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ABSTRACT
Although monoclonal antibodies (mAbs) have been shown to be extremely effective in treating a number 
of diseases, they often suffer from poor developability attributes, such as high viscosity and low solubility 
at elevated concentrations. Since experimental candidate screening is often materials and labor intensive, 
there is substantial interest in developing in silico tools for expediting mAb design. Here, we present 
a strategy using machine learning-based QSAR models for the a priori estimation of mAb solubility. The 
extrapolated protein solubilities of a set of 111 antibodies in a histidine buffer were determined using 
a high throughput PEG precipitation assay. 3D homology models of the antibodies were determined, and 
a large set of in house and commercially available molecular descriptors were then calculated. The 
resulting experimental and descriptor data were then used for the development of QSAR models of 
mAb solubilities. After feature selection and training with different machine learning algorithms, the 
models were evaluated with external test sets. The resulting regression models were able to estimate the 
solubility values of external test set data with R2 of 0.81 and 0.85 for the two regression models developed. 
In addition, three class and binary classification models were developed and shown to be good estimators 
of mAb solubility behavior, with overall test set accuracies of 0.70 and 0.95, respectively. The analysis of 
the selected molecular descriptors in these models was also found to be informative and suggested that 
several charge-based descriptors and isotype may play important roles in mAb solubility. The combination 
of high throughput relative solubility experimental techniques in concert with efficient machine learning 
QSAR models offers an opportunity to rapidly screen potential mAb candidates and to design therapeutics 
with improved solubility characteristics.
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Introduction

Monoclonal antibodies (mAbs) have clearly emerged as the 
dominant class of biotherapeutics and the recent approval by 
the Food and Drug Administration of a mAb for Alzheimer’s1 

and antibody therapies for COVID-192,3 will likely dramati-
cally increase the scale required for mAb biomanufacturing. 
Importantly, the development of platform processes have 
enabled significant reductions in the time required to proceed 
from discovery to production.4 Despite these advances, anti-
body candidates often suffer from ‘developability’ challenges, 
where “developability’ is a metric for evaluating the potential 
for successful development of a stable, safe, and efficacious 
product.5 This is often accessed by measuring colloidal stability 
correlated properties such as aggregation propensity, solubility, 
and viscosity.6,7 Experimental techniques such as cross- 
interaction chromatography (CIC), standup monolayer 
adsorption chromatography(SMAC), affinity-capture self- 
interaction nanoparticle spectroscopy (AC-SINS), clone self- 
interaction nanoparticle spectroscopy (CSI-BLI) or dynamic 
light scattering (DLS) have been used to directly or indirectly 
evaluate the colloidal stability of candidates.8–13 However, the 
direct measurements of properties such as solubility and 

viscosity often require elevated mAb concentrations and are 
still labor and material intensive, which makes them imprac-
tical in early development.6

The development of in-silico approaches to estimate proper-
ties related to developability could substantially accelerate the 
process of screening potential lead candidates, reducing the 
amount of materials required. A number of approaches have 
been examined for developing in silico tools evaluating antibody 
developability. Coarse-grained simulations have been applied for 
predicting antibody viscosity.14,15 Single molecular parameters, 
such as charge distribution and hydrophobic index have been 
shown to be correlated with viscosity and chemical stability.16–19 

Raybould et al.20 reported on the use of a small set of molecular 
descriptors to provide guidelines for developability. Sequence 
compositions and residue-based descriptors have also been 
applied for developing methods to access self-association or 
colloidal stability21–24 and to assess aggregation propensity and 
visocosity.25–27 In addition, multiple physiochemical descriptors 
obtained from either sequence or three-dimensional structures 
have been used in models of assessing antibody oxidation risk, 
overall hydrophobicity, and solubility.28–33
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Although this prior work was useful for projecting mAb 
solubility and viscosity, most of these methods were devel-
oped using a relatively small set of antibodies or variants 
with a relatively small number of preselected descriptors. It 
would be extremely useful to develop in silico tools that 
were able to model the developability behavior of a wider 
range of mAb candidates. Quantitative structure activity 
relationship (QSAR) models can provide a unique link 
between the solute activity being modeled (e.g., solubility) 
and the important molecular properties of the solutes. 
Widely used in the small molecule drug development 
space, QSAR models have also proven useful for evaluating 
the behavior of large biomolecules, particularly in chroma-
tographic applications. Robust QSAR models have been 
developed for a wide range of proteins, in a myriad of 
chromatographic media.34–38 Recently, QSAR models have 
also been used to estimate protein diffusion coefficients in 
formulation applications.39

For this report, we developed a QSAR based in silico 
screening strategy for modeling relative mAb solubility. 
A previously developed experimental high-throughput mAb 
solubility screening assay6 was used to determine the solubi-
lities of a relatively large set (111) of diverse antibodies in 
histidine buffer, pH 6.0. A broad range of in house and 
commercially available molecular descriptors were then cal-
culated based on antigen-binding fragment (Fab) homology 
models and feature selection was carried out to determine the 
key descriptors for use in the models. Quantitative regression 
and qualitative classification models were then trained with 
different machine learning algorithms and the top models 
were shown to be effective in screening mAb on relative 
solubility. Finally, interpretation of the models was carried 
out to provide mechanistic insights into the mAb solubility 
behavior.

