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Infant birth weight estimation 
and low birth weight classification 
in United Arab Emirates using 
machine learning algorithms
Wasif Khan1,2, Nazar Zaki1,2, Mohammad M. Masud2,3, Amir Ahmad  3*, Luqman Ali1, 
Nasloon Ali4 & Luai A. Ahmed4,5

Accurate prediction of a newborn’s birth weight (BW) is a crucial determinant to evaluate the 
newborn’s health and safety. Infants with low BW (LBW) are at a higher risk of serious short- and 
long-term health outcomes. Over the past decade, machine learning (ML) techniques have shown a 
successful breakthrough in the field of medical diagnostics. Various automated systems have been 
proposed that use maternal features for LBW prediction. However, each proposed system uses 
different maternal features for LBW classification and estimation. Therefore, this paper provides a 
detailed setup for BW estimation and LBW classification. Multiple subsets of features were combined 
to perform predictions with and without feature selection techniques. Furthermore, the synthetic 
minority oversampling technique was employed to oversample the minority class. The performance of 
30 ML algorithms was evaluated for both infant BW estimation and LBW classification. Experiments 
were performed on a self-created dataset with 88 features. The dataset was obtained from 821 women 
from three hospitals in the United Arab Emirates. Different performance metrics, such as mean 
absolute error and mean absolute percent error, were used for BW estimation. Accuracy, precision, 
recall, F-scores, and confusion matrices were used for LBW classification. Extensive experiments 
performed using five-folds cross validation show that the best weight estimation was obtained 
using Random Forest algorithm with mean absolute error of 294.53 g while the best classification 
performance was obtained using Logistic Regression with SMOTE oversampling techniques that 
achieved accuracy, precision, recall and F1 score of 90.24%, 87.6%, 90.2% and 0.89, respectively. The 
results also suggest that features such as diabetes, hypertension, and gestational age, play a vital role 
in LBW classification.

Birth weight (BW) plays an important role in the survival and health of newborns, and accurate BW prediction 
will help healthcare practitioners make timely decisions. Newborns with a BW of ≤ 2500 g are considered as low 
BW (LBW) infants. Low BW in infants can occur because of various reasons such as maternal diet, close preg-
nancy intervals, infections, high parity, preterm delivery, and socioeconomic factors. Compared with normal 
BW infants, LBW infants are at a higher risk of perinatal death at a ratio of 8:11. Moreover, LBW infants have a 
greater chance of having serious development problems such as low intelligence quotient (IQ), mental retarda-
tion, visual and hearing impairment, neonatal hypothermia, neonatal hypoglycemia, long-term disabilities, 
and premature death2,3. Detecting LBW infants before birth may substantially reduce such risks compared with 
identifying such infants after birth. Therefore, accurate and timely diagnosis of LBW infants is essential for 
medical practitioners to reduce the risk factors for mothers and infants by providing appropriate interventions 
and improving the overall prognosis.
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Recently, to provide medical practitioners with better prognosis and diagnosis support, machine learning 
(ML) algorithms have become a standard choice for professional medical applications such as BW estimation 
and classification1,3. However, there are several challenges associated with creating such ML-based systems. ML-
based systems require quality data4 for training and evaluation; however, creating such a high quality dataset is 
difficult because most medical data are not publicly available owing to copyright and privacy laws. Furthermore, 
some records in these datasets contain missing records, which is quite common in medical related data5,6 and 
impacts the overall performance of an ML-based system.

Datasets with high dimensions present another challenge for data mining and classification tasks. Typically, 
high-dimensional datasets include a large number of ineffective or unnecessary variables that can negatively 
affect the ML model’s performance. To address this problem and improve the overall performance, feature 
selection algorithms are used to select relevant and important features from the dataset7. Several techniques 
are reported in literature7,8 that select an optimal feature set for adequately representing the dataset to improve 
overall performance. The datasets used in current LBW classification studies are highly class imbalanced, i.e., the 
number of data points available for different classes differs. Class imbalance considerably degrades the efficiency 
of a classification system. Traditionally, to address this issue, the minority class is oversampled by duplicating 
the randomly selected samples and the majority class is undersampled. The synthetic minority oversampling 
technique (SMOTE)9 is a well-known data balancing method, which oversamples the minority class by creating 
synthesized samples based on the similarities between pairs of the existing minority instances4,9. The SMOTE 
is a simple yet efficient algorithm that outperforms state-of-the-art generative adversarial networks (GANs)10. 
Therefore, in this study, SMOTE is adopted for data balancing. LBW and normal birthweight (NBW) can be 
classified based on the features provided to various classifiers, such as support vector machines (SVM), logistic 
regression (LR), naïve Bayes (NB), and random forest (RF). Previous studies have evaluated the performance of 
multiple ML models using heterogeneous datasets and different performance metrics. However, to the best of 
our knowledge, no study has provided a detailed evaluation of multiple ML models using multiple performance 
metrics on several subsets of features.

The primary objective of this paper is to evaluate the performance of 30 ML models for BW estimation and 
LBW classification using different subsets of data obtained from mothers during their pregnancy in three hos-
pitals of the United Arab Emirates (UAE). The dataset used in this study contains data from 821 Emirati (UAE 
nationality) women. This dataset uses features similar to those used in previous studies11–16 (herein, each dataset 
is called a subset); all the features are combined to create one large dataset that contains six subsets.

