2013). V2

25(OH)D was measured by Quest Diagnostics (Chantilly, VA)
using an immunoassay that includes competitive binding of
serum 25(OH)D and tracer-labeled 25(OH)D to specific antibody
followed by detection and quantitation via chemiluminescence

1Siemens Centaur. Available online at: https://www.siemens-healthineers.com/en-

us/immunoassay/systems.
2Diagnostics, Q. Vitamin B-12 (Cobalamin) and Folate Panel. Available online

at: https://testdirectory.questdiagnostics.com/test/test-detail/7065/vitamin-b12-

cobalamin-and-folate-panel-serum?cc=MASTER (accessed October 21, 2019).

reaction (Diasorin, formerly Incstar), comparable to National
Health and Nutrition Examination Surveys 2003–04 assays3

(interassay CV: 4–13%) (Centers for Disease Control Prevention,
2006; Diagnostics, 2019)4.

Dietary and supplemental intakes of vitamin D, folate and
cobalamin were shown to moderately correlate with their
corresponding serum biomarkers in HANDLS and national
surveys (Beydoun et al., 2010a,b, 2018). Moreover, moderate-
to-strong correlations were detected for all three biomarkers
(Pearson’s r > 0.30), notably v1 vs. v2 values for each vitamin
in the HANDLS sample: 25(OH)D (r = 0.44, n = 1,462); folate
(r = 0.44, n = 1,944); cobalamin (r = 0.55, n = 1,994). We
also describe categorical exposures with cutoffs reflecting vitamin
insufficiency or deficiency (Snow, 1999; Thacher and Clarke,
2011; World Health Organization, 2015).

Covariates
All models were adjusted for baseline examination age (y), sex
(male = 1, female = 0), race (AA = 1, White = 0), self-reported
household income either <125% or ≥125% of the 2004 Health
and Human Services poverty guidelines (termed poverty status)
(US Department of Health & Human Services, 2019), and time
(days) between baseline MRV visit and MRI scan visit. Models
were independently stratified by age (≤ 50 vs. >50 years), sex,
race, or poverty status. Additional covariates were entered in
a sensitivity analysis when independently associated with each
exposure of interest (see Supplemental Method 2).

Statistical Analysis
Analyses were conducted using Stata version 16.0 (Stata,
2019). First, selected sample characteristics were described, and
their means and proportions across key socio-demographic
groups were calculated. T-test, chi-square, multiple linear, and
logistic regression models (Wald tests) were used to determine
group differences in distributions of continuous and categorical
variables. Second, several sets of analyses were conducted to
test main hypotheses, both overall and stratified by age group
(≤50 vs. >50 years), sex, race, or poverty status. Ordinary least
square regression models included each v1 vitamin exposure
predicting each MRI measure as the outcome measured at vscan,
while adjusting for socio-demographic confounders. Ultimately,
the most significant adjusted associations with the lowest p-
values [or highest –Log10(p)] per analysis were selected, along
with their unstandardized (β±SE) and standardized (b) effect
sizes. Consequently, a looping procedure (parmsby command)
was applied to generate main parameter estimates, interpreted
as change in MRI measure per unit change in serum vitamin
biomarker for β and fraction of a SD change in MRI measure
per 1 SD change in that biomarker for b, which was moderate-to-
strong if >0.20, and weak-to-moderate if between 0.10 and 0.20.
Four separate analyses were conducted based on MRI variable

3NHANES 2003–2004. Available online at: https://www.cdc.gov/nchs/data/

nhanes/nhanes_03_04/l06vid_c_met_Vitamin_D.pdf (accessed December

16, 2019).
4Diasorin. Available online at: https://diasoringroup.com/en?gclid=

EAIaIQobChMI3JLjuq265gIVhIvICh3G-QcTEAAYASAAEgLz-fD_BwE

(accessed December 16, 2019).
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groupings. The first analysis included total brain volume (i.e.,
WM + GM), WM and GM volumes as the only 3 exposure
measures (Model A). The second analysis included 8 measures
(Model B): the combination of WM and GM of the 4 main
cortical regions: frontal, temporal, parietal, and occipital lobes.
A third analysis included the smaller regions, accounting for
bilateral volumes, yielding 142 outcome measures (Model C).
Finally, dMRI measures were included, after taking the average
between the left and right side for FA and MDmeasures, as done
previously (McKay et al., 2019). This exploratory approach was
conducted previously by at least one other study of vitamin D
deficiency and WMI (Moon et al., 2015). This resulted in 98
(49 FA and 49 MD) dMRI outcome measures, reflecting WMI
(Model D).

For uncorrected p-values, Type I error <0.05 was used for
significance. To adjust for multiple testing two methods were
used: (1) Familywise Bonferroni (error rate) correction (FWER)
which adjusted for multiplicity in brain MRI measures, assuming
each set of modeling approach (Models A-D and stratification
status) applied to each serum vitamin [25(OH)D, folate and
cobalamin] to be separate hypotheses, (2) false discovery rate (q-
value) which only considered the four approaches/stratification
status as separate hypotheses (i.e., Models A-D, and stratification
status), thus combining the 3 vitamin exposures upon correction.
Moreover, the top 10 adjusted associations from each analysis
were presented if puncorr < 0.05, showing the main parameter
estimate and its standard error (SE), the uncorrected p-values,
the FDR q-values and FWER status (Yes = passed correction,
No = did not pass) and the standardized effect size b.
Top 10 associations were considered statistically significant if
passing FWER correction for a specific vitamin, model and
stratification status (yes vs. no) at type I error of 0.05. Results
with FDR q-value < 0.10 per model and stratification status
while failing the FWER criterion were considered a trend.
Additionally, when passing FDR q-value correction at type I
error of 0.10 per vitamin, model and stratification status while
failing the FWER criterion, an effect was considered a trend if
|b| ≥0.20. Among selected stratified models (top 10 findings),
formal effect modification testing was conducted by including
2-way interaction terms between exposure and each socio-
demographic factor in the non-stratified model. A Type I error
of 0.10 was used for 2-way interaction terms due to reduced
statistical power (Selvin, 2004). In addition, the main analyses
with v1 exposures and minimal socio-demographic adjustment,
sensitivity analyses were conducted with additional adjustments
(Supplemental Method 2).

