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Improving zinc (Zn) content in wheat and its processed foods is an effective way to solve

human Zn deficiency, which can cause a variety of diseases. This article summarizes

the works on Zn in wheat grain, wheat processing, and wheat-derived foods. Grain Zn

content in wheat was 31.84 mg·kg−1 globally but varied across continents, for example,

25.10 mg·kg−1 in Europe, 29.00 mg·kg−1 in Africa, 33.63 mg·kg−1 in Asia, and 33.91

mg·kg−1 in North America. Grain Zn content in wheat improved from 28.96 to 36.61

mg·kg−1 and that in flour increased from 10.51 to 14.82 mg·kg−1 after Zn fortification.

Furthermore, Zn content varied in the different processed components of wheat; that is,

Zn content was 12.58 mg·kg−1 in flour, 70.49 mg·kg−1 in shorts, and 86.45 mg·kg−1 in

bran. Zinc content was also different in wheat-derived foods, such as 13.65 mg·kg−1 in

baked food, 10.65 mg·kg−1 in fried food, and 8.03 mg·kg−1 in cooking food. Therefore,

the suitable Zn fortification, appropriate processing, and food type of wheat are important

to meet people’s Zn requirement through wheat.

Keywords: wheat, zinc, flour, fortification, bioavailability

INTRODUCTION

Zinc is a blue-white metal element that accounts for ∼0.02% of the earth’s crust and is the
twenty-third largest element in abundance (1). Zinc is an essential trace element for the growth
and development of humans (2), animals (3), and plants (4). The health benefits of Zn have
received much attention since the 1960s. According to the Zn intake reference of the World
Health Organization (WHO), the recommended daily Zn intake of infants aged 7–12 months is
5 mg·day−1, children aged 1–10 years is 10 mg·day−1, males and females aged 11–51 years is 15
mg·day−1, and pregnant women is 20–25 mg·day−1, and the daily Zn tolerance is 100 mg·day−1.
However, at least 25% of the global population is at risk of Zn deficiency (5). Insufficient Zn
intake can cause loss of appetite, growth retardation, rough and peeling skin, and immune system
dysfunction (6). On the one hand, Zn deficiency in pregnant womenmay cause fetal malformations
(7), and nearly 82% of pregnant women worldwide have insufficient Zn intake (5). On the other
hand, excessive Zn intake can cause nausea, vomiting, lethargy, and fatigue. Therefore, maintaining
the balance of Zn in the human body, including increasing Zn intake for people with Zn deficiency,
is an important long-term task.

Wheat is one of the major grains worldwide, which provides nearly 20% calorie and protein per
capita worldwide (8). Therefore, improving the daily Zn intake through wheat-derived processed
foods is an important way to solve Zn deficiency.

Grain Zn content in wheat is usually low in several areas and is therefore the first and essential
concern in this study. Wheat processing is another important factor that can remarkably affect
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the actual Zn intake of people because the aleurone and bran
layers of wheat are usually removed during processing. Different
processing technologies of wheat also lead to a large loss of Zn
(9). In addition, the content of phytic acid and the molar ratio of
phytic acid to Zn, which can affect Zn absorption, are among the
important factors to be considered.

This article summarizes the results in the list of fields in recent
years, including (1) zinc content in wheat, wheat processing, and
wheat-derived foods and (2) the bioavailability of Zn in wheat.

GRAIN ZINC CONTENT IN WHEAT

Wheat is one of the important sources of daily diet in developing
countries, but its Zn content is relatively low. The Zn content of
wheat grains need to reach 45.00 mg·kg−1 to meet the Zn needs
of the human body (10). However, statistics show that the average
Zn content in wheat grains worldwide is only 28.48 mg·kg−1,
which is lower than the internationally recommended amount.
The grain Zn content of wheat in different countries since the
1960s (Table S1) ranged from 8.00 to 88.20 mg·kg−1 with an
average value of 31.84 mg·kg−1 (5, 9–47).