Results

Antibodies relative solubility distribution

A dataset of 111 antibodies composed of diverse molecules 
from various mAb discovery platforms, and different anti-
gen targets was curated. The solubility of antibodies in 
10 mM histidine buffer were determined by high- 
throughput PEG-induced precipitation. As described in 
the methods section, the PEG experiments were carried 
out and the percentage of PEG that resulted in an abrupt 
decrease in absorbance (i.e., the onset) was used as 
a surrogate for ranking solubility. The values of PEG per-
centages were then normalized on a zero to one scale using 
a ‘Min-Max normalization’ based on the solubilities of two 
control molecules. As shown in the histogram of the nor-
malized solubilities (Figure 1), while the solubility of the 
111 molecules in the set were distributed across this scale, 
34 of the mAbs had high solubility (≥1.0). In addition, 2 
mAbs exhibited lower solubilities than the low control and 
1 mAb had a higher solubility than the high control. The 
range of solubility behavior along with the diversity of this 
mAb set enabled us to develop models for a wider range of 
mAbs than has been previously reported.

Regression models for antibody solubility

Based on the solubility data of all 111 mAbs shown above, the 
first regression model was developed following the QSAR 
model development workflow described in the methods sec-
tion. The randomly selected training set contained 91 mole-
cules and the remaining 20 molecules were used as the test set. 
Multiple rounds of feature selection were first carried out, after 
which different algorithms were tested on the resulting feature 
set. Validation was then carried out using 10 times five-fold 
cross-validation and 50 rounds of Y-scrambling. This workflow 
of feature selection, algorithm selection and model validation 
were carried out in an iterative manner and the best perform-
ing model for this data set was found to be a five-component 
partial least square model using 10 molecular descriptors. 
A comparison between the experimentally determined solubi-
lities and the projected values are presented in Figure 2a. The 
coefficient of determination R2 for the training and test sets 
were 0.883 and 0.811, respectively. The average score of the 10 
times fivefold cross-validation was 0.833, which was close to 
the training and test set performance, indicating decent model 
robustness. Finally, the root mean squared deviations (RMSD) 
were 0.114 and 0.168 for the training and test set (dotted line).

In Figure 2a, most of the outliers had experimentally deter-
mined solubilities of 1.0, which was the upper bound of the 
assay and includes mAbs with solubility values equal to or 
above this value. Further, we were primarily interested in 
identifying mAbs with lower solubilities, which would repre-
sent potentially problematic candidates. For both of these 
reasons, we developed a second QSAR regression model that 
excluded the highly soluble mAbs (Solubilities ≥ 1.0). The 
resulting dataset included 75 points with 63 of them used in 
the training set and 12 as the test set. Following a similar 
development procedure, the best performing model was 
found to be a four-component PLS model using 17 molecular 
descriptors (Figure 2b). The coefficients of determination for 

Figure 1. Distribution of normalized solubility for 111 antibodies in pH 6.0, 
histidine buffer.
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the training and test sets were 0.881 and 0.847, respectively. In 
addition, the average score for the cross-validation was 0.772. 
Finally, the RMSD for the training and test sets (dotted line) 
were 0.083 and 0.114, respectively.

The descriptors selected for these two QSAR regression 
models are presented in Table S1. To further evaluate model 
robustness and to assure minimal overfitting of the data, 50 
rounds of Y-scrambling40 were carried out for both models, as 
described in the methods section. As can be seen in Figure S1 
and S2, models developed with the scrambled data were con-
sistently unable to project the experimental values, suggesting 
that there was minimal overfitting in our QSAR models (Figure 
S1, S2). Furthermore, the original models clearly outperformed 
the “scrambled” models both with respect to the R2 and cross- 
validation score values.