Using R version 3.6.1, selected findings for Model D, were
presented using volcano plots (R Foundation for Statistical
Computing, 2013). These plots display Log10(p-values) for each
set of models against b on the X-axis, highlighting findings with
larger b. For dMRI results, these plots were presented separately
for FA and MD, given their expected inverse correlation.
Visualization of ROI-specific b with standard brain images was
carried out using FSLeyes software (Jenkinson and Smith, 2001;
Jenkinson et al., 2002) applied to dMRI results (URL: https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). Only ROIs with uncorrected
p-value < 0.05 are presented.

RESULTS

Greater serum concentrations of 25(OH)D and folate were
observed among Whites relative to AAs, with the reverse pattern
observed for cobalamin. All three serum concentrations were
consistently higher among “above poverty” participants (vs.
below poverty), while only 25(OH)D and folate were higher in
those aged >50 years at v1 (vs. ≤50 years). Larger total and
regional volumes among males, Whites, and those living above
poverty (for total and GM volume) were detected compared to
their counterparts (p< 0.05). The older group had smaller frontal
GM volumes than the younger group, and differences by poverty
status were mostly notable for occipital and frontal volumes (GM
and WM). After multivariable adjustment, most poverty status
differences in volumes became non-significant. For simplicity,
only larger ROIs are presented (Table 1).

Top 10 adjusted associations with uncorrected p < 0.05 from
ordinary least square brain scan-wide analyses are presented in
Tables 2–4 and Figure 2. Among significant findings (FWER
<0.05) in the main analysis (Table 2), serum 25(OH)D was
directly associated with larger WM volumes [overall (β = +910
± 336, p = 0.007, q = 0.067, passed FW Bonferroni correction),
effect size b = 0.19], with a stronger effect size among men (b
= 0.41). This association was specific to occipital and parietal
WM, with a moderate effect size (b = +0.23–0.25, q < 0.05,
passed FW Bonferroni correction) in the overall sample, men
and the older group. A trend toward a direct association was also
detected between 25(OH)D and total brain volume in the overall
sample, in men and those in the older group. Among trends (q-
value < 0.10), temporal and occipital WM volumes were directly
associated with 25(OH)D, in Whites and individuals living above
poverty, respectively. Most of these 25(OH)D vs. larger ROIs
associations were not altered when additional covariates were
entered in a sensitivity analysis (Table 2). Higher cobalamin
exhibited a trend association with larger total brain, total GM,
frontal and occipital GM volumes in the overall sample (q-value
< 0.10), becoming null after adjustment for 25(OH)D and other
covariates (see Supplemental Method 2).

For smaller ROI volumetric analysis (Table 3), 25(OH)D was
significantly linked to larger left occipital pole volumes (FWER
< 0.05, b = +0.35), overall and among individuals living above
poverty, with a trend among men and Whites. Other stratum-
specific trends were noted between 25(OH)D and right post-
central gyrus volume in men, and parietal and occipital WM
volume in men and the older group. Folate’s relation with right
temporal pole was detected among Whites (p < 0.05, q < 0.10
per vitamin, b=−0.34).

In the dMRI analysis (Table 4 and Figure 2), both folate and
25(OH)D were significantly associated with better WMI, overall,
in two key regions: Lower MD in the ALIC region for folate (b=
−0.23, FWER < 0.05), and higher FA in the cingulum (cingulate
gyrus) for 25(OH)D (FWER < 0.05, b = +0.31). No significant
or trend associations were detected between vitamin B-12 and
dMRI measures.

Figure 2 highlights the strongest effect sizes and their
associated uncorrected p-values observed in the dMRI analysis
(Model D), through a series of volcano plots applied to the overall
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TABLE 1 | Study sample characteristics by sex, age group, race and poverty status; HANDLS 2004–2009 and HANDLS-SCAN 2011–2015a.

Total Females Males ≤50 years >50 years White African-American Below poverty Above poverty

(N = 240) (N = 135) (N = 105) (N = 143) (N = 97) (N = 141) (N = 99) (N = 79) (N = 161)

DEMOGRAPHIC FACTORS

Sex, % males 41.3 __ __ 41.3 47.4 44.0 43.4 35.4 47.8

Agev1 47.7 ± 8.9 47.7 ± 0.8 47.9 ± 0.8 41.6 ± 0.5c 56.7 ± 0.4 49.0 ± 0.7c,d 46.1 ± 1.0 44.3 ± 0.9c 49.3 ± 0.7

Race, % AA 41.2 41.5 41.0 46.9b,d 32.0 __ __ 56.6c,d 74.5

% above poverty 67.1 62.2 73.3 57.3c 81.4 74.53 56.6 __ __

(N = 183) (N = 99) (N = 84) (N = 105) (N = 78) (N = 108) (N = 75) (N = 54) (N = 129)

VITAMIN STATUS (v1)

25(OH)D, ng/mL 22.3 ± 10.8 20.9 ± 1.1 23.9 ± 1.1 20.5 ± 1.0c,d 24.7 ± 1.2 26.7 ± 1.0c 15.9 ± 0.9 17.2 ± 1.4c 24.4 ± 0.9