The grain Zn contents of wheat among different countries
varied (Figure 1). For example, grain Zn content is 38.87
mg·kg−1 in Turkey, 37.51 mg·kg−1 in China, 34.43 mg·kg−1

in Iran, 34.21 mg·kg−1 in the United States, 34.20 mg·kg−1

in Italy, 33.76 mg·kg−1 in Mexico, 33.13 mg·kg−1 in Pakistan,
29.00 mg·kg−1 in Zambia, 28.40 mg·kg−1 in Kazakhstan, 28.31
mg·kg−1 in India, 25.68 mg·kg−1 in Hungary, 24.09 mg·kg−1

FIGURE 1 | Zinc content of wheat among different countries and continents. These data come from references (5, 9–47). Letters a and b indicate a significant

difference at the level of P < 0.05.

in Belgium, and 23.58 mg·kg−1 in France. The average grain
Zn contents of wheat among different continents were 25.10
mg·kg−1 in Europe, 29.00 mg·kg−1 in Africa, 33.63 mg·kg−1

in Asia, and 33.91 mg·kg−1 in North America. The reasons for
these differences in grain Zn content may be as follows: (1) The
amount of Zn available in the soil in these areas is different. For
example, the available Zn in the soil in China was 0.37 mg·kg−1,
0.53 mg·kg−1 in India, 0.55 mg·kg−1 in Pakistan, and 1.46
mg·kg−1 in Zambia (12). (2) Grain Zn content is different among
wheat varieties. For example, the grain Zn content was 28.48
mg·kg−1 in common wheat, 34.80 mg·kg−1 in white wheat, 34.40
mg·kg−1 in red wheat, and 36.45 mg·kg−1 in black wheat (13).
(3) Different wheat cultivation types, environments, climates, and
biofortification methods result in the different grain Zn contents
of wheat. For example, the mean Zn content was 31.42 mg·kg−1

in winter wheat and 30.13 mg·kg−1 in spring wheat (Figure S1).
Zinc content can be enhanced by fortification during

breeding and by adding nutrients during food processing (48).
Biofortification can quickly increase grain Zn content in wheat
because of agronomic measures, such as the application of Zn
fertilizer (49); therefore, field fertilization was gradually accepted
and liked by farmers. The main application methods of Zn
fertilizer include soil application, foliar application, and seed
treatment (50). As shown in Figure S1, grain Zn content in wheat
by soil Zn application ranged from 8.00 to 54.40 mg·kg−1, with
an average value of 29.39 mg·kg−1 (5, 9, 10, 12, 14, 19, 22, 25,
27, 28, 30, 31, 34, 35, 51); that by foliar fertilization ranged from
25.1 to 88.20 mg·kg−1, with an average value of 42.30 mg·kg−1
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(5, 15, 18, 20, 22, 31, 32); and that by seed soaking treatment
ranged from 25.70 to 31.10 mg·kg−1, with an average value of
30.30 mg·kg−1 (19, 41). Furthermore, grain Zn content by the
combined treatment of soil application and foliar fertilization
ranged from 25.10 to 70.00 mg·kg−1 with an average value of
40.45 mg·kg−1 (5, 22, 25, 31, 33), and that by the combined
treatment of soil fertilization and seed soaking reached 34.30
mg·kg−1 (19).

In general, the average grain Zn content in wheat without Zn
fertilizer was 28.96 mg·kg−1, which increased to 36.61 mg·kg−1

after Zn fortification (Figure 2). Interestingly, the available Zn
concentration in soil could exceed 4.09 mg·kg−1, and grain Zn
content could reach 40–60 mg·kg−1 (52) when 50 kg·hm−2

ZnSO4·7(H2O) was added to the soil.
Therefore, the most effective way to increase grain Zn

content in wheat may be combining soil fertilization and foliar
fertilization or directly applying foliar fertilization. However,
local environment and wheat varieties should also be considered
when choosing a suitable fertilization method to increase grain
Zn content in wheat.