Classification models for antibody solubility

In addition to QSAR regression models, we explored classifica-
tion models that could identify drug candidates with potential 
solubility challenges. In this study, we developed both three- 
and two-class classification models. As was done with the 
regression model developed with the entire data set, 91 mAbs 
were used for the training set and 20 mAbs were set aside for 
the external test set. Prior to training, the mAbs were divided 
into low, medium, and high solubility ranges for the three-class 
model and low and high solubility ranges for the binary model. 
To ensure that the training data was evenly distributed, cutoffs 
between the classes were determined to be 0.38 and 0.88 for the 
three class and 0.58 for the binary model. Support vector 
machine with a linear kernel was applied for both models. 
The confusion matrices for the training and test sets for the 
three- and two-class models are presented in Figure 3. In 
addition, the performance criteria of these models are sum-
marized in Tables 1 and 2 and the descriptors selected for these 

models are presented in Table S1. As can be seen in the Table 1, 
for the three-class model, while the training set had high 
accuracy (0.88), the test set was less accurate (0.7) with 4 of 
the 5 misprojections occurred in the medium class. The accu-
racy of this model was also indicated by the cross-validation 
score, which was determined to be 0.85. The F1-score is 
a useful metric for evaluating model performance by aggregat-
ing the precision and recall scores. While the F1-scores for all 
three classes were over 0.8 for the training set, a low F1-score of 
0.29 was observed for the medium class in the test set.

Although the three-class model performed relatively well, 
the low correlation observed for the medium class motivated 
the development of a binary model. As shown in Table 2, the 
binary model had overall improved accuracies of 0.92 and 0.95 
for the training and test sets, respectively. Importantly, only 
seven of 91 instances were misprojected in the training set and 
only one misprojection was observed for the testing set. The 
cross-validation score for the binary classification model was 
0.9 and the F1-scores were over 0.90 for all classes in both the 
training and test sets, indicating high model accuracy.

Identification of key features related to mAb solubility

After developing various QSAR models for estimating mAb 
solubilities, descriptor analysis was carried out to better under-
stand the molecular basis. One metric for evaluating the sig-
nificance of features is their coefficient in the linear regression 
models, where higher absolute values indicate their relative 
importance in determining solubilities and positive or negative 
characteristics suggest their correlation or inverse correlation 
with solubility. Another important metric for features selection 
in the PLS models is the variable influence on projections (VIP) 
score. This parameter aggregates projections of the feature 
weights onto latent hyper planes. Features that have VIP values 
over 1 are considered important in the model whereas features 

Figure 2. Experimental versus projected solubility plots for QSAR regression models: A) Regression model for 111 mAbs in this study; B) Regression model for 75 mAbs in 
lower to moderate soluble region (Sol <1.0). Training sets are represented as purple circles and testing sets are represented as green triangles; Solid lines are identity 
lines; Dotted lines represents the RMSD values of corresponding testing set.
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with values less than 1 have a minor effect on the 
projections.38,39,41 A comparison of the feature coefficients and 
their VIP scores from the regression model based on all the 
mAb data is presented in Figure 4, which includes a horizontal 
dashed line for better identification of positive/negative char-
acteristics of the coefficients. In Figure 4, the top four descrip-
tors that had VIP values equal or greater than one were: 1) 

isotype identifier, 2) average electrical potential of the top 25% 
strongest negative clusters(EPL_str), 3) protein isoelectric point 
(pI) based on three-dimensional structure(pro_pI_3D) and 4) 
the charge symmetry parameter of the variable region(FvCSP). 
The other descriptors in the left side of the figure all correspond 

Figure 3. Confusion matrix for classification models: A) training set for three-class model; B) test set for three-class model; C) training set for binary model; D) test set for 
binary model.

Table 1. Summary of performance metrics for three-class model.

Train

Class Precision Recall F1-score Support

Low 0.90 0.81 0.85 32

Medium 0.79 0.82 0.81 28

High 0.94 1.00 0.97 31

overall accuracy 0.88 91

Test Class Precision Recall F1-score Support
Low 0.75 0.86 0.80 7

Medium 0.50 0.20 0.29 5
High 0.70 0.88 0.78 8

overall accuracy 0.70 20
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to hydrophobic descriptors, which are described in the discus-
sion section. The definitions and coefficients of all the selected 
descriptors were included in Table S1.

To further investigate the relationship of these descriptors to 
mAb solubility, we mapped the solubility data onto the key 
features identified. Figure 5 presents a scatter plot where each 
data point corresponds to a specific mAb and the color coding 
represents their normalized solubilities (described in the meth-
ods section). Figure 5a projects this data onto the pro_pI_3D 

and FvCSP scores and Figure 5b projects it onto the EPL_str and 
FvCSP values. Interestingly, clustering behavior was observed 
for the high solubility mAbs in both figures and dashed lines are 
included to facilitate this visualization. In Figure 5a, high solu-
bility mAbs were observed to cluster in the top-right quadrant, 
whereas in Figure 5b these mAbs clustered in the bottom right. 
We explore the implications and applications of these findings 
in the discussion section below.