Median 20.0 19.0 23.0 19.0 22.5 25.5 15.0 15.5 23.0

IQR 14.0–31.0 12.0–30.0 16–32.5 12–29 16–33 19.0–34.5 10.0–19.0 9.0–21.0 16.0–33.0

% < 20 37.1 40.7 32,4 39.2 34.0 20.6c 60.6 48.1c,d 31.7

% < 10 9.6 12.6 5.7 14.0c,d 3.1 2.8c 19.2 20.3c 4.4

(N = 240) (N = 135) (N = 105) (N = 143) (N = 97) (N = 141) (N = 99) (N = 79) (N = 161)

Serum folate, ng/mL 15.0 ± 6.3 15.0 ± 0.6 15.0 ± 0.6 13.5 ± 0.5c 17.4 ± 0.6 16.0 ± 0.5c,d 13.6 ± 0.6 13.1 ± 0.6c 16.1 ± 0.5

Median 14.3 14.7 14.2 12.6 17.9 15.4 12.7 12.5 15.2

IQR 9.5–20.6 9.2–20.6 9.5–20.5 8.9–17.1 12.2–22.5 10.6–21.3 8.5–17.5 8.6–17.1 10.6–21.3

% < 6 6.3 7.4 4.8 8.4 3.1 4.3 9.1 7.6 5.6

Serum B-12, pg/mL 518.7 ± 239.7 535.4 ± 23.0 497.2 ± 19.3 502.7 ± 18.3 542.3 ± 27.1 488.0 ± 19.7b 562.6 ± 24.3 475.3 ± 19.2b 540.0 ± 20.9

Median 463.0 464.0 456.0 460.0 464.0 438.0 521.0 455 467.0

IQR 360.0–626.5 374.0–631.0 347–623.0 359–571 362.0–644.0 339.0–571.0 390.0–679.0 338.0–457.0 364.0–644.0

% <200 0.42 __ __ __ __ __ __ __ __

BRAIN VOLUMES (vscan), mm3

Total brain volume 970,454 ± 104,344 921,280 ± 6,311c 1,033,677 ± 10,198 978,724 ± 8,702 958,261 ± 10,569 989,978 ± 8,947c 942,645 ± 9,587 951,587 ± 11,157b,d 979,711 ± 8,343

Gray matter 513,545 ± 5,6152 488,776 ± 3,542c 545,391 ± 5,558 519,446 ± 4,752 504,846 ± 5,510 526,576 ± 4,657c 494,985 ± 5,249 502,325 ± 6,015b,d 518,559 ± 4,485

White matter 456,908 ± 51,582 432,504 ± 3,111c 488,286 ± 5,036 459,278 ± 4,214 453,414 ± 5,417 463,402 ± 4,531b 447,660 ± 4,720 448,261 ± 5,506 461,151 ± 4,134

Gray matter: Frontal 179,001 ± 20,690 170,642 ± 1,350c 189,748 ± 2,092 181,228 ± 1,788b 175,421 ± 1,947 183,082 ± 1,772c 173,188 ± 1890 175,430 ± 2,166b,d 180,752 ± 1,671

Gray matter: temporal 98,813 ± 11,598 93,343 ± 740c 105,847 ± 1,091 99,454 ± 982 97,869 ± 1,154 101,081 ± 956c 95,584 ± 1,128 96,870 ± 1255 99,767 ± 924

Gray matter: occipital 68,691 ± 9,035 65,145 ± 607c 73,251 ± 907 69,202 ± 765 67,937 ± 900 71,392 ± 730c 64,846 ± 817 66,637 ± 962c,d 69,699 ± 718

Gray matter: parietal 87,585 ± 11,259 83,786 ± 787c 92,470 ± 1,158 88,950 ± 930b 85,572 ± 1138 90,446 ± 926c 83,510 ± 1,044 85,916 ± 1,243 88,404 ± 891

White matter: Frontal 186,294 ± 21,618 176,870 ± 1,353c 198,412 ± 2,164 187,094 ± 1,791 185,115 ± 2,230 188,256 ± 1,888 183,500 ± 2,031 182,321 ± 2,275b,d 188,243 ± 1,739

White matter: temporal 104,302 ± 12,020 98,399 ± 688c 111,893 ± 1,181 104,782 ± 969e 103,596 ± 1,284 106,1044 ± 1,050c 101,750 ± 1,107 102,559 ± 1,268 105,158 ± 970

White matter: occipital 45,860 ± 6,113 43,155 ± 414c 49,338 ± 571 46,394 ± 509e 45,073 ± 619 46,879 ± 538c 44,410 ± 543 44,775 ± 627b,d 46,392 ± 497

White matter: parietal 90,621 ± 11,436 85,721 ± 765c 96,920 ± 1,101 91,074 ± 939 89,951 ± 1,193 92,253 ± 1,018b 88,295 ± 1,009 89,171 ± 1,270 91,332 ± 904