ZINC IN DIFFERENT COMPONENTS OF
WHEAT

The grain structure of wheat is generally divided into bran,
embryo, and endosperm, which account for 14–16, 2–3, and
81–84% of the grain, respectively (53). Wheat peeling is the
process of separating the endosperm and bran of wheat and
grinding them into flour (28). Wheat flour processing has two
purposes: one is to grind the endosperm into small and fine
particles, and the other is to remove the bran as much as
possible. The traditional method of flour making breaks wheat

FIGURE 2 | Zinc content in fortified and unfortified wheat. Letters a and b

indicate a significant difference at the level of P < 0.05; n is the total number of

samples.

directly to separate the bran and endosperm and obtains the
pure wheat core through flour cleaning, which is further ground
into flour. The other milling method carries out the peeling
process before wheat milling. Generally, wheat peeling is carried
out by a friction machine or scraping machine equipment. A
friction machine mainly carries out peeling through friction
between wheat grains. The scraping machine uses a sand roller
to scrape off wheat bran (54). According to reported results
since 1980s (Table S2), the basic law of Zn content in wheat
components after milling is: bran > shorts > flour. Zinc content
over the years and across countries ranged from 3.73 to 36.53

FIGURE 3 | Zinc content in wheat grain and flour with year.

FIGURE 4 | Comparison of wheat flour with different treatments. Data are from

references (22, 23, 29, 37, 38, 42, 45, 55–69). Letters a, b, and c indicate a

significant difference at the level of P < 0.05; n is the total number of samples.
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mg·kg−1 in flour with an average value of 12.58 mg·kg−1

(22, 23, 29, 37, 38, 42, 45, 55–69), ranged from 26.60 to
139.84 mg·kg−1 in shorts with an average of 70.49 mg·kg−1

(29, 38, 42, 56, 59, 62, 66, 70), and ranged from 23.80 to
159.80 mg·kg−1 in bran with an average of 86.45 mg·kg−1

(21, 22, 29, 32, 38, 42, 46, 56, 59, 61, 62, 66, 68, 70).
The results showed that Zn was mainly concentrated in the

cortex and embryo of wheat grain. For example, Zn content
in bran was about three times higher than that in endosperm
(71, 72) and approximately six times higher than that in flour
after milling (42, 70).

The overall trend of grain and flour Zn content gradually
increased with year (Figure 3). In particular, grain and flour Zn
content increased remarkably since the launch of the Harvest
Plus project in 2003 possibly owing to biological strengthening,
such as Zn fertilization. Flour Zn content could reach 14.82
mg·kg−1 after Zn fortification but was only 10.51 mg·kg−1

in unfortified flour and 26.79 mg·kg−1 in whole wheat flour
(Figure 4).

The technological process of wheat milling is called “flour
road.” Eight milling parts can be obtained after wheat milling,
including six flour parts [i.e., three “broken” (B) and three
“reduced” (R) milling parts] and two kinds of bran parts (i.e.,
bran and shorts). The flour collected by B1, R1, B2, R2, B3, and
R3 is standard flour; that by B1, R1, B2, and B3 is bread flour;
and that by B1 and R1 is refined flour (59). The powder path
schematic diagram of Bühler MLU 202 mill and the Zn content
of each powder path after passing the wheat grain through the
mill are shown in Figure 5. The Zn content in each component
was in the following order: bran > R (powder) > B (powder).
Zinc content was 12.84 mg·kg−1 in R1, 9.90 mg·kg−1 in R2, 7.44
mg·kg−1 in R3, 8.03 mg·kg−1 in B1, 8.94 mg·kg−1 in B2, and 7.32
mg·kg−1 in B3. The Zn content in bran was remarkably higher
than that of the other components. So the processing with higher

FIGURE 5 | Schematic diagram of zinc content in the powder path. These data are from references (38, 59, 70).
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flour extraction rate including aleurone layer would enhance
retention of more Zn. However, this may also affect overall flour
quality (57).

In summary, Zn content in flour can be increased in two
ways. One is to increase grain Zn content through agronomic
treatments. However, the enhancement of the target on a large
scale by field fertilization is difficult to achieve (Table S1), and
long-term fertilization may also cause pollution to the soil and
other environments. The other way is to choose an appropriate
wheat processing. This approach may be a direct way to reach
Zn reference target by whole wheat flour. Zinc was not lost in
flour; however, whole wheat flour is rough, its dough is poorly
fermented, and the taste of its derived food taste is not good.
Safety risks may even occur owing to pesticides and heavy metals
in the seed coat (73). Thus, Zn-rich flour from aleurone flour
mixed with ordinary flour in a certain proportion was used
to meet the standards of first-grade flour, and this flour had
no effect on food’s taste despite the addition of 5% aleurone
flour (74, 75). We also could decrease the influence of pesticides
and heavy metals while maintaining Zn content by controlling
the peeling rate and flour extraction rate. For example, the Zn
content of flour could reach 19.40 mg·kg−1, which exceeds the
fortification standard of 10.00 mg·kg−1 when flour extraction
rate was 65–75% (61).