The primary contributions of this paper are as follows.

1.	 We proposed a self-created dataset that contained features similar to those used by Hussain et al.11, Faruk 
et al.12, Kuhle et al.13, Senthilkumar et al.14, Loreto et al.15, and Kader et al.16. The created dataset contained 
88 features, including infant BW as a target label. We refer this dataset as original dataset.

2.	 The performance of 30 ML models was evaluated. The evaluation results were used for BW estimation and 
LBW classification.

3.	 Multiple experiments were performed on all features and reduced features. In addition, feature selection was 
employed on the entire dataset.

4.	 To handle the class imbalance problem, we used the SMOTE method to oversample the minority class with 
four different oversampling ratios. We used the SMOTE because it is computationally less complex and 
outperforms well known state-of-the art methods, such as GANs10.

5.	 We provided recommendations and suggestions for future work to help researchers select the most effective 
and efficient regression and classification methods. Furthermore, this study provided a baseline for research-
ers working in the medical domain, particularly in the UAE.

The remainder of this paper is organized as follows. The second section discusses previous work related to 
BW prediction and classification. The proposed methodology is described in  third section, and the experimental 
results are presented in fourth section. The problems associated with LBW infants and our experiments as well 
as our experimental results are discussed in fifth section followed by conclusion in last section.

Related work
Most previous studies that investigate infant BW estimation and LBW classification employ ML algorithms. 
Feng et al.17 proposed an SVM-based classification model built using a dynamic Bayesian network (DBN) for 
fetal weight estimation from ultrasound parameters. The authors used a dataset collected from 7875 women 
with a singleton fetus in West China Secondary Hospital. They used SMOTE for data balancing because only 
190 (2.41%) of the 7875 instances were from the LBW class. Trujillo et al.18 used a dataset obtained from the 
National Institute of Perinatology of Mexico which contained data from 250 women and included 23 features 
to estimate BW. Senthilkumar et al.14 compared the performance of six ML algorithms (NB, RF, neural network 
(NN), Decision Tree (DT), SVM, and LR) for LBW predictions. They used a dataset with 11 features obtained 
from 189 pregnant women (130 NBW babies and 59 LBW babies). A similar study conducted by Borson et al.19 
used a dataset of 448 instances with 10 features for LBW classification. Faruk et al.12 applied LR and RF to 
LBW data for their prediction and classification. They used a dataset obtained from the 2007–2012 Indonesian 
Demographic and Health Surveys. The dataset contained data from 12,055 women aged from 15 to 49 years 
which contains 8 features.

Yarlapati et al.20 used a Bayes minimum error rate classifier to classify LBW and normal BW. The authors col-
lected a dataset from Indian health camps between July 2015 and October 2016. The dataset contained data from 
101 patient reports with 18 features. Al Habashneh et al.21 used ROC curve analysis for investigating preterm 
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births and LBW infants using maternal data obtained from 227 pregnant Jordanian women (≤ 20 weeks of gesta-
tion). Ahmadi et al.22 applied LR and RF to predict LBW (< 2500 g) on a dataset obtained from the Milad Hospital 
in Iran. The data were obtained from 600 pregnant women; however, only 9.5% of the cases were LBW. Desiani 
et al.1 applied an NB classifier to maternal data for predicting the weight of infants delivered by hypertensive 
and nonhypertensive mothers. Their dataset included the data of 219 patients from Muhammadiyah Hospital 
Palembang in Indonesia.

Lu et al.26 proposed a genetic algorithm (GA) based ensemble learning model to estimate fetal weight at any 
gestational age. The authors used a dataset that was obtained from a hospital in Shenzhen, China, and contained 
electronic health records of 4,212 pregnant women with 14 features. Kuhle et al.13 compared the performance of 
an LR model with those of other machine learning algorithms (RF, DT, elastic Net, NNet, and GradientBoosting) 
for small for gestational age (SGA), appropriate GA (AGA), and large gestational age (LGA) prediction using 
data from 30,705 pregnant women in the Canadian province of Nova Scotia. Li et al.3 evaluated different ML 
approaches for SGA using an SGA dataset. The dataset was collected from the Prepregnancy Program in China 
between 2010 and 2013. The data comprised 215,568 records of parent pregnancy examinations with 371 features. 
The authors selected a total of 85,161 records that were divided into SGA and nonSGA cases. Akhtar et al.6 also 
used the Prepregnancy Program’s dataset and employed ML techniques to predict LGA, i.e., newborn’s weight 
above the 90th percentile at the same gestational age. The authors selected 102,219 infants as LGA and 189,342 
as nonLGA for their experiments. Another study by Akhtar et al.23 proposed feature selection followed by clas-
sification. Grid search-based recursive feature elimination with cross-validation (RFECV) was used for feature 
selection followed by IG to rank the features subset. They used 26,226 records out of the 215,568 records from 
the Prepregnancy Program and labeled them as LGA. The remaining 189,342 records were labeled as nonLGA. 
An ensemble stacked classifier was used to minimize the generalization error.

