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Abstract

In a stimulus with multiple moving elements, an observer may perceive that the whole stimulus

moves in unison if (a) one can associate an element in one frame with one in the next (corre-

spondence) and (b) a sufficient proportion of correspondences signal a similar motion direction

(coherence). We tested the necessity of these two conditions by asking the participants to rate

the perceived intensity of linear, concentric, and radial motions for three types of stimuli: (a)

random walk motion, in which the direction of each dot was randomly determined for each frame,

(b) random image sequence, which was a set of uncorrelated random dot images presented in

sequence, and (c) global motion, in which 35% of dots moved coherently. The participants per-

ceived global motion not only in the global motion conditions but also in the random image

sequences, though not in random walk motion. The type of perceived motion in the random

image sequences depends on the spatial context of the stimuli. Thus, although there is neither a

fixed correspondence across different frames nor a coherent motion direction, observers can still

perceive global motion in the random image sequence. This result cannot be explained by motion

energy or local aperture border effects.

Keywords

coherence, illusion, aperture, random dot kinematogram

Date received: 20 April 2020; accepted: 16 August 2020

Corresponding author:

Chien-Chung Chen, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.

Email: c3chen@ntu.edu.tw

i-Perception

2020, Vol. 11(5), 1–10

! The Author(s) 2020

DOI: 10.1177/2041669520961104

journals.sagepub.com/home/ipe

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution

4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution

of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-3848-0180
mailto:c3chen@ntu.edu.tw
http://dx.doi.org/10.1177/2041669520961104
journals.sagepub.com/home/ipe


The visual system can integrate image elements with similar spatiotemporal properties to

produce a percept of global motion. A common example used in vision research is a dynamic

random dot kinematogram (Braddick, 1974; Newsome & Pare, 1988; Williams & Sekuler,

1984), which contains randomly distributed dots that would shift in position from one frame

to the next to create an impression of motion. If there is a sufficient proportion of dots

moving in the same direction and velocity, an observer could have the impression that the

whole stimulus is moving in unison.
It is commonly accepted (Sekuler et al., 1990) that two conditions have to be satisfied for

an observer to perceive a coherent global motion in a multiple-element display. The first is

correspondence, or that an image element in one frame should be associated with one in the

next frame. When the correspondence is established, one can calculate the amount of motion,

or motion energy, of the local elements. The second condition is coherence, or that a suffi-

cient proportion of image elements should move with a direction and velocity following a

specific rule. If this proportion of image elements, or coherence level, is less than a threshold,

the observer would not be able to perceive a global motion.
Both correspondence and coherence are considered to be necessary for a global motion

percept (Sekuler et al., 1990). Just satisfying one of these two would not produce a global

motion percept. For instance, one can generate an image of randomly distributed dots and

have them move by a predesignated short distance from frame to frame but with the motion

direction of each dot determined randomly (see Figure 1A). If the dot distribution is sparse

enough, it is not difficult to find the correct solution to the correspondence problem in this

stimulus, and thus, each dot would have a constant speed (Figure 1B). On the other hand, the

random walk motion direction produces zero coherence among image elements. Thus, in such

random walk motion stimuli, due to a lack of coherence, one can clearly see the local motion

of each dot from the frame-by-frame correspondence but have no percept of global motion.
Here, we demonstrate that one can perceive global motion in a stimulus containing no

obvious ways to associate image elements across frames or any coherence in motion among

image elements. Such a stimulus can be constructed in a very simple way as shown in Figure

1C. Each frame contains dots that are evenly and randomly distributed within a circular

window. Every frame is created independently. That is, this stimulus is simply a set of

random dot images presented in a sequence. Thus, because there is no particular relationship

between the dots, each dot in one frame can be associated with any dot in any direction and a

wide range of distances in the next frame. Such random image sequence stimuli lack not only

coherence in the motion direction, as in the random walk motion stimulus discussed earlier,

but also coherence in velocity (Figure 1D). One would not expect to perceive a global motion

in this type of stimuli. However, as demonstrated in Supplementary Material 1, one can

clearly perceive a global rotational or concentric motion in the stimuli. Here, we conducted

an experiment to evaluate this effect. To capture the percept that could be missed by con-

ventional forced-choice methods, we used a unique method of asking observers to report

three types of global motion percepts for each stimulus.

Method

Apparatus

The stimuli were displayed on a SONY 190 CRT by a monitor with 1,024 (H)� 768 (V)

resolution, controlled by a Mac Pro computer. The visible area was 35 (H)� 26 (V) cm. At

the viewing distance of 58 cm, there were 30 pixels in a one-degree visual angle. The refresh
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rate of the monitors was 100 Hz. The experiment control and visual stimulus generation was
done in a MATLAB environment with Psychtoolbox-3 (Brainard, 1997).