Table 2. Summary of performance metrics for binary model.

Train

Class Precision Recall F1-score Support

Low 0.93 0.91 0.92 46

High 0.91 0.93 0.92 45

overall accuracy 0.92 91

Test Class Precision Recall F1-score Support
Low 1.00 0.89 0.94 9
High 0.92 1.00 0.96 11
overall accuracy 0.95 20

Figure 4. Variable influence on projection score (VIPs) versus descriptor coefficient in model. Labeled descriptors are: 1) ‘Isotype’; 2) ‘EPL_str’; 3) ‘pro_pI_3D’; 4) 
‘FvCSP’; 5) ‘arores_nstr’; 6) ‘aroH_nstr’; 7)’aromatic_acid_num’; 8) ‘aromatic_num’; 9) ‘pro_patch_hyd’; 10) ‘Basic_max’.

Figure 5. Key Descriptor 1 value versus key descriptor 2 value scatter plot: A) pro pI 3D vs FvCSP; B) EPL_str vs FvCSP. Color bar represents solubility value of each 
molecule. Green represents high solubility, rose represents low solubility.
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Impact of mAb isotypes

Another interesting finding from this study was that ‘iso-
type identifier’ was found to be an important factor impact-
ing mAb solubilities at pH 6.0. Different isotypes were 
included in this investigation; the 111 mAbs included 66 
IgG4s, 42 IgG1s, and 5 IgG2s. We carried out 
a comparative analysis of the solubility behavior of the 
IgG1 and IgG4 mAbs, the dominant isotypes, and their 
correlations to key molecular descriptors. As can be seen 
in Figure 6a, the isotypes exhibited significant differences in 
their solubilities. The IgG1 mAbs (Blue) had many mole-
cules with high solubilities along with a relatively small 
number of IgG1s with a range of lower solubilities, reach-
ing into the low soluble region. On the other hand, the 
IgG4s exhibited moderate solubilities (0.2–0.4) with only 
a small number achieving high solubility. Interestingly, the 
solubility data for these two isotypes had very different 
correlations to the key molecular descriptors EPL_str and 
pro_pI_3D of the Fabs (Figures 6b-c). While the solubility 
of IgG1s had a strong linear correlation (Pearson coefficient 
R2 = 0.85) with the pro_pI_3D of the Fabs, the solubility 

data of IgG4s had a much weaker correlation (Pearson 
coefficient R2 = 0.62). The results with the EPL_str (nega-
tive electrical potential) descriptor were even more striking. 
The solubility of the IgG1s exhibited a very high inverse 
correlation with EPL_str (R2 = 0.90). On the other hand, 
the IgG4 solubility data was moderately correlated with 
a R2 of 0.65. The electrostatic potential maps for the IgG1 
and IgG4 Fcs at pH 6 were quite different, as shown in 
Figure 7. These differences in solubility behavior, correla-
tions, and surface properties for the two isotypes are dis-
cussed below.

Discussion

In this study, we developed both regression and classification 
models using mAbs exhibiting a range of solubility behavior 
obtained from discovery campaigns at Lilly. Compared to pre-
viously described methods in the literature, our study is more 
expansive than previous work with respect to both the range of 
mAbs and the molecular descriptors used for model genera-
tion. Importantly, the QSAR regression and classification 

Figure 6. Behavior differences between IgG1s and IgG4s: A) Histogram of solubility distribution; B) scatter plot of pro_pI_3D vs solubility; C) scatter plot of EPL_str vs 
solubility. In all three plots, red represent IgG1, and indigo represent IgG4.

e2062807-6 X. HAN ET AL.



models for mAb solubilities developed in this work were shown 
to have both high accuracy and robustness, which may provide 
useful in silico screening tools for evaluating biomanufactur-
ability. Further, the descriptor analyses carried out in this work 
have provided new information about molecular properties 
that may be important to consider when developing mAbs 
with improved solubility.