25(OH)D, 25-hydroxivitamin D; Agev1, age measured at HANDLS visit 1 (2004–2009); HANDLS, Healthy Aging in Neighborhoods of Diversity Across the Life Span; HANDLS-SCAN, Brain magnetic resonance imaging scan ancillary

study of HANDLS; IQR, Interquartile range (25th−75th percentile); v1, visit 1 of HANDLS (2004–2009); vscan, HANDLS-SCAN visit (2011–2015).
aValues are Mean± SD for totals and Mean± SE for stratum-specific, or %. For 25(OH)D, folate and vitamin B-12, medians and inter-quartile ranges (IQR) were also provided. N= 183 for 25(OH)D analysis. The sample is that of HANDLS

participants with complete visit 1 folate/B-12 measures and sMRI data [N = 240 for most analysis; N = 183 for 25(OH)D]. See methods for cutoffs chosen for each vitamin. Cobalamin deficiency analysis yielded only 1 participant below

the 200 pg/mL cutoff. Thus, stratified analysis was not conducted.
bP < 0.05.
cP < 0.010 for null hypothesis of no difference by sex, age group, race, or poverty status, t-test (continuous variables), and chi-squared test (categorical variables).
dP ≥ 0.05 after adjustment for remaining covariates, multiple linear regression (continuous variables), multiple logistic regression (categorical variables).
eP < 0.05 after adjustment for remaining covariates, multiple linear regression (continuous variables), multiple logistic regression (categorical variables).
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TABLE 2 | Top 10 adjusted associations from models A (total, GM, WM) and B (regional GM, WM) vs. visit 1 exposures: serum 25(OH)D, folate and cobalamin (overall and stratified analysis) with uncorrected P < 0.05:

ordinary least square brain scan-wide analyses on HANDLS 2004–2009 and HANDLS-SCAN 2011–2015a.

Outcome

(vscan)

Outcome description Exposure

(v1)

Stratum (N) β (SE) Puncorr Standardized

Beta (b)

q-value Passes FW

Bonferroni

correction

Standardized

Beta (b): SAb

Puncorr:

SA

MODEL A

WM White matter 25(OH)D __ (186) +910 (336) 0.007 +0.19 0.067 Yes +0.18 0.017

Overall TOTALBRAIN Total brain volume 25(OH)D __ (186) +1554 (659) 0.019 +0.16 0.087d No +0.15 0.033

Stratified WM White matter 25(OH)D Males (87) +2054c (599) 0.001 +0.41 0.069 Yes +0.43 0.002

WM White matter 25(OH)D >50 years (80) +1500c (470) 0.002 +0.31 0.076d No +0.25 0.017

TOTALBRAIN Total brain volume 25(OH)D Males (87) +3537c (1180) 0.004 +0.34 0.087d No +0.38 0.005

TOTALBRAIN Total brain volume 25(OH)D >50 years (80) +2551c (891) 0.005 +0.28 0.098d No +0.22 0.023

GM Gray matter 25(OH)D Males (87) +1481 (630) 0.021 +0.26 0.29 No +0.30 0.022

WM White matter 25(OH)D AP (132) +930 (406) 0.024 +0.18 0.29 No +0.16 0.088

GM Gray matter 25(OH)D >50 years (80) +1051 (471) 0.029 +0.22 0.29 No +0.19 0.052

GM Gray matter B-12 AP (161) +28 (13) 0.034 +0.13 0.29 No +0.08 0.26

TOTALBRAIN Total brain volume 25(OH)D AP (132) +1663 (789) 0.037 +0.16 0.29 No +0.15 0.085

TOTALBRAIN Total brain volume B-12 AP (161) 52 (26) 0.044 +0.13 0.29 No +0.07 0.31

MODEL B

Overall OCCIPITAL_WM Occipital white matter 25(OH)D __ (186) +140 (40) 5.2e-04 +0.25 0.012 Yes +0.24 0.001

PARIETAL_WM Parietal white matter 25(OH)D __ (186) +251 (77) 1.5e-03 +0.23 0.017 Yes +0.22 0.004

PARIETAL_GM Parietal gray matter 25(OH)D __ (186) +191 (74.9) 1.2e-02 +0.18 0.086d No +0.18 0.016

FRONTAL_GM Frontal gray matter B-12 __ (240) +11.2 (5) 1.6e-02 +0.13 0.086d No +0.07 0.27

OCCIPITAL_GM Occipital gray matter B-12 __ (240) +4.8 (2.0) 1.8e-02 +0.13 0.086d No +0.10 0.12

TEMPORAL_WM Temporal white matter 25(OH)D __ (186) +178 (77) 2.2e-02 +0.16 0.089d No +0.15 0.039

FRONTAL_WM Frontal white matter 25(OH)D __ (186) +309 (149) 3.9e-02 +0.15 0.13 No +0.13 0.079

Stratified OCCIPITAL_WM Occipital white matter 25(OH)D Males (87) +261c (67) 2.1e-04 +0.44 0.020 Yes +0.45 0.001

PARIETAL_WM Parietal white matter 25(OH)D Males (87) +486c (129) 3.1e-04 +0.44 0.020 Yes +0.45 0.001

OCCIPITAL_WM Occipital white matter 25(OH)D >50 (80) +205 (54) 3.2e-04 +0.37 0.020 Yes +0.27 0.005

PARIETAL_WM Parietal white matter 25(OH)D >50 (80) +393c (108) 5.4e-04 +0.37 0.020 Yes +0.32 0.004

OCCIPITAL_WM Occipital white matter 25(OH)D AP (132) +156 (48) 1.3e-03 +0.25 0.050d No +0.26 0.004

OCCIPITAL_WM Occipital white matter 25(OH)D Whites (109) +155 (49) 2.2e-03 +0.25 0.063d No +0.28 0.002

FRONTAL_WM Frontal white matter 25(OH)D Males (87) +826c (262) 2.3e-03 +0.38 0.063d No +0.42 0.003

TEMPORAL_WM Temporal white matter 25(OH)D >50 (80) +326c (108) 3.5e-03 +0.29 0.084d No +0.23 0.024

TEMPORAL_GM Temporal gray matter FOL Whites (109) −354c (123) 4.7e-03 −0.20 0.10 No −0.26 0.004

FRONTAL_GM Fontal gray matter B-12 AP (132) +13.4 (5.1) 9.7e-03 +0.17 0.18 No +0.09 0.22