Therefore, we should pay attention to improve grain Zn
content and also consider wheat processing to control the peeling
rate while keeping Zn content to a suitable level.

ZINC IN WHEAT PROCESSED FOODS

Foods from processed wheat, such as bread, steamed buns,
and biscuits, are the main traditional staple food that occupy
an important position in people’s dietary structure (76). For
example, wheat-related traditional foods in China account for
75% of China’s total wheat consumption (77).

Table 1 shows a list of the Zn content of processed foods from
wheat in the past 15 years. The Zn content of processed wheat
foods ranged from 1.73 to 53.05mg·kg−1 with an average of 12.56
mg·kg−1 (16, 37, 55, 58, 60, 67, 78–86). The processed wheat food
with the highest Zn content was steamed buns, which has a Zn
content of 53.05 mg·kg−1. Cooked noodles have the lowest Zn
content, which was only 1.73 mg·kg−1.

Zinc content was remarkably different among processed
wheat foods. For example, Zn content was 15.03 mg·kg−1 in
bread, 12.20 mg·kg−1 in biscuits, 10.60 mg·kg−1 in instant
noodles, 9.30 mg·kg−1 in noodles, 7.94 mg·kg−1 in spaghetti,
and 6.60 mg·kg−1 in steamed buns (Figure 6). The Zn contents
of different foods are in the following order: baked food (13.65
mg·kg−1) > fried food (10.60 mg·kg−1) > cooking food (8.03
mg·kg−1). Baked foods have a remarkably higher Zn content
than cooking foods and fried foods. This difference in Zn content
may be ascribed to the following: (1) The Zn content of the
flour used in these foods was different and ranged from 3.73 to
36.53 mg·kg−1. For example, the Zn content of unfortified flour
was 10.51 mg·kg−1, whereas that of Zn-fortified flour and whole
wheat flour was 14.82 and 26.79mg·kg−1, respectively (Figure 4).

TABLE 1 | Zinc content in different wheat processed foods.