Regression models were first developed using experimental 
mAb solubility data obtained in histidine buffer at pH 6. The 
solubilities of 111 mAbs were determined and the data were 
normalized based on two control molecules as described in the 
methods section. It should be noted that the PEG precipitation 
assay used in this study was designed for high-through screen-
ing of mAbs during drug development. While it serves as 
a surrogate for relative solubility, it is not a direct measure of 
mAb solubility. Two regression models were developed, model 
A (shown in Figure 2a), which included all 111 mAbs, and 
model B (shown in Figure 2b) with a smaller set of 75 mAbs 
that exhibited low to moderate solubilities. Model B was devel-
oped to focus on mAbs that may have solubility issues. Both 
models performed in a similar manner with high R2 values for 
the training, cross-validation, and test sets. In addition to 
regression models, the full solubility data set was used to 
generate three-class and binary classification models. As can 
be seen in Figures 3 A and 3b and Table 1, the three-class 
model resulted in satisfactory performance for the training set 
with an overall accuracy of 0.88 and an averaged cross- 
validation score of 0.85. For the high solubility class, all 31 
values were correctly projected and a F1 score of 0.97 was 
achieved. The results with the test set were less accurate. 
Although only 1 misprojection occurred for the low and high 
solubility classes, 4 of 5 solubility values were misprojected for 
the medium test set. This resulted in a low F1-score of 0.29 for 
the medium class and a 0.70 overall accuracy for the test set. 
One explanation for the results with the medium test set could 
be the lack of balance of the solubility data distribution. In 
order to generate the three-class model, we distributed the data 

such that there were comparable numbers of mAbs in the 
training sets for these three classes. This necessitated less well- 
defined cutoffs for the medium class, with a bias toward higher 
solubility values. While a variety of cutoffs and distributions of 
data were examined for the three class models, they consis-
tently underperformed for the medium class projections.

In order to create a more meaningful distribution and cutoff 
between the solubility classes, we developed a binary model. 
This enabled us to have similar numbers of data in the classes 
as well as a solubility transition, 0.5, that reflected the distribu-
tion of the data. As shown in Figure 3 c and d and Table 2, the 
binary classification model achieved excellent projections for 
the training, cross-validation, and test sets, with overall accura-
cies of 0.92, 0.89, and 0.95, respectively. Notably, only 1 of 20 
data points in the test set was found to be misprojected. In fact, 
the binary model had superior performance as compared to 
both the three-class classification model and the two QSAR 
regression models.

It was also of interest to examine the descriptors selected in 
the models to provide some insights into the underlying pro-
tein–protein interactions influencing the mAb solubilities. 
Accordingly, we first examined the descriptors selected for 
regression model A by comparing the VIP scores and the 
descriptor coefficients (Figure 4). As can be seen, from the 10 
features selected for this regression model, four had VIP scores 
higher than 1.0, reflecting their importance in the model. 
Interestingly, three of the top four descriptors were related to 
the charge properties of the Fab region. In agreement with 
previous work in the literature,16,20 the charge symmetry para-
meter, FvCSP, was found to have a positive coefficient, indicat-
ing its correlation with mAb solubility. In addition, the pI 
determined from the 3D Fab structure (pro_pI_3D) and the 
average of the top 25% of the negatively charged clusters 
(EPL_str) were found to be correlated and inversely correlated, 
respectively, with the mAb solubilities. While ‘FvCSP’ and 
‘pro_pI_3D’ were global charge descriptors describing overall 
charge distribution on the Fab surface, ‘EPL_str’ was a cluster 

Figure 7. Electric potential maps for Fc region at pH6 for (a) IgG1 front view; (b) IgG1 back view; (c) IgG1 bottom view; (d) IgG4 front view; (e) IgG4 back view; (f) IgG4 
bottom view.
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descriptor describing the strength of negatively charged 
patches in the Fab region. Since the inclusion of all three of 
these charge-based descriptors were shown to be very impor-
tant for model performance, we believe that they worked 
synergistically to enable the solubility projections. These results 
are supported by previous observations17,18,42 that specific 
charge–charge interactions involving the Fab can significantly 
affect the colloidal behavior of mAb solutions and that nega-
tively charged patches on the Fab can reduce mAb solubility.

Previous studies have indicated that hydrophobicity, π-π 
and π-cation mAb interactions may contribute to mAb 
viscosity.42 In addition to the three charge-related and isotype 
descriptors, descriptors related to Fab hydrophobicity were 
also selected for our regression model (Table SI). These 
included descriptors based on aromatic clusters (5, 6, 8), 
hydrophobic patches (9), and overlapping hydrophobic and 
charge cluster-based descriptors (7), where the indicated num-
bers correlate to the labels in Figure 4. As can be seen in 
Figure 4, although none of these had VIP scores over 1.0, the 
absolute values of their coefficients (see the left side of the plot) 
were comparable to the charge-based descriptors, which made 
them indispensable contributors to the models. The results 
indicate that hydrophobic interactions, in concert with electro-
static interactions, are likely playing a role in mAb solubility for 
the histidine buffer system.