25(OH)D, 25-hydroxyvitamin D; AP, Above poverty; B-12, serum cobalamin (vitamin B-12); FDR, False Discovery Rate; FOL, serum folate; FWER, FamilyWise Error Rate; GM, Gray Matter; SA, Sensitivity Analysis; SE, Standard Error;

WM, White Matter.
aValues are adjusted linear regression coefficients β with associated SE, standardized beta, uncorrected p-values, corrected q-values (false discovery rate) and results of sensitivity analysis. (N) is the sample size in each analysis. Bolded

rows correspond to statistically significant associations after correction for multiple testing, FWER < 0.05.
bBased on a sensitivity analysis further adjusting for selected socio-demographic, lifestyle and health-related factors after screening using machine learning techniques (see Supplemental Methods 2). Note that for visit 1 25(OH)D, no

additional covariates were selected. For Folate and B-12 a reduced set of additional covariates were included and are listed in Supplemental Methods 2.
cP < 0.10 for null hypothesis that exposure×stratifying variable 2-way interaction term is =0 in the unstratified model with exposure and socio-demographic factors included as main effects.
dFinding considered a trend for passing FDR q-value correction at type I error of 0.10 per vitamin, model and stratification status while failing the FWER criterion, due to a standardized effect size (in absolute value) ≥0.20.
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TABLE 3 | Top 10 adjusted associations from model C, small sMRI regions vs. visit 1 exposures: serum 25(OH)D, folate and cobalamin (overall and stratified analysis) with uncorrected P < 0.05: ordinary least square

brain scan-wide analyses on HANDLS 2004–2009 and HANDLS-SCAN 2011–2015a.

Outcome

(vscan)

Outcome description Exposure

(v1)

Stratum (N) β (SE) P Standardized

Beta (b)

q-value Passes FW

Bonferroni

correction

Standardized

Beta (b): SAb

Puncorr:

SA

OVERALL

Left_OCP_occipital_pole Left occipital pole 25(OH)D __ (186) +15.70 (3.83) 6.3e-05 +0.31 0.026 Yes +0.27 <0.001

occipital_lobe_WM_left Occipital lobe, white

matter, left

25(OH)D __ (186) +76.8 (20.7) 2.9e-04 +0.26 0.061d No +0.26 <0.001

Right_PoG_post-central_gyrus Post-central gyrus, right 25(OH)D __ (186) +34.8 (9.7) 4.3e-04 +0.27 0.061d No +0.27 0.001

parietal_lobe_WM_right Parietal lobe, white matter,

right

25(OH)D __ (186) +127.9 (38.1) 9.8e-04 +0.24 0.10d No +0.23 0.002

Left_PoG_post-central_gyrus Post-central gyrus, left 25(OH)D __ (186) +34.1 (10.4) 1.3e-03 +0.25 0.11d No +0.25 0.002

Right_TrIFG_triangular_part_of_t Triangular part of the

inferior frontal gyrus, right

B-12 __ (240) +0.45 (0.14) 2.2e-03 +0.20 0.13 No +0.19 0.017

parietal_lobe_WM_left Parietal lobe, white matter,

left

25(OH)D __ (186) +123.4 (40.4) 3.1e-03 +0.22 0.13d No +0.21 0.007

occipital_lobe_WM_right Occipital lobe, white

matter, right

25(OH)D __ (186) +63.6 (21.1) 3.0e-03 +0.21 0.13d No +0.21 0.005

Right_TMP_temporal_pole Right temporal pole FOL __ (240) −35.5 (11.9) 2.7e-03 −0.19 0.13 No −0.22 0.010

Anterior insula, right Right_AIns_anterior_insula B-12 __ (240) +0.36 (0.12) 3.2e-03 +0.17 0.13 No +0.13 0.071

STRATIFIED

Left_OCP_occipital_pole Left occipital pole 25(OH)D AP (132) +19.0c (4.3) 2.0e-05 +0.35 0.07 Yes +0.32 <0.001

Right_TMP_temporal_pole Right temporal pole FOL Whites (141) −63.9c (15.2) 4.8e-05 −0.34 0.08d No −0.42 <0.001

Left_OCP_occipital_pole Left occipital pole 25(OH)D Men (87) +24.0 (5.8) 8.0e-05 +0.45 0.09d No +0.46 <0.001

Left_OCP_occipital_pole Left occipital pole 25(OH)D Whites (109) +17.7 (4.5) 1.6e-04 +0.33 0.11d No +0.31 0.001

Right_PoG_post-central_gyrus Right post-central gyrus 25(OH)D Men (87) +64.4c (16.6) 1.6e-04 +0.43 0.13d No +0.47 0.001

Parietal_lobe_WM_right Right parietal lobe, White

matter

25(OH)D Men (87) +242.6c (63.4) 2.6e-04 +0.45 0.13d No +0.46 0.001

occipital_lobe_WM_left Occipital lobe, white

matter, left

25(OH)D >50 (80) +107.7 (28.0) 3.4e-04 +0.37 0.14d No +0.28 0.004

parietal_lobe_WM_left Parietal lobe, white matter,

left

25(OH)D >50 (80) +201.8c (53.6) 3.4e-04 +0.39 0.14d No +0.34 0.003

occipital_lobe_WM_right Occipital lobe, white

matter, right

25(OH)D Men (87) +132.3c (35.9) 4.1e-04 +0.43 0.14d No +0.44 0.001

Right_PHG_

parahippocampal_gyrus

Right parahippocampal

gyrus

FOL Whites (141) −20.6c (5.7) 4.2e-04 −0.27 0.14 No −0.38 <0.001

25(OH)D, 25-hydroxyvitamin D; AP, Above poverty; B-12, serum cobalamin (vitamin B-12); FDR, False Discovery Rate; FOL, serum folate; FWER, FamilyWise Error Rate; GM, Gray Matter; SA, Sensitivity Analysis; SE, Standard Error;