Name Zinc content (mg·kg−1) References Remark

Mean Range

Bread 7.30 NS Ma et al. (67) NS

12.50 NS Ma et al. (67) Whole wheat

16.00 11.70–18.40 Umeta et al. (78) NS

4.80 NS Shi et al. (79) NS

7.20 NS Shi et al. (79) Zinc-rich yeast

7.57 7.24–7.81 Ren et al. (80) NS

15.04 14.50–15.62 Ren et al. (80) Adding organic

tea

17.50 14.00–22.00 Bai et al. (81) NS

10.00 8.90–11.60 Lazarte et al. (55) White bread

18.10 9.30–23.30 Heshe et al. (60) Adding bran

26.70 25.60–28.50 Saha et al. (16) NS

35.20 NS Ciccolini et al. (58) Whole wheat

6.07 NS Ciccolini et al. (58) NS

10.60 6.40–17.50 Shokunbi et al. (82) White bread

13.40 10.80–16.00 Shokunbi et al. (82) Whole wheat

13.60 13.40–13.70 Shokunbi et al. (82) Malt

Steamed

buns

6.00 NS Ma et al. (67) NS

5.30 NS Ma et al. (67) NS

8.50 NS Ma et al. (67) NS

28.26 16.05–37.91 Wang (83) Adding bran

45.73 25.75–53.05 Wang (83) Adding bran +

zinc fertilizer

Noodles 5.70 NS Ma et al. (67) Fresh noodles

17.70 11.80–22.80 Lazarte et al. (55) Fresh noodles

3.69 1.37–6.32 Shokunbi et al. (82) Dry noodles

10.10 3.61–21.6 Shokunbi et al. (82) Adding eggs

Biscuits 11.82 5.57–18.36 Sebecic et al. (84) NS

7.10 NS Ma et al. (67) NS

8.30 5.00–11.00 Bai et al. (81) Adding soda

12.40 5.00–40.00 Bai et al. (81) Crisp

Spaghetti 7.50 NS Ma et al. (67) NS

12.90 10.3–15.4 Cubadda et al. (37) Fresh spaghetti

11.70 10.70-13.70 Cubadda et al. (37) Fresh spaghetti

4.70 4.40–5.20 Cubadda et al. (37) Dry spaghetti

4.56 4.31–4.81 Shokunbi et al. (82) Dry spaghetti

5.38 5.14–5.61 Shokunbi et al. (82) Dry spaghetti

Instant

noodles

5.50 NS Ma et al. (67) NS

15.70 NS Zhu et al. (85) NS

10.60 NS Chen et al. (86) NS

Pancakes 4.70 NS Ma et al. (67) NS

5.80 NS Ma et al. (67) NS

Wheat

Gluten

27.50 NS Ma et al. (67) NS

19.80 NS Ma et al. (67) NS

Cake 11.70 9.00–20.00 Bai et al. (81) NS

Mean 12.56 1.37–53.05 – –

NS indicates that relevant information is not mentioned in the literature.
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FIGURE 6 | Zinc content in different wheat processed foods. Letters a, b, and c indicate a significant difference at the level of P < 0.05; n is the total number of

samples.

Meanwhile, these foods require different kinds of flour, in which
protein contents often vary. For example, in the same growth
environment, protein content of strong gluten wheat could reach
148.86 mg·kg−1, weak gluten wheat was only 108.51 mg·kg−1,
and middle gluten wheat was 137.41 mg·kg−1 (87). Zn mainly
binds to proteins in plants. So protein content may affect the
amount of Zn binding, which indirectly affects Zn content. (2)
Different food processing methods might also affect zinc content.
For example, fried foods usually need oil, and cooking food need
water. Yet Zn dissolves more easily in water than in oil, which
might result in more Zn loss in cooking food processing than
fried foods processing (88).

ZINC BIOAVAILABILITY IN WHEAT

Bioavailability refers to the ratio of an animal’s ingested
nutrients that can be absorbed by the small intestine and
participate in metabolic processes or stored in animal tissues.
The bioavailability of Zn in wheat is affected by many factors,
of which phytic acid is the main factor. Phytic acid has a strong
chelating ability and can be combined with Zn2+ in food to form
insoluble complexes. This insoluble Zn is difficult to hydrolyze

by the human digestive process; therefore, the combination of
Zn and phytic acid inhibits Zn absorption. Furthermore, humans
lack phytase. Zinc can be linked to phytate; thus, the utilization
of Zn in the intestine is reduced (89).

The bioavailability of Zn in wheat is usually expressed as the
molar ratio of phytic acid to Zn. Zinc bioavailability is only 10–
15% when the molar ratio is >15. Zinc bioavailability is medium
and ranges from 30 to 35% when the molar ratio is 5–15. Zinc
bioavailability is high at up to 45–55% when the molar ratio is
<5 (90). For instance, if the Zn content in flour is 15.2 mg·kg−1

and the phytic acid content is 272 mg·100 g−1, then the phytic
acid/Zn ratio is 17.7, which means that the Zn bioavailability is
low (55).

Wheat processing affects the phytic acid/Zn molar ratio.
Peeling can remarkably influence the phytic acid content in flour
because phytic acid is mainly distributed in the aleurone layer.
The phytic acid content of flour initially increased and then
decreased with the increase in peeling rate (63). Researchers also
found that the phytic acid content of flour increased remarkably
with the increase in flour yield. The increase in phytic acid
content in flour was because more wheat cortex and aleurone
layer were mixed in flour with the increase in flour yield (20).
For example, phytic acid was 158 mg·100 g−1 when peeling rate
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was 4%. However, phytic acid/Zn molar ratio reached the highest
value (20.69) when the peeling rate was 10% and had the lowest
value (13.86) when the peeling rate was 0 (63).