To further understand the relationship between solubility 
and key descriptors, the mAb solubilities were mapped onto 
the key charge features described above (Figure 5). As can be 
seen, some clear clustering behavior was observed for the 
highly soluble mAbs. Figure 5a which plots the pro pI 3Ds 
versus the FvCSP values, illustrates that mAbs with high solu-
bilities (green) were clustered in the upper right quadrant with 
only 7 of the 77 molecules in this region having solubilities less 
than 0.38 (the cutoff used in the three-class model for low 
solubility). This suggests that highly soluble mAbs tend to 
have high Fab pIs (above 7.5) as well as charge symmetry in 
the variable region (FvCSP > 0). In addition, Figure 5b indi-
cates that high solubility mAbs tended to cluster in the lower 
right quadrant, where only 6 of 74 mAbs in this region had low 
solubilities. This indicates that in addition to having charge 
symmetry in the Fv region, high solubility mAbs also tended to 
have weaker negatively charged clusters on the Fab surface.

This clear clustering behavior related to this relatively small 
set of charge-based descriptors can potentially be used to help 
guide the design of mAbs with higher solubilities. Currently, 
the cutoffs between quadrants represented by the dashed lines 
in Figure 5 were determined such that at least 90% of the mAbs 
within the clustering quadrant had either high or moderate 
solubilities. These cutoffs can be further tuned based on the 
accuracy needed for the screening. The clustering behavior 
shown in Figure 5, indicated that high solubility mAbs tended 
to have similar charge characteristic in the Fab or variable 
region.

In contrast to the high solubility data, the mapping of the 
low solubility mAbs was observed to be more scattered in these 
plots. Nevertheless, certain patterns could be determined, such 
as the tendency for low solubility mAbs to have lower Fab pIs, 
stronger negative charged patches on the Fab surface and less 
charge symmetry of the Fv region. In order to clearly establish 

these patterns, we would need to include more low solubility 
mAbs in our analysis. In addition, the dispersion of the data in 
this plot could also be due to other factors playing an important 
role in this low solubility regime beyond these simple charge- 
based descriptors.

Another important finding of this study was that ‘isotype’ 
was identified as the descriptor having the highest VIP score 
and absolute value of the coefficient (Figure 4), which made it 
the most influential descriptor in the model. In initial explora-
tory studies, the Fc features were included in the descriptor 
pool; however, after feature selection, we consistently obtained 
one Fc descriptor for each model which was selected as 
a surrogate for ‘isotype identifier’. When more Fc-based 
descriptors were examined in these models, no obvious 
improvements were obtained. Accordingly, we used ‘isotype 
identifier’ as one of the features and developed Fab homology 
models that were then used to determine the Fab-based 
descriptor sets. Interestingly, drastically different solubility 
behaviors were observed for the different isotypes. As can be 
seen in Figure 6a, while more than half of the IgG1s had high 
solubilities (≥1.0) with much small numbers in the lower 
solubility regimes, the IgG4s had a broad distribution with 
the peak centered in the moderate solubility region (0.25–0.50).

We also examined the relationship between mAb solubili-
ties and some of the key descriptors identified for the two 
isotypes. As can be seen in Figure 6b, a high correlation (R2 = 
0.85) between solubility and Fab pI was observed for the IgG1s, 
whereas only a moderate correlation (R2 = 0.62) was found for 
the IgG4s. A similar result was obtained with the strength of 
the negatively charged clusters (EPL_str) shown in Figure 6c 
where IgG1 solubility had a very high inverse correlation (R2 = 
0.90) with solubility, whereas the IgG4 solubility was less well 
correlated (R2 = 0.65). This strong linear correlation between 
these single charge-based descriptors and mAb solubilities for 
the IgG1s was quite striking. We hypothesized that the differ-
ence in the solubility behavior of the two isotypes may be due 
to differences in the charge profiles of the Fc regions. 
Accordingly, we generated electrostatic potential (EP) maps 
at pH 6 for the Fc regions of the IgG1s and IgG4s used in 
this study (Figure 7). In these plots, red and blue represent 
negative and positive charged regions on the protein surface. 
As can be seen in the figure, the IgG1 Fc was significantly more 
positively charged than the IgG4 Fc. The IgG1 Fc (ABC) 
surfaces were mostly covered by contiguous positively charged 
patches with a relatively small number of discontinuous nega-
tively charged patches. In contrast, IgG4 Fc had a large con-
tiguous negative patch on both the bottom and the back 
regions of the molecule. These observations are in agreement 
with the theoretical 3D pIs of the IgG1 and IgG4 Fcs, which are 
7.59 and 6.61, respectively.