Kumar et al.24 used polycyclic aromatic hydrocarbon (PAH) and sociodemographic features to predict the 
LBW of newborns. They collected the data of 120 women who delivered NBW babies and 55 women who 
delivered LBW babies. The data came from Assam Medical College in India. Hussain et al.11 proposed two ML 
techniques: RF and Gaussian naïve Bayes to classify LBW and NBW from a self-created dataset that contained 
445 instances and 18 features. The dataset was collected from two government centers in India and included the 
data of 445 pregnant women with 18 features. Akbulut et al.25 proposed an artificial intelligence-based system 
to predict the fetal anomaly status (fetal health status) based on maternal clinical data. The authors collected a 
dataset of 96 pregnant women that contained a maternal questionnaire and a detailed evaluation by three clini-
cians from RadyoEmar Imaging Center, a medical diagnostic imaging center in Istanbul, Turkey. Loreto et al.15 
evaluated the performance of six ML algorithms for LBW classification, i.e., RF, adaptive boosting (AdaBoost), 
NB, KNN, SVM, and DT. A dataset of 2,328 instances was used. The data were obtained from the obstetrics ser-
vices provided by a Portuguese hospital. The dataset was imbalanced; therefore, an oversampling technique was 
applied. The summary of the literature done for BW estimation and LBW classification is represented in Table 1.

Proposed methodology
A flowchart of the proposed methodology is shown in Fig. 1, which indicates that the first six different subsets of 
features are created followed by a combination of all the subsets to create a full dataset (D(all features)). Notably, 
the features with greater than 40% missing or not applicable values were removed. Feature selection techniques 
were then employed to select the most appropriate features for BW estimation and LBW classification. Further-
more, the dataset used in this study is highly class imbalanced; therefore, SMOTE was used for data balancing 
with multiple oversampling ratios for LBW classification. Experiments were performed on each module shown 
in Fig. 1. The results of the proposed models were evaluated and analyzed using various performance metrics, 
which are explained in the last module. Each module is described in detail as the following.

Data collection and data preprocessing.  The data used in this study were obtained from ongoing 
birth cohort in the UAE. Details about the study can be found elsewhere in the literature27. Medical data were 
extracted from the medical records from the three recruiting hospitals at the time of delivery which included 
the reproductive history. We obtained a list of features from the pregnant women that were used in the current 
study, such as the features used by authors in Table 2. We performed experiments on each subset of features and 
then combined all the features to demonstrate the effect of these features on the overall BW estimation and LBW 
classification performances. Each subset of features description is presented in Table S1.

The combined dataset contains a total of 821 instances, and each instance contains 88 features including 
BW as a target variable. Table S1 describes the features (original features we obtained: D1) considered in this 
study, along with their description and missingness ratio. Furthermore, features with greater than 40% missing 
values or values which were not applicable were removed, and we refer to this set of features as D2. We refer to 
the removal of features with more than 40% missing values as the missing features elimination (MFE) criterion, 
and the dataset obtained after MFE is referred as D2. The dataset obtained by combining all the features and 
after employing MFE criteria contains 30 features (Table S2). Experiments were performed on the D1 and D2 
features to observe the impact of missingness in the data. Moreover, each subset was evaluated on the basis of 
the original features (D1) and the features obtained after removing the missing values (D2).

Furthermore, if a dataset contains too many features, the computational cost may increase if all features are 
selected. Note that removing features may eliminate important features and degrade the performance of an ML 
algorithm. Therefore, to select an optimal feature set to improve performance, we employed various feature 
selection techniques28–33 (Table S3) for the BW estimation and LBW classification. The frequency of each feature 
selected by each FS algorithm was calculated and approximately half of the features that appeared in at least 
40% were selected.
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Table 1.   Work related to LBW classification.

References Problem and approach Approach
Prepro Tech algorithms/
method ML models Performance

Feng et al. 201917 Fetal weight estimation Estimation and classification SMOTE for data balancing SVM classification, DBN for 
weight estimation

MAE of 198.55 g ± 158 g, 
MAPE of 6.09 ± 5.06%

Kuhle et al. 201813 SGA, AGA, and LGA Classification Data balancing11 LR, EN, CT, RF, GB, and NN

An AUC of 0.6–0.70 for 
primiparous women, while 
an AUC of 0.7–0.8 for 
multiparous women for SGA 
and LGA prediction

Sebthilkumar et al. 201514 LBW prediction Classification –* NB, RF, NN, DT, SVM, 
and LR

DT classifier with an accu-
racy of 0.899, a sensitivity 
of 0.97 and a specificity 
and AUC of 0.72 and 0.93, 
respectively

Borson et al. 202019 LBW prediction Classification

Redundant feature elimina-
tion, elimination of unique 
features, missing values 
handling, attribute transfor-
mation

LR, NB, KNN, and MLP
The best accuracy of 81.67% 
was achieved by SVM and 
MLP

Loreto et al. 201915 LBW prediction Classification
Elimination of records with 
missing data, normalization, 
oversampling techniques

KNN, Tree, NB, RF, SVM, 
and AdaBoost

AdaBoost classifier showed 
better classification perfor-
mance with an accuracy of 
98% and a sensitivity and 
specificity of 0.91 and 0.99, 
respectively

Kumar et al. 202024 LBW prediction from PAH Classification
Women with existing health 
conditions, such as HIV and 
diabetes, were excluded

SVM, AdaBoost, NB
The SVM classifier achieved 
an accuracy of 81.21% and a 
sensitivity and specificity of 
0.84 and 0.74, respectively

Anisha et al. 201720 LBW prediction Classification Eliminate significant miss-
ing values