Different foods also have different levels of Zn bioavailability.
For example, white bread has a Zn content of 10.00 mg·kg−1,
a phytic acid content of 99 mg·100 g−1, and phytic acid/Zn
molar ratio of 9.8. In contrast, fresh noodles have Zn content
and phytic acid content of 17.7 mg·kg−1 and 468 mg·100 g−1,
respectively; and their phytic acid/Znmolar ratio is 27.4 (55). The
average content of Zn and phytic acid in 14 kinds of common
Chinese processed wheat foods was 9.34 mg·kg−1 and 114.20
mg·100 g−1, and their average phytic acid/Zn ratio was 14.4.
Among these foods, the phytic acid/Zn molar ratios of wheat
bread, instant noodles, whole wheat biscuits, and pasta weremore
than 15 (67).

Adding phytase to food in the market has not been reported
until now. However, researchers found that phytase can rapidly
degrade phytic acid in flour after adding phytase to flour;
thus, phytase increases the bioavailability of Zn (91). Moreover,
Zn deficiency can be solved by cultivating wheat with low
phytic acid content. However, mutants with low phytic acid
may have a reduced grain yield and may even affect human
safety (92).

The current methods to improve Zn bioavailability in wheat
and its derived foods mainly included two aspects. One was to
increase Zn content in grain, flour, and its derived foods. The
other was to reduce the inhibitors that reduce Zn bioavailability
in processed wheat foods.

CONCLUSIONS AND FUTURE DIRECTION

Grain Zn content in wheat worldwide is 31.84 mg·kg−1,
which was lower than that suggested by the reference of
WHO. Zinc fortification is the primary way to increase the
grain Zn content of wheat and could be achieved by Zn
fertilizer. In general, the average grain Zn content in wheat
could reach 36.61 from 28.96 mg·kg−1 after applying Zn
fertilizer (Figure 2). Grain Zn content could reach 40–60
mg·kg−1 and achieve the reference of WHO under 50 kg·hm−2

ZnSO4·7(H2O) treatment.
Wheat milling has remarkable effects on Zn content. For

example, Zn contents in flour, shorts, and bran were 12.58, 70.49,
and 86.45 mg·kg−1, respectively. The change rule of Zn content
in different components of wheat is bran > shorts > flour; the
change rule of Zn content in each powder path is bran > B flour
> M flour, B3 > B1 > B2, and M3 > M2 > M1. However, only
a few studies have been conducted in this area. Moreover, Zn
content in different wheat-derived foods is remarkably different,
for example, 13.65mg·kg−1 in baked food, 10.65mg·kg−1 in fried
food, and 8.03 mg·kg−1 in cooking food. This difference in Zn
content may be due to the method of food processing.

Zinc deficiency is a comprehensive problem. Rotation and
other cultivationmethodsmay be used to increase Zn content to a

certain extent. For example, the rotation of corn andwheat results
in a higher Zn content in the second quarter compared with that
in the first quarter (5). Although the application of Zn fertilizer
can improve the Zn content, we should also consider the possible
pollution of Zn to the environment by long-term application of
Zn fertilizer under the premise of achieving the recommended
Zn level (19).

Developing wheat varieties with grains that are rich in Zn
is a new approach. Conventional wheat breeding and modern
biotechnology methods (93), such as transferring a high Zn
accumulation gene from wheat relatives, may be promising.

In the future, we should focus on how to preserve Zn as much
as possible during milling, such as the effects of wheat grain pre-
treatment andmilling procedures on flour Zn content. Moreover,
we should also explore the impact of food processing methods on
Zn content.

Phytic acid is an important indicator that affects the
effectiveness of Zn. Current research has focused on phytic acid
content in wheat grains and flour. However, research on phytic
acid content in wheat-derived foods is scarce. Next, we should
strengthen the study of the effects of different processingmethods
on phytic acid content and Zn bioavailability.

Zinc deficiency is a worldwide problem. Zinc fortification
should strengthen international cooperation through
international schemes, such as Harvest Plus. Moreover, we
should raise public awareness of the dangers of Zn deficiency and
obtain as much support as possible, such as sustained funding,
from the local government.

Therefore, suitable Zn fortification, appropriate processing,
reasonable food type, international collaboration, and
government support are important to meet people’s Zn
requirements through wheat.
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