The EP maps also help to explain the strong correlation 
between Fab pI and mAb solubilities for the IgG1s. The higher 
the Fab pI, the more positively charged patches will occur on 
the Fab surface at pH 6. This will produce stronger electrostatic 
repulsions between the positively charged Fc and Fab surfaces, 
resulting in higher mAb solubilities. In contrast, the large 
negative patch on the IgG4 Fc could result in electrostatic 
attractions between the positively charged Fabs and the Fc. 
This could in turn result in additional interactions occurring 
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between the regions, which would reduce mAb solubilities and 
weaken the linear correlations between the charge-based 
descriptors and the IgG4 solubility. These results are also con-
sistent with a previous observation that43 the charge profile of 
IgG1s and IgG4s modulate the differential developability prop-
erties of the two isotypes. This analysis of the correlations of 
the mAb solubilities with charge-based descriptors, in concert 
with the protein surface plots for the two isotypes, provides 
potentially useful information for engineering antibody candi-
dates with improved solubility behavior and for selecting 
appropriate scaffolds for development.

The aim of this study was to develop in silico screening tools 
of mAb solubility. Using a QSAR modeling approach, regres-
sion, and classification models were developed to provide 
quantitative or qualitative projections of mAb solubilities, 
and our top models have the potential to be used for screening 
mAb relative solubility at early discovery. Finally, interpreta-
tion of the models was carried out to provide mechanistic 
insights into the mAb solubility behavior and our results indi-
cated that isotype and Fab charge-based descriptors were 
important, particularly for the IgG1 mAbs. While this work 
was successful in generating QSAR regression and classifica-
tion models for a given set of conditions (normalized solubility 
data based on a PEG precipitation assay for a given set of 
mAbs), it would be difficult to extend these particular models 
to data outside of this set due to the effect of differences in: 1) 
the biomolecules, 2) the buffer conditions, and 3) the particular 
biophysical techniques used as a surrogate for solubility. To 
further improve model performance and applicability to 
a wider set of molecules and conditions, future work will 
focus on constantly updating the model as more experimental 
data becomes available with a wider range of mAbs. In addi-
tion, we will extend these efforts to alternative formulation 
conditions (buffers, pHs, additives) and also develop models 
for other important biophysical properties related to 
developability.

Materials and methods

Antibody preparation

Antibodies used in this study were from various discovery cam-
paigns and included IgG1, IgG2, and IgG4 subclasses. Samples 
were produced internally at Eli Lilly and Company. mAbs were 
expressed in either transient 293 F or stable Chinese hamster 
ovary cells. Purification followed typical antibody purification 
procedures (protein A capture followed by polishing steps). All 
reagents and excipients were commercially available from 
Hampton Research, EM Chemicals, JT Baker, Sigma-Aldrich, 
and/or Mallinckrodt, and were of high grade (>98% purity).

Solubility determination by PEG-induced precipitation 
with automation

The experimental protocol was adapted from the method 
reported by Chai et al.6 and Oeller et al.44 Solutions of 10 mM 
histidine, pH 6.0, containing varying polyethylene glycol 3350 
(PEG 3350) concentrations (v/v) (from 4 to 36%) were prepared 
using a Formulator (Formulatrix, Bedford, MA). All the mAb 

samples were buffer-exchanged and diluted to 1 mg/mL and 
plated (50 µL/well) onto the wells of 96-well polystyrene, 
V-bottomed assay plates (Greiner). A Biomek i7 (Beckman 
Coulter, Indianapolis, IN) liquid handler was used to add 
50 µL/well of the PEG stock solutions from the Master Block 
plate into 96-well polystyrene, V-bottomed assay plates contain-
ing the mAb samples. The final composition of each well on the 
PS plate (in a total volume of 100 µL) contained 50 µg of sample 
per well, and 10 mM histidine with PEG 3350 concentration 
ranging from 2% to 18% (v/v) across each column of the plate in 
1.5% increment. The assay plates were sealed with clear sealing 
film (Hampton Research, Aliso Viejo, CA) and then incubated at 
room temperature on a titer plate shaker (Lab-Line Instruments, 
Melrose Park, IL) for 24 hours. After incubation, the assay plate 
was centrifuged at 3500 RPM for 15 minutes at 25°C on an 
Allegra X12R benchtop centrifuge (Beckman Coulter, Brea, 
CA) to remove the precipitate. Then, 50 µL/well liquid was 
transferred from each well into a UV Star 384-well plate using 
a Biomek i7. After sealing the UV Star plate with clear sealing, 
the plate was centrifuged for two minutes at 3000RPM to remove 
air bubbles. Finally, the plate was read on a Tecan Infinite M1000 
Pro UV/Vis Spectrophotometer (Männedorf, Switzerland) at 
280 nm (with background subtraction at 320 nm). The absor-
bance data was de-convoluted and plotted in Excel, where the 
point of abrupt decrease in absorbance was determined. The 
nearest PEG 3350 concentration (%) that corresponded to the 
onset of precipitation was defined as PEGonset and used as 
a surrogate for mAb solubility. The resulted PEGonset was then 
normalized based on the values obtained with the two internal 
control molecules as follows.. 