Feature ranking using RF 
and XGBoost, and NB-
based minimum error rate 
classifier

Bayes Minimum Error was 
used for classification that 
achieved an accuracy of 
0.967 and a sensitivity and 
specificity of 1.0 and 0.85, 
respectively

Faruk et al. 201812 LBW prediction Prediction and classification Missing records were 
deleted RF and LR RF achieved 93% accuracy

Akhtar et al. 20206 LGA Classification

Variable discretization, 
removing instances that 
had more than 30% missing 
values. missing value with 
less than 30 were replaced 
with mean and mode

Feature determination, 
SVM, RF, LR, and NB

A precision of 0.84 and an 
AUC of 0.72 with top 30 
using SVM

Akhtar et al. 201923 LGA Classification IG, Grid Search based 
RFECVa + IG SVM and DT

An accuracy of 92% using an 
SVM classifier with a linear 
kernel precision of 0.92, a 
recall of 0.87 and a specific-
ity of 0.95

Al Habashneh et al. 201221 LBW and PB ROC analysis – ROC analysis

For LBW, an AUC of 0.81 
LBW using CAL and a 
sensitivity and specificity of 
0.81 and 0.70, respectively, 
for CAL with a cutoff value 
of 0.42 mm

Li et al. 20203 SGA Prediction
Feature discretization, 
missing value as a separate 
value of 0

SVM, RF, LR, and Sparse LR Sparse LR performed well by 
achieving an AUC of 0.817

Desiani et al. 20191 Birthweight in hypertensive 
mothers Classification Removing variables with 

ambiguous data NB classifier
An accuracy of 81.25% and 
a precision and recall of 
1.00 and 0.75, respectively, 
for LBW

Ahmadi et al. 201722 LBW prediction Classification – RF and LR
An accuracy of 95% with 
97% specificity and 72% 
sensitivity using RF

Hussain et al. 202011 LBW Classification
Missing values were 
replaced with average of 
nearby cells

RF and Gaussian NB
An accuracy of RF is 100% 
with the precision, recall, 
and F1 score of 1.0

Lu et al. 201926 Fetal weight estimation Estimation Normalization Ensemble of RF, XGBoost, 
and lightGBM

An MRE of 7% with an 
accuracy of 64.3%

Akbulut et. al. 201825 Health status (normal or 
pathological) Classification – AP, BDT, BPM, DF, LR, 

SVM, and NN

Web and mobile application 
development of 89.5% was 
achieved using decision 
forest

Trujillo et al. 202018 BW estimation Estimation – SVR

SVR with RBF kernel 
achieved better accu-
racy with an MAE of 
287.60 ± 195.86 (g) and an 
MPE of 0.364% ± 11.95%
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Another serious issue that occurs with the medical datasets for classification is class imbalance, which affects 
the performance of the ML algorithms, can lead to results that are biased toward the majority class, and even the 
misclassification of all minority instances26. The dataset used in this study is also highly class imbalanced at a ratio 
of 1:8, i.e., only 89 samples belonged to the minority class (i.e., LBW) and 732 samples belonged to the normal 
class. An imbalanced dataset seriously degrades the performance of the ML model4; therefore, we oversampled 
the minority class using SMOTE7 to balance the dataset. SMOTE is less computationally complex compared to 
common state-of-the-art methods such as GANs. SMOTE was applied to the entire dataset using multiple bal-
ancing ratio such as the minority class was oversampled by 50%, 100%, 300% and totally balanced dataset. The 
oversampled data were only included in the training set, and no artificial samples were used in the testing set.

Machine learning algorithms.  The final feature vector obtained from the preprocessing step will be used 
for predicting the instances where the BW estimation and classification will be conducted on the basis of feature’s 
relevance using multiple ML models. The performance evaluation of different ML models35–48 used in this study 
is presented in Table S4.

Performance metrics.  Multiple performance metrics were used to evaluate the results obtained from each 
algorithm. For example, the weight estimation MAE and MAPE were used17,18,49. Similarly, for LBW classi-

Figure 1.   Proposed ML framework for infant weight estimation and LBW classification.
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fication, several performance metrics such as accuracy, precision, recall, F-score, and confusion matrix were 
considered4.

Experimental results
In this study, the experiments were conducted using Weka on an Intel® Core™ i7-8700 CPU@3.200 GHz 3.19 GHz 
desktop system with 8.0 GB RAM.

BW estimation.  For BW estimation, the ten-fold cross validation technique was employed to obtain opti-
mal predictions. In this study, the experiments were conducted using each subset and the combined features and 
each experiment was performed using D1 and D2. Table S5 shows the performance evaluations of multiple ML 
models using the features employed by Hussain et al.11 (Subset-1). The results show that the best performance 
was achieved using RF with a MAE value of 349.96 and an MAPE value of 13.91% when all 27 features (D1) 
were used. However, the results obtained using D2 show that when employing 18 features, the best result was 
achieved using SMOregression with a MAE value of 308.98. Table S6 shows the results obtained for Subset-2 

Table 2.   Features used in this study (each subset represents the features used in previous LBW classification 
studies).