WM, White Matter.
aValues are adjusted linear regression coefficients β with associated SE, standardized beta, uncorrected p-values, corrected q-values (false discovery rate) and results of sensitivity analysis. (N) is the sample size in each analysis. Bolded

rows correspond to statistically significant associations after correction for multiple testing, FWER < 0.05.
bBased on a sensitivity analysis further adjusting for selected socio-demographic, lifestyle and health-related factors after screening using machine learning techniques (see Supplemental Methods 2). Note that for visit 1 25(OH)D, no

additional covariates were selected. For Folate and B-12 a reduced set of additional covariates were included and are listed in Supplemental Methods 2.
cP<0.10 for null hypothesis that exposure × stratifying variable 2-way interaction term is =0 in the unstratified model with exposure and socio-demographic factors included as main effects.
dFinding considered a trend for passing FDR q-value correction at type I error of 0.10 per vitamin, model and stratification status while failing the FWER criterion, due to a standardized effect size (in absolute value) ≥0.20.
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TABLE 4 | Top 10 adjusted associations from model D, bilateral means of MD and FA from dMRI vs. visit 1 exposures: serum 25(OH)D, folate and cobalamin (overall and stratified analysis) with uncorrected P < 0.05:

ordinary least square brain scan-wide analyses on HANDLS 2004–2009 and HANDLS-SCAN 2011–2015a.

Outcome

(vscan)

Outcome description Exposure

(v1)

Stratum (N) β (SE) P Standardized

Beta (b)

q-value Passes FW

Bonferroni

correction

Standardized

Beta (b): SAb

Puncorr:

SA

OVERALL

alic_b_tr Anterior limb of the internal capsule, Mean diffusivity,

bilateral mean

FOL __ (240) −5.64e-06 (1.56e-

06)

3.8e-04 −0.23 0.074d Yes −0.26 0.003

cgc_b_fa Cingulum (Cingulate Gyrus), fractional anisotropy,

bilateral mean

25(OH)D __ (185) +0.0007 (0.0002) 4.1e-04 +0.31 0.074d Yes +0.28 0.002

alic_b_fa Anterior limb of the internal capsule, fractional anisotropy,

bilateral mean

25(OH)D __ (185) +0.0006 (0.0002) 9.7e-04 +0.29 0.12d No +0.22 0.005

mcp_b_tr Middle cerebellar peduncle, mean diffusivity, bilateral mean B-12 __ (240) −1.45e-07 (4.81e-08) 2.8e-03 −0.19 0.22 No −0.18 0.019

mfowm_b_tr Middle Fronto-Orbital WM, mean diffusivity, bilateral mean FOL __ (240) −5.68e-06 (1.93e-06) 3.7e-03 −0.19 0.22 No −0.23 0.019

cgh_b_fa Cingulum (Hippocampus), fractional anisotropy, bilateral

mean

25(OH)D __ (185) +0.0006 (0.0002) 3.9e-03 +0.25 0.22 No +0.21 0.023

icp_b_fa Inferior cerebellar peduncle, fractional anisotropy, bilateral

mean

FOL __ (240) +0.0009 (0.0003) 4.5e-03 +0.19 0.22 No +0.22 0.015

ss_b_fa Sagittal Stratum, fraction anisotropy, bilateral mean 25(OH)D __ (185) +0.0004 (0.0002) 4.9e-03 +0.25 0.22 No +0.20 0.010

mowm_b_tr Middle Occipital WM, mean diffusivity, bilateral mean FOL __ (240) −4.13e-06 (1.50e-06) 6.5e-03 −0.18 0.22 No −0.17 0.024

put_b_tr Putamen, mean diffusivity, bilateral mean FOL __ (240) −4.22e-06 (1.54e-06) 6.5e-03 −0.18 0.22 No −0.26 0.004

STRATIFIED

alic_b_fa Anterior limb of the internal capsule, fractional anisotropy,

bilateral mean

25(OH)D Whites (109) +0.0009 c (0.0002) 8.6e-05 +0.37 0.11d No +0.32 0.001

bcc_b_tr Body of corpus callosum, Mean diffusivity, bilateral mean 25(OH)D BP (52) −0.00002
c

(4.43e-06) 8.7e-05 −0.53 0.11d No −0.61 0.001

cgc_b_fa Cingulum (Cingulate Gyrus), fractional anisotropy, bilateral

mean

25(OH)D Whites (109) +0.0008 (0.0002) 1.1e-04 +0.39 0.11d No +0.36 <0.001

sowm_b_fa Superior Occipital WM, fractional anisotropy, bilateral mean FOL Males (103) +0.0016 c (0.0004) 2.1e-04 +0.39 0.12d No +0.31 0.007

unc_b_tr Uncinate Fasciculus, mean diffusivity, bilateral mean FOL AA (98) 2.2e-04c (2.33e-06) 3.4e-04 −0.40 0.12d No −0.39 0.004

alic_b_tr Anterior limb of the internal capsule, Mean diffusivity,

bilateral mean

FOL AP (163) −6.44e-06 1.72e-06 4.6e-04 −0.27 0.12d No −0.30 0.004

scc_b_tr Splenium of Corpus Callosum, Mean diffusivity, bilateral

mean

25(OH)D BP (52) −0.000015
c

(3.80e-06) 3.0e-04 −0.50 0.12d No −0.63 0.001

sowm_b_tr Superior Occipital WM, mean diffusivity, bilateral mean FOL Males (103) −0.00001c (3.53e-06) 4.6e-04 −0.37 0.15d No −0.38 <0.001