Solnorm ¼
PEGtest � PEGlow

PEGhigh � PEGlow
(1) 

PEGlow and PEGhigh were the PEGonset for the two control 
molecules used for each measurement. Of note, for cases where 
the high solubility control molecule does not have a precipitation 
onset during the assay, we use the maximum PEG concentration 
used in the assay. The normalized PEG data of all the mAbs in 
this study are summarized in Table S3. The representative data 
of PEG-induced precipitation assay is presented in Figure S3. 
A four-parameter log-logistic function was applied for curve 
fitting and is indicated by the solid curves. PEGonset (indicated 
by the triangles in Figure S3) represents the PEG concentration 
corresponding to a 5% decrease in the soluble mAb concentra-
tion from the initial amount. For mAbs that did not precipitate 
at the highest PEG3350 concentration employed (36%), we 
assigned a PEGonset value of 36%. We choose PEGonset over 
PEG1/2 due to an improved sensitivity in ranking the molecules.

Antibody 3D structure preparations

The Fab structures were determined using the antibody modeler 
module in Molecular Operating Environment 2019 (MOE) 
(Chemical Computing Group, Montreal, Canada). Settings 
used were the ‘Fine’ refinement level, Amber10: EHT force 
field, and the R-solvation field. To compensate for errors due 
to protein flexibility, five repeated homology models were devel-
oped to create conformation ensembles for each Fab structure.
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Calculation of molecular descriptors

Protein molecular descriptors from multiple sources were calcu-
lated for all the Fab homology models developed in this work. 
Global protein descriptors and protein surface patch descriptors 
were calculated using MOE. FvCSP was calculated according to 
methods developed by Sharma et al.16 SCM score was calculated 
according to Agrawal et al.26 Custom-designed residue cluster- 
based descriptors and overlapping clusters descriptors were calcu-
lated using the procedure published by Woo et al.36 PDB2PQR 
software was used for structure corrections and protonation.45 

Poissson-Boltzmann electrostatic calculations were performed by 
Adaptive Poisson-Boltzmann Solver (APBS).46 All the descriptors 
described above were calculated based on five repeated Fab 
homology models and the average values of five runs were used 
for model development, resulting in 310 molecular descriptors for 
each mAb prior to feature selection.

QSAR model development workflow

The QSAR model development process was implemented 
using python 3.7.1 on JupyterLab 2.1.5. The total dataset was 
composed of 111 mAbs solubilities in 10 mM histidine buffer, 
at pH 6, which were normalized into a 0 to 1 scale using ‘Min- 
Max normalization’ according to the solubilities of two control 
molecules (high/low). Computational molecular descriptors 
were standardized such that each had a mean of 0 and 
a standard deviation of 1 for the entire mAb data set. After 
data preparations, the dataset was randomly split into 
a training set (82%) and a test set (18%). Multiple rounds of 
feature selection were then applied to filter out unrelated fea-
tures and to remove redundancy within the feature set. Briefly, 
the initial selection removed features with low variance 
(p >.85). Secondly, features with high mutual correlations 
(>85%) was then removed. Finally, L1-based recursive feature 
selection was applied to remove as many unimportant features 
as possible while maintaining the model performance.47 

Different algorithms, including partial least square (PLS), sup-
port vector machine (SVM), tree-based algorithm, and multi- 
layer perceptron, were evaluated. The average score of 10 times 
five-fold cross-validation and 50 rounds of Y-scrambling48 

were used for model validation and to assure there was no 
overfitting of the models. Y-scrambling was implemented by 
keeping the x-dataset (the descriptor set) intact and shuffling 
the y-dataset (normalized solubility) 50 times. For each 
‘scrambled’ dataset, a ‘scrambled’ model was trained using 
the same algorithm as the original model. The coefficient of 
determination R2 and cross validation square correlation coef-
ficient Q2 were then used to access the performance of these 
resulting models of the scrambled data. The development pro-
cess of feature selection, algorithm selection, and model valida-
tion were carried out in an iterative manner to select the best 
performing model, which was then evaluated using the external 
test set. All QSAR regression models developed in this study 
were developed following this workflow. The definitions and 
coefficients of descriptors included for all models are summar-
ized in Table S1. The selected descriptor values of all mAbs 
included in this study are presented in Table S2.
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