Dataset name and authors Classification/regression task Total features
Feature names that were used in 
this study

Feature that were not available 
to us

Subset-1; Hussain et al. 202011 LBW classification 445 samples with 18 features. 
Binary classification

Socioeconomic condition, age, 
height, BGroup, parity, antenatal 
check, initial weight of mother, 
final weight of mother (Last ANC), 
initial systolic blood pressure, 
initial diastolic blood pressure, 
final systolic blood pressure 
(Last ANC), final diastolic blood 
pressure (last ANC), initial hemo-
globin level, final hemoglobin 
level (Last ANC), blood sugar 
(Random), TermPreterm Term: 
37–40 weeks, preterm: < 37 weeks, 
sex, and weight

Socioeconomic condition, 
antenatal check, and blood sugar 
(random)

Subset-2; Faruk et al. 201812 Prediction and classification 9 features including BW

Place of residence, time zone, 
wealth index, mother’s education, 
father’s education, age of mother, 
job of mother, and the number of 
children

Time zone, wealth index, and 
father’s job

Subset-3; Khule et al. 201813 SGA, AGA, and LGA classification

30,705 pregnancy samples with 
complete information of all 
variables
23 features (Sociodemographic, 
pregnancy risk factors, past preg-
nancy history, current pregnancy)

Maternal age, common law/mar-
ried, area-level income quintiles, 
urban residence, smoking before 
pregnancy, prepregnancy BMI [m/
kg2], pre-existing hypertension, 
pre-existing diabetes, previous 
gestational diabetes, previous child 
with BW < 2500 g, previous child 
with BW > 4080 g, previous cae-
sarean section, previous preterm 
delivery < 29 weeks, previous pre-
term delivery 29–32 weeks, previ-
ous preterm delivery 33–36 weeks, 
previous death of neonate ≥ 500 g, 
fetal male sex, weight gain at 
26 weeks [kg], smoking during 
pregnancy, substance use during 
pregnancy, gestational diabetes, 
pregnancy-induced hypertension, 
and psychiatric disorder

Area-level income quintiles, urban 
residence, weight gain at 26 weeks 
[kg], smoking during pregnancy, 
substance use in pregnancy, 
pregnancy-induced hypertension, 
and psychiatric disorder

Subset-4; Sethilkumar et al. 201514 LBW classification 11 features

years (age), the weight of the 
mother at her last menstrual 
period (LWT), the number of 
physician visits during the first 
trimester of pregnancy (FTV), 
race (RACE), lifestyle information, 
e.g., smoking (smoke), history of 
previous preterm delivery (PTL), 
the presence of uterine irritability 
(UI), and hypertension (HT)

Race and UI

Subset-5; Loreto et al. 201915 LBW classification 9 features and 2328 instances
Multiplicity (whether the gestation 
is multiple) smoker, hypertension, 
diabetes, age, BMI, gestational age, 
fetus sex, and fetus weight

Multiplicity (when gestation is 
multiple)

Subset-6; Kader and Nirmala 
201416 LBW 20,946 instances, 11 features

Sex, wealth status, caste/tribe, age, 
education, BMI, stature, anemia 
level, interpregnancy interval, 
antenatal visits, and living place

Wealth status, caste/tribe, anemia 
level, and living place
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(features used by Faruk et al.12), which contains 5 features. As all the features in Subset-1 contain less than 40% 
missing values; hence, the MFE criterion was not applied, and experiments were performed on the complete 
subset of features (D1). The results show that the SVR with epsilon performed well compared with all the other 
algorithms, showing a MAE value of 361.74 and an MAPE value of 14.57%. Similarly, the results for Subset-3 
presented in Table S7 indicate that RF performed well with the D1 features, affording the MAE and MAPE values 
of 345.08 and 13.76%, respectively. The worst performance was obtained using the MLP method on all the three 
subsets.

The experimental results obtained for feature Subset-4 are shown in Table S8. As shown in this table, the best 
performance was obtained by the RF algorithm using the D1 features with the MAE and MAPE values of 352.91 
and 14.07%, respectively. Table S9 shows that feature Subset-5 achieved the best results compared with the other 
subsets. The Bagging (Rep tree) method achieved the best estimation results with the MAE and MAPE values of 
306.02 and 11.88%, respectively. Unlike the results obtained for other subsets, the estimation results using the 
random tree technique were worse than those of the MLP. Table S10 shows the experimental results obtained 
for Subset 6 (on D1 only because less than 40% missingness). As shown, the Bagging technique using the Rep 
tree achieved the best performance with the MAE and MAPE values of 356.61 and 14.18%, respectively. Further, 
we found that the performance of the other ML models was comparable; however, the random tree technique 
performed worse, showing the MAE and MAPE values of 496.18 and 18.90%, respectively.

The results obtained from the combination of all the feature subsets are represented in Table S11 which 
shows that best performance was achieved using LR method using D2 with a MAE and MAPE of 299.32 and 
11.23%, respectively. The results after applying feature selection algorithms on combined features are shown in 
Table S12. The important features selected by FS techniques are: baby’s gender, gestational age at delivery of cur-
rent pregnancy, blood type of mother, mother’s height, diagnosis of hypertension in mother, smoking status of 
mother, total antenatal visits, diagnosis of diabetes mellitus in mother, maternal age, Body Mass Index, previous 
pregnancy outcomes, mother’s marital status, and occupation. As shown in Table S12, the best performance was 
obtained using the RF algorithm, with the MAE and MAPE values of 294.53 and 11.49%, respectively. The results 
were improved when the feature selection technique was used compared with the results obtained from the MFE 
features (D2). Table S12 shows that, compared with the MFE features, the results obtained using almost all the 
algorithms were improved when the FS technique was used; this shows that in addition to removing irrelevant 
feature that aids in fast processing, the estimation results can be improved. Finally, Table 3 shows the best esti-
mation results obtained for each feature subset. As shown in the table, the best performance was obtained using 
the FS technique with the RF algorithm followed by original total feature using Linear Regression with the MAE 
values of 294.53 and 299.32 were obtained, respectively. Among all the subsets, the best estimation results were 
obtained using Subset-4 with the estimation results close to the original total features set. Subset-4 achieved the 
best results because it contains nearly all of the relevant features selected by the FS techniques.