Stimuli

The stimuli were random dot kinematograms that consisted of bright dots (peak luminance
76.1 cd/m2) randomly distributed on a dark background (5.1 cd/m2) within either a circular
(6.65� radius) or a rectangular (13.3� by 13.3�) window. Each dot has a spatial profile of exp
(–(x–ux)/r)

4)� exp(–(y–uy)/r)
4), where (ux, uy) was the center of the dot, and the space

constant, r, was 2’. There were 80 dots in each frame. The stimuli were refreshed every
40 ms or four video frames. The duration of the stimulus was 800 ms.

There were three types of stimuli used in this experiment: The first was random walk
motion, in which each dot was displaced by 200 between each refreshment, giving each dot
a velocity of 8.3 degree/s. The motion direction of each dot was randomly determined frame
by frame. The second stimulus type was a random image sequence, also called random posi-
tion noise in some literature (Scase, Braddick & Raymond, 1996). That is, in each frame, all
of the dots were generated independently from other frames and other dots. One such stim-
ulus was practically a set of independent random dot images presented in a sequence. The
third type, used for catch trials, was global motion stimuli, in which 35% of dots moved with
a predesignated direction, whereas the other 65% of dots each moved with a random deter-
mined direction. This configuration allowed an observer to perceive a motion of a global
pattern. There were three types of global motions: radial, concentric, and linear. Each stim-
ulus presentation lasted 4 seconds. A video file showing examples of the random image
sequences can be seen in Supplementary Materials.

Figure 1. Two Types of Noncoherent Motion Are Discussed in This Article. The first is the random walk
motion (A), in which all randomly distributed dots move by a predesignated distance from frame to frame but
with the motion direction determined randomly for each frame. As illustrated in (B), it is not difficult for an
observer to find correspondence for each dot. Thus, each dot has a constant speed albeit a different
direction. The second type is the random image sequence (C), in which every frame is generated indepen-
dently. There is no particular relationship between the dots from one frame to the next. Each dot in one
frame can be associated with any dot in any direction and distance in the next frame (D).
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Procedure

Each trial started with a uniform gray with a fixation mark at the center of the display,
followed by the stimulus presentation for 800 ms. After the stimulus presentation, the par-
ticipants were asked to rate the strength of the perceived global motion for all three types
(linear, concentric, and radial) consecutively in a randomized order when they were cued by a
question displayed on the screen. The response was made on a 7-point Likert scale, with 1
being no global motion of the prompted type, and with 7 being the strongest and most exclusive
of other types. The order of the three types of responses was randomized for each trial.

Before the start of the data collection, the participants were given 20 practice trials to
familiarize themselves with the tasks and to establish criteria for motion judgment. For each
participant, there were 20 trials for the random image sequence condition and 20 for the
random walk motion conditions. These 40 trials, which contained no global motion infor-
mation by themselves, was balanced by another 40 trials meant to create a percept of global
motion. They included 20 for linear global motion (5 each for up, down, left, and right
motions, respectively), 10 for concentric motion (5 each for clockwise and counterclockwise
conditions, respectively), and 10 for radial motion (5 each for expansion and contraction
conditions, respectively). The order of all 80 stimuli was randomized for each participant.

There were 12 participants involved in this study. All of them had normal or corrected-to-
normal visual acuity (20/20) at the time of the experiment and no known history of neuro-
logical disorder. The participants gave written consent to participate in this experiment. The
procedure was approved by the ethics committee of the Unit for Advanced Study of Mind,
Kyoto University.

Results

Figure 2 shows the perceived global motion intensity, as rated by the participants, of both
the random walk motion and the random image sequence in three criteria. In the random
walk motion stimuli, not surprisingly, the participants hardly perceived any global motion:
They gave only weak intensity ratings on all types of global motions (2.1–2.5) for those
stimuli. On the other hand, the participants were able to perceive global motion in the
random image sequence. As shown in Figure 2A, the participants rated concentric motion
stronger than either linear (repeat-measure t test, t(11)¼2.66; p ¼.011, or radial motion, t
(11)¼3.82, p¼.0014, in the random image sequence stimuli. Furthermore, although the rated
perceived concentric motion (3.3) was weaker than that for the real motion stimuli (5.4), it
was significantly stronger than that in the random walk motion stimuli, t(11)¼5.42, p <.001.
Meanwhile, there was no statistically significant difference in either the linear or the radial
motion rating between the two types of stimuli.