alic_b_tr Anterior limb of the internal capsule, Mean diffusivity,

bilateral mean

FOL >50 years (96) −0.00001c (2.92e-06) 2.8e-04 −0.36 0.15d No −0.44 0.011

cgc_b_fa Cingulum (Cingulate Gyrus), fractional anisotropy, bilateral

mean

25(OH)D BP (52) +0.00150 0.00040 5.8e-04 +0.57 0.17d No +0.59 0.003

25(OH)D, 25-hydroxyvitamin D; AP, Above poverty; B-12, serum cobalamin (vitamin B-12); FOL, serum folate; FWER, FamilyWise Error Rate; GM, Gray Matter; SA, Sensitivity Analysis; SE, Standard Error; WM, White Matter.
aValues are adjusted linear regression coefficients β with associated SE, standardized beta, uncorrected p-values, corrected q-values (false discovery rate) and results of sensitivity analysis. (N) is the sample size in each analysis. Bolded

rows correspond to statistically significant associations after correction for multiple testing, FWER < 0.05.
bBased on a sensitivity analysis further adjusting for selected socio-demographic, lifestyle and health-related factors after screening using machine learning techniques (see Supplemental Methods 2). Note that for visit 1 25(OH)D, no

additional covariates were selected. For Folate and B-12 a reduced set of additional covariates were included and are listed in Supplemental Methods 2.
cP < 0.10 for null hypothesis that exposure × stratifying variable 2-way interaction term is =0 in the unstratified model with exposure and socio-demographic factors included as main effects.
dFinding considered a trend for passing FDR q-value correction at type I error of 0.10 per vitamin, model and stratification status while failing the FWER criterion, due to a standardized effect size (in absolute value) ≥0.20.
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FIGURE 2 | ROI-wide brain dMRI association with v1 serum 25(OH)D, folate and cobalamin in total population: volcano plots and brain image visualization for

HANDLS 2004–2009 and HANDLS-SCAN 2011–2015a,b. aVolcano plots display Log10(p-values) for each set of models against the standardized effect (b) on the

X-axis, highlighting findings with larger effect sizes. Associations with P < 0.05 are presented in red, whereas those with both P < 0.05 and effect size in absolute

value >0.20 are presented in green. bBrain visualization using FSLeyes program is focused on standardized effect sizes (b) and direction, with negative effects (b < 0)

shown in cold colors and positive effects (b > 0) shown in warmer colors. The range is between −0.3 and +0.3 with lighter colors indicating stronger effects in either

direction. Only ROIs with uncorrected p-value < 0.05 are presented.

study sample, applied to v1 exposures. Effect sizes and direction
were also visualized on standard ROI-specific brain images, for
associations with puncorr < 0.05.

DISCUSSION

This study is among few that used a brain scan-wide analysis
methodology to test associations of serum 25(OH)D, folate and
cobalamin with brain volumes and WMI and the first to do
so among socio-demographically diverse adults. The 3 vitamin
status measures were systematically correlated with sMRI/dMRI
brain markers, from low-to-high segmentation levels. We found
statistically significant (FWER < 0.05) direct associations of
25(OH)D(v1) with total, occipital and parietal WM volumes,
particularly among men and older participants and with left
occipital pole volume, overall and among individuals living above
poverty. Only trends were detected for cobalamin exposures (q
< 0.10), while serum folate (v1) were associated with lower
mean diffusivity (MD) in ALIC and with fractional anisotropy
in the cingulum (cingulate gyrus), respectively, reflecting greater
WMI, overall.

In terms of 25(OH)D and sMRImarkers, vitamin D deficiency
appears to be associated with smaller hippocampal subfields in
MCI participants (Karakis et al., 2016; Al-Amin et al., 2019).
Our study indicated that 25(OH)D was inversely linked to WM
volumes, particularly in the left occipital pole. The occipital
pole encompasses the primary visual cortex and contributes to
language abilities (Charles et al., 1997; Melrose et al., 2009).
Decline in verbal fluency has been related to lower 25(OH)D
status (Beydoun et al., 2018; Goodwill et al., 2018). Relations
of vitamin D deficiency with smaller WM volumes and poorer
integrity were shown elsewhere (Buell et al., 2010; Prager et al.,
2014; Annweiler et al., 2015b; Del Brutto et al., 2015). Vitamin
D status was also associated with larger GM volumes (Brouwer-
Brolsma et al., 2015), smaller ventricles (Annweiler et al., 2013) or
not related to brainmarkers (Michos et al., 2014; Littlejohns et al.,
2016). Our race-specific associations are notable, possibly due
to genetic polymorphisms determining brain vitamin D status,
which pending further studies, may be higher among Whites
compared to AAs (Powe et al., 2013; Berg et al., 2015).

Among comparable ROI-specific dMRI studies, a cross-
sectional study (Moon et al., 2015), found an inverse association
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between 25(OH)D and FA values near the inferior and superior
longitudinal fasciculi, corpus callosum (genu), the anterior
corona radiata, the ALIC and the cingulum bundle.Most regional
FAs, particularly the ALIC and cingulum bundle (cingulate
and hippocampus), were found to be positively associated with
25(OH)D in our study, with the cingulate gyrus exhibiting
statistical significance.