LBW classification.  Here, we discuss the classification performance of multiple classifiers for LBW clas-
sification. As mentioned previously, our data were highly imbalanced; therefore, to evaluate the performance 
of each classifier effectively, multiple performance metrics, such as accuracy, precision, recall, F-score, and a 
confusion matrix were used. Depending upon their application, researchers may select appropriate performance 
measures. Each experiment was performed using the five-fold cross validation techniques, and the results were 
presented as the average of all folds. Table S13 shows the performance of multiple classifiers for LBW classifica-
tion for Subset-1. It can be seen from Table S13 that LR was best in all performance metrics while Bagging (NB) 
achieved similar performance in F1-score and confusion matrix. The results from the confusion matrix show 
that LR could classify 142 ABW and only 4 LBW; however, its performance is better than all the other classifiers. 
For example, the accuracy of the KNN technique is 89.02%, which is close to the accuracy of the LR classifier. 
However, the KNN technique could not classify the LBW samples; thus, its performance was poor. Similarly, 
the Kstar technique correctly classified 9 LBW samples, which is better than the LR classifier. However, the 
Kstar technique’s performance deteriorated when classifying the ABW samples. Thus, its overall performance 
was poor. Therefore, the best performance was obtained by the LR classifier using the MFE criterion. Similarly, 
the performance of the NB classifier was also improved. The results obtained using feature Subset-2 are shown 
in Table S14, which show that the best performance for LBW classification was obtained by the random tree 
technique with the accuracy, precision, recall, and F-score. We found that the random tree technique correctly 

Table 3.   Summary of the best results across all the subsets.

Dataset Regression model Original/MFE features MAE MAPE (%)

Subset-1 SMOReg D2 308.98 12.13

Subset-2 Nu-SVR D1 361.74 14.57

Subset-3 RF D1 345.08 13.76

Subset-4 RF D1 352.91 14.07

Subset-5 Bagging (Rep tree) D2 306.0239 11.88

Subset-6 Bagging (Rep tree) D1 356.61 14.18

Combined features Linear Regression D2 299.32 11.23

Combined features RF Feature selection 294.53 11.49
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classified two samples of the minority class and 132 samples of the majority class which is relatively better than 
other classifiers. In addition, its performance with data imputation was further reduced, and the best perfor-
mance among all classifiers when data imputation was used was increased by over 2% with an accuracy of 79.05 
using the random tree classifier.

The results obtained for features Subset-3 are shown in Table S15. As shown in this table, the best results were 
obtained using the NB classifier with an accuracy of 69.85%, which correctly classified 7 LBW samples. In addi-
tion, the kStar technique with DF correctly classified all the LBW samples; however, it was unable to classify the 
ABW samples. As a result, it demonstrated a poor accuracy of only 10%. However, the performance of the kStar 
technique using the MFE criterion resulted in an accuracy of 85.37%; however, this technique only identified 2 
LBW samples. Thus, the NB and Bagging (NB) techniques achieved the best classification performance which 
correctly classified 7 LBW samples using the DF criterion followed by the random tree technique using the MFE 
criterion. With data imputation, the random tree technique performed well by classifying 127 ABW samples 
and 4 LBW samples with the accuracy and precision values of 79.78 and 82.2, respectively. The best performance 
was achieved using the Bagging (NB) classifier when features Subset-4 with DF were used. Herein, the accuracy, 
precision, recall, and F-score values of 82.5, 83.0, 82.5, and 0.82 were obtained, respectively (Table S16).

Table S17 shows the results obtained on features Subset-5. As shown in this table, the best performance was 
achieved using the LR classifier with the accuracy, precision, recall, and F-score values of 90.38, 87.5, 90.3, and 
0.87, followed by the Bagging (NB) technique with the values of 89.47, 89.1, 89.4, and 0.89, respectively. It can 
be seen from Table S17 that LR was better because it achieved better accuracy, recall, and also performed well 
on confusion matrix followed by Bagging (NB) which achieved better precision, and F1-score. Table S17 shows 
that the LR classifier classifies the maximum number of samples, i.e., 148 correctly classified samples with 4 
LBW samples, while the Bagging (NB) technique correctly classified 146 samples with 7 correctly classified LBW 
samples. The performance obtained using basic data imputation was reduced by ~ 2% in accuracy compared 
with the default experimental setting (Table S17). The Bagging (NB) technique achieved similar performance 
for features Subset-6, and the kStar technique performed well for this features subset, as shown in Table S18.

Finally, the performance of all the classifiers was evaluated was evaluated using all features, and the results are 
shown in Table S19. As shown in this table, best results were obtained using the MLP classifier, which achieved 
the accuracy, precision, recall, and F-score values of 88.58, 87.1, 87.9, and 0.86, respectively. Similar performance 
was achieved by LR classifier. The best classification results across all feature subsets are shown in Table 4. As 
shown in this table, the best results were obtained for features Subset-5 in all performance measures followed 
by the total features set. In terms of LBW sample classification, the Bagging (NB) technique with the full dataset 
showed the best performance. Subset-5 performed well because it contained most of the important features, as 
discussed in the feature selection section.

Data balancing using SMOTE.  The results obtained when the original dataset was balanced using SMOTE 
with four different oversampling ratios are shown in Table S20. The results show an improved classification per-
formance. As shown in the table, the best results were achieved using the LR classifier when the minority class 
was oversampled by 100%, achieving the accuracy, precision, recall, and F1-score values of 90.24, 87.6, 90.2, and 
0.87, respectively. The LR classifier classified a total of 148 samples with 142 of 164 ABW samples and 6 of 18 
LBW samples. We found that the results differed when the ratio of the minority sample was changed. For exam-
ple, the accuracy of the LR classifier was 87.25 without SMOTE, 87.37 with 50% oversampling, 90.24 with 100% 
oversampling, 82.27 with 300% oversampling, and 79.35 with a fully balanced dataset. In addition, the REPTree 

Table 4.   Summary of the best result across all subsets. Significant values are in bold.

Classifiers Dataset Confusion matrix Accuracy Precision Recall F1 score

Bagging (NB) Subset-1 D2

Class LBW ABW

89.18 87.1 89.1 0.87LBW 4 14

ABW 4 142

Radom tree Subset-2 D1
LBW 2 16

81.98 80.9 81.9 0.81
ABW 14 132

Bagging (NB) Subset-3 D1
LBW 7 11

69.88 81.9 69.8 0.73
ABW 35 111

Bagging (NB) Subset-4 D1
LBW 4 14

82.5 83.0 83.2 82.4
ABW 14 132

Bagging (NB) Subset-5 D1
LBW 7 11

89.47 89.1 89.4 0.89
ABW 7 139

kstar Subset-6 D1
LBW 4 14

87.90 84.38 87.9 0.85
ABW 6 140

Bagging (NB) Combined features D1
LBW 8 10

74.56 83.77 74.55 0.78
ABW 20 126

MLP Combined features D1
LBW 5 13

88.58 87.1 87.9 0.86
ABW 6 140
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technique correctly classified 11 LBW samples and 117 ABW samples, thereby obtaining an accuracy of 78.13% 
when the dataset was balanced using SMOTE. The accuracy of REPTree was also the best (86.51) when the over-
sampling ratio was 100%, compared with the other oversampling ratios. We also found that the performance of 
the NB (Bagging), NB, and MLP techniques was better without data balancing using SMOTE.

The feature selection results are shown in Table S21. As shown in this table, the MLP classifier achieved the 
best classification results with the accuracy, precision, recall, and F1-score values of 88.44, 86.5, 88.4, and 0.87, 
respectively. Herein, we found that the classification results did not improve over the original results; however, 
the number of features was reduced by 50% from its original size without degrading accuracy. The best overall 
classification results are shown in Table 5. As shown in this table, the LR classifier with 100% oversampling using 
SMOTE achieved the best classification performance.

Discussion
Worldwide, one in seven babies (> 20 million) are born with LBW. This puts them at a serious risk of death, stunt-
ing, and developmental difficulties. Infant’s weight estimation prior to birth can help to reduce such incidences. 
Estimating and preventing LBW in infants can prevent immediate health issues. Therefore, in this study, we 
conducted detailed experiments for BW estimation and LBW classification using maternal features.

Our extensive experimental results (Tables S5–S21) demonstrate that the best feature subset were the features 
from Subset-5 (Loreto et al.15) for both BW estimation (Table S9) and LBW classification because this feature 
subset contains the most relevant features selected by the FS technique. Thus, this subset provided better results 
compared with the other subsets. Previous studies on BW estimation have primarily relied on the ultrasound 
feature because it gives more accurate results. However, in this study, we used maternal features for BW estima-
tion because they are easy to collect without relying on the ultrasound features. The experimental results shown 
in Table S11 indicate that the combination of all the feature subsets afforded better estimation results compared 
with any single feature subset. Furthermore, the best estimation results were obtained using the RF algorithm 
(Table 3). We found that the FS technique improved the overall LBW classification performance and reduced the 
number of features from 88 to 30, which is less than 40% than its original size. The best features obtained using 
the FS technique were maternal diabetes, hypertension, and gestational age.

The effect of missing data was also investigated in this study. Experiments were conducted using the original 
features (D1) containing missing values (Table S1) and that contain missing values less than 40% (D2). The 
experimental results obtained using D1 and D2 for BW estimation and LBW classification show that the per-
formance of D2 was relatively better than that of D1 with a limited number of features (88 features in D1 and 
30 features in D2). These results indicate that the performance improvement was not affected if the features 
comprised more than 40% missing values; As such, these features were removed.

The results of our LBW classification experiments (Tables S13–S21) demonstrate that all feature subsets 
achieved similar performances. The best feature subset was Subset-5 (Table S17), and the worst subset was 
Subset-2 (Table S14). The feature Subset-2 contained only 5 features, which may not represent the whole data 
which may explain its poor performance. The work by Faruk et al.12 showed that the classification performance 
reported in their study was also poor, also evident in our experiments.