Similarly, folate and cobalamin were previously linked
to larger brain volumes (or slower atrophy), specifically
within hippocampal and amygdala regions (Scott et al., 2004;
Vogiatzoglou et al., 2008; Lee et al., 2016) and reduced WM
lesion severity (De Lau et al., 2009; Pieters et al., 2009). In
our study, cobalamin was related to occipital and temporal GM
volumes, an association that was attenuated with full covariate-
adjustment. B-6 and cobalamin intakes were also shown to
spare GM atrophy, with specific association between cobalamin
status and bi-lateral superior parietal sulcus (Erickson et al.,
2008). Moreover, direct relationship between cobalamin status
and regional GM volume (right precuneus, right post-central
gyrus and left inferior parietal lobule) in AD was found mostly
among ApoE4+ individuals (Lee et al., 2016). Our study showed
a trend between increasing levels of cobalamin and larger parts of
the inferior frontal gyrus [orbital (left); triangular (right)], known
for its function in processing speech and language (Greenlee
et al., 2007). A longitudinal study of adults found that lower
cobalamin status, but not folate, was linked to increased rate
of brain volume loss. A recent trial (VITACOG) conducted
among MCI patients showed that GM regions vulnerable to AD,
such as the medial temporal lobe, benefited from high-dose B
vitamin supplementation by slowing atrophy rates over 2 years,
though this pertained only to hyperhomocysteinemic individuals
(Douaud et al., 2013), and this trial indicated that B vitamin
supplementation can stabilize executive functions and reduce
decline in global cognition, episodic and semantic memory (De
Jager et al., 2012).

Novel are our findings that folate and 25(OH)D are related to
greater white matter integrity, with folate being inversely related
to MD in the ALIC region while 25(OH)D being related to
higher FA in the cingulum (cingulate gyrus). While previous
studies have linked vitamin D and folate deficiency to WM
damage (Sachdev et al., 2002; Bleich and Kornhuber, 2003;
Den Heijer et al., 2003; Dufouil et al., 2003; Scott et al., 2004;
Censori et al., 2007; De Lau et al., 2009; Pieters et al., 2009;
Buell et al., 2010; Prager et al., 2014; Annweiler et al., 2015b;
Del Brutto et al., 2015; Moon et al., 2015; Wu et al., 2015;
Lee et al., 2017), our study further specified most affected ROIs
and target socio-demographic groups. The ALIC connects the
thalamus with the frontal lobe, suggesting these nutrients can
maintain cognitive functions that are reliant on frontothalamic
connectivity, such as executive function (Schoenberg and Scott,
2011; Jacobs et al., 2013). Despite folate not being consistently
associated with executive function or attention (Rosenberg,
2008), it was inversely related to depression (Bender et al.,
2017) and reduced ALIC FA prevails in depressive disorders
(Zou et al., 2008; Jia et al., 2010; Chen et al., 2016). Moreover,
depressive symptoms increase dementia risk (Tan et al., 2019).

Thus, future studies could explore mediation of the depression-
AD relationship through ALIC FA andMD as the mechanism for
folate supplementation prevention.

Our findings indicate that in certain sub-groups, folate
may adversely affect volumetric markers, specifically the right
temporal pole volume, thought to contribute to personal and
episodic memories, also shown to be linked with empathy
(Rankin et al., 2006). The literature shows an interaction between
folate and cobalamin status, whereby high folate status coupled
with cobalamin deficiency was associated with smaller GM
volumes in the right middle occipital gyrus and the opercular part
of the inferior frontal gyrus (Deng et al., 2017). Thus, abnormally
high levels of folate may relate to poorer outcomes, though this
finding may be spurious and due to chance, requiring replication
in a larger meta-analytic studies.

Our study has several notable strengths. First, it examined the
association between several AD-related nutritional biomarkers
with brain structural sMRI and dMRI measures reflecting
regional volumes and WMI, potentially underlying various
neuropathologies. Moreover, while cross-sectional, this study
provided 5–6 years of latency between exposure (nutritional
biomarkers) and outcome (brain MRI measures) and secondarily
tested stratum-specific heterogeneity and adjusting for multiple
testing. Additionally, given that serum 25(OH)D was recently
linked to lower intracranial volume (ICV) (Annweiler et al.,
2015a), our detected positive association between 25(OH)D and
brain volumes, including WM, may be conservative and under-
estimated, and may be inflated upon ICV adjustment.

Nevertheless, study findings should be interpreted with
caution given limitations. First, due to dMRI voxel size
limitations, partial volume effects and possible contamination
by nearby cerebral spinal fluid can occur, increasing FA
and MD estimation errors. Second, timing of blood sample
collection and measurement errors may have affected the sample
distribution of serum 25(OH)D levels, with overestimation as
a possibility as 10%-15% of the measured 25(OH)D values
are in fact 24,25-dihydroxyvitamin D, which is recognized
by the same antibody. Third, the latency between exposure
and outcome could make the findings somewhat speculative
when compared to a cohort study whereby baseline exposure
is being tested against annualized change in outcome. The
lack of a baseline sMRI/dMRI measure is a notable limitation
of this study that should be remedied in further studies of
comparable populations. Other potential limitations include
the lack of other related serum measures, such as Hcy and
vitamin B-6 in HANDLS, the lack of longer term markers,
such as red blood cell folate, residual confounding particularly
by physical activity which was not adequately measured at v1,
non-participation selection bias, and a lower powered stratum-
specific associations especially by race and poverty status. Due to
differences in dietary intakes, absorption, utilization, distribution
or other confounding conditions, circulating levels of target
vitamins may not reflect their brain tissue levels, reducing
their value as biomarkers. Moreover, our strongest findings
implicate 25(OH)D as the main exposure, which may confound
the association of serum folate with region-specific WMI. A
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larger meta-analytic study may be needed to disentangle those
associations. Finally, external validity may be limited to inner US
cities with similar racial/ethnic and socio-economic diversity as
Baltimore City, as well as to middle-aged adults.

In summary, serum 25(OH)D status was consistently linked
to larger occipital and parietal WM volumes and regional
WMI. Pending longitudinal replication of our findings, future
interventions should test vitamin D supplementation against
regional volumetric and diffusion brain markers and mechanistic
studies are needed to examine regional vulnerability to
vitamin status.
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