The data used in this study were highly class imbalanced; therefore, the SMOTE algorithm with different 
balancing ratios was employed to balance the data. The results (Table S20) demonstrate that the best classification 
performance (90.24% accuracy) was obtained when the minority class was oversampled by 100% using SMOTE 
with the LR classifier. Although the accuracy was high, LR could identify only 6 of the 18 LBW samples, which 
represents only 33% accuracy. This indicates that accuracy should not be the only performance metric, especially 
when the data are imbalanced. We compared all the performance measures for each algorithm. For instance, 
Table 5 shows that for accuracy and recall, LR achieved best performance whereas Bagging (NB) achieved best 
precision; the F1-score of both classifiers were the best among all the classifiers. Therefore, we conclude that 
for the majority of performance measures, LR performed best. In many cases (Tables S13–S21), an accuracy of 
89.02% was observed during the experiment. However, the classifier was unable to classify the minority (LBW) 
sample indicating that the performance was poor. Other classifiers such as Zero, stacking, and SVM did not 
improve any feature subset. Therefore, their performance remained poor in all classification experiments.

Table 5.   Summary of the best classification results.

Classifiers Dataset (description) Confusion matrix Accuracy Precision Recall F1 score

Bagging (NB) D1 (Loreto Subset-1)

Class LBW ABW

89.47 89.1 89.4 0.89LBW 7 11

ABW 7 139

LR Loreto (D2 with mean, mode)
LBW 4 14

88.81 86.8 88.8 0.86
ABW 4 142

LR Total Dataset (100% smote)
LBW 6 12

90.24 87.6 90.2 0.89
ABW 4 142

Bagging (REP) Total Dataset (Balance)
LBW 11 7

78.13 87.3 78.1 0.81
ABW 29 117
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Previous studies for BW estimation and LBW classification have used different set of features (Table 1). 
However, in the present study, we used a combination of all the features employed in previous studies to provide 
a detailed analysis. The results demonstrate that this combination of features improves the performance of BW 
estimation and LBW classification. We expect that this to allow both researchers and medical practitioners to 
focus on features that are highly relevant for BW estimation and LBW classification, helping them to take appro-
priate steps in a timely manner. Furthermore, our study provides a baseline to select an appropriate ML model 
with effective preprocessing steps and determine which ML model is good for which features that are available.

In general, our study is expected to provide a baseline for researchers working in this field to obtain promis-
ing results by selecting the most effective and efficient methods, especially for the researchers in the region with 
similar participant profiles. Another advantage of this study is that it can accurately predict LBW infants using 
small amount of data while utilizing computationally fewer complex algorithms. This work can be extended to 
other applications such as determining hypertensive disorders and diabetes mellitus.

The results of this study provide a considerable advantage to clinicians and researchers working in the related 
fields, especially within the UAE. However, some limitations must be addressed in the future research. For 
example, performance must be further improved and the effect of processing timing due to FS techniques must 
be considered to determine the time consumed owing to the irrelevant features. In this study, basic imputation 
techniques were used; however, in the future, we plan to include intelligent imputation techniques. Although 
SMOTE is very effective in terms of oversampling, in the future, other oversampling techniques, e.g., GANs, 
will be used. In addition, deep learning-based algorithms will be used in the future. Finally, we aim to use auto-
mated ML techniques to select the most relevant preprocessing and ML models for estimation and regression. 
We recommend the use of FS techniques to remove irrelevant features for improving performance and reduc-
ing computation costs. We performed five-fold cross validation testing which is standard testing approach in 
machine learning area. The data is collected from three hospitals. This reduces the bias due to the data. Regrading 
overfitting problem, we presented the testing results. The excellent accuracy of classifiers (90.24%) suggests that 
classifiers performed well with this relatively small dataset. Finally, Socioeconomic Status and racial differences 
vary in different studies. However, in this study all women are from the Emirati population. All of the Emirati 
population have full health insurance coverage providing them with the same level of health care at any health 
facility. As such, there is no difference in healthcare access between pregnant women attending these three 
hospitals and those who use other institutions. Therefore, this study prevents the socio-economic nuances that 
would affect healthcare, access to healthcare and in turn LBW classifications from being affected from the dif-
ferences in nationality.

Conclusion
In this study, we presented a comprehensive performance evaluation of multiple ML models for infant weight 
estimation and LBW classification using the maternal features obtained from pregnant women. For weight esti-
mation, 10 ML models were used with different feature subsets and the combinations of subsets with and without 
the imputation of missing values. Moreover, important features were identified using multiple FS techniques, 
which aids weight estimation and LBW classification. Herein, relevant features are selected using majority voting 
of multiple FS techniques. In addition, a SMOTE-based data balancing technique was applied to oversample the 
minority class sample to realize improved classification results. The best weight estimation was obtained using 
the RF algorithm with an MAE value of 294.53 g, and the best classification performance was obtained using 
the LR and SMOTE oversampling techniques. We found that this case obtained the accuracy, precision, recall, 
and F1 score values of 90.24%, 87.6%, 90.2%, and 0.89, respectively. Diabetes, gestational age, and hypertension 
are important risk features for BW estimation and LBW classification.

Data availability
The data presented in this study are available on request from United Arab Emirates University.
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