Such global motion seems to partially depend on the global context. As shown in
Figure 2B, when the stimuli were viewed through a square window instead of a circular
one, the participants rated linear motion stronger in the random image sequence than either
concentric (repeat-measure t test, t(11)¼2.47; p ¼.016, or radial motion, t(11)¼3.02, p¼.006,
in the random image sequence. The participants showed no such bias in random walk motion
stimuli. Furthermore, the perceived linear motion in the random image sequence was stron-
ger than that in the random walk motion stimuli, t(11)¼3.28, p¼.0037. Meanwhile, there was
no statistically significant difference in either the concentric or the radial motion rating
between the two types of stimuli.

These results can be confirmed by a repeat-measure three-way factorial (2 stimulus
type� 3 rating criteria� 2 window shape) analysis of variance, which showed a significant
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rating criteria main effect, F(2, 121)¼ 5.75, p¼.0047, the two-way interaction between the

rating criteria and window shape, F(2, 121)¼6.88, p¼.0015, and the three-way interaction of

all within-subject factors, F(2, 121)¼3.09, p¼.048. The subsequent simple-interaction anal-

ysis of random walk motion conditions showed no significant main effect or interaction,

suggesting that neither the rating criterion nor the window shape affected the participants’

ratings for such stimuli. This is consistent with the notion that the participants perceived no

global motion for random walk motion stimuli. On the other hand, the simple-interaction

analysis of the random image sequence conditions showed a significant rating criterion main

effect, F(2, 212)¼5.86, p¼ .0033, and the interaction between the rating criteria and window

shape, F(2, 212,)¼9.27, p¼ .0001. This result is consistent with the a priori t-test analysis that

the participant tends to perceive concentric global motion in the random image sequence

with a circular window and linear global motion with a square window.

Discussion

Here, we showed that it is possible to perceive global motion in a sequence of random dot

images. This effect cannot be explained by motion energy (Adelson & Bergen, 1985). The

motion of an object in a visual stimulus can be considered as a change of light intensity in

both space and time. Such change, after the Fourier transform of the visual stimulus, should

Figure 2. Rated strength of linear, radial, and concentric global motions through a circular (A) or rectan-
gular (B) viewing window. In each panel, the blue bars are for a random walk motion, whereas the bars are
for a random image sequence. For a comparison, the 35% coherent motion stimuli were rated 5.3 to 5.7 for
their corresponding motion type and 1.7 to 2.4 for other type.
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produce a concentration of energy in the spatiotemporal power spectrum at the location

where the ratio between temporal and spatial frequencies corresponds to the velocity of
movement. To test whether our effect can be accounted for by motion energy, we performed

Fourier transform on our stimuli along both spatial (x and y) and the temporal (t) dimen-
sions to get their three-dimensional spatiotemporal power spectra. We then averaged the

spectra of the stimuli of the same type to obtain the spectra shown in Figure 3. For sim-
plicity, we plot y–t, or vertical spatial frequency versus temporal frequency, spectra here.

As shown in Figure 3A, the spatiotemporal frequency spectrum for the random image

sequence is quite uniform. There is no concentration of energy, except for near the DC
component, throughout the spectrum. Thus, there is no bias in motion energy toward any

particular type of motion. On the other hand, the spatiotemporal frequency spectrum of
typical random kinematograms with linear (Figure 3C) or concentric (Figure 3D) global

motion at 35% coherence, as expected, shows a distinct concentration of energy for a specific

spatial-temporal frequency ratio. The spectrum for the random walk motion (Figure 3B) also
showed a concentration of energy for a particular spatial to temporal frequency ratio,

although it was not as highly concentrated as that of the linear motion (Figure 3C), reflecting
constant displacement from one frame to the next. Thus, the perceived global motion in the

random image sequence cannot result from Fourier motion energy.
The position of dots in a frame of our random image sequence stimuli was created with a

random number generator. Thus, there may be a concern that our result might be affected by

accidental features in the stimuli. That is, there was a possibility that the positions of certain
dots in one frame, by chance, might have the same displacement from their respective

corresponding dots in the previous frame. If there were enough proportion of dots with

such accidental feature, the stimuli would be essentially a low-coherent real motion stimulus
and thus produce a high global motion rating among the participants.

To assess such possibility, we first examined whether there was an unusually large pro-
portion of dots with a coherent displacement across the frames. We computed the cross-

correlation between each frame in our rectangle window stimuli and its subsequent frame

and took the max of the result. This is equivalent to find the greatest coherent motion at any
speed and in any directions that can be produced by our stimuli. For the stimuli with circular

window, we performed the same computation after first morphing the stimuli from Cartesian

Figure 3. The spatiotemporal power spectrum of (A) random image sequence, (B) random walk motion,
(C) 35% coherent vertical linear motion, and (D) 35% coherent concentric motion. Each panel showed the
spectrum averaged across 40 stimuli of the same type used in our experiment. For simplicity, here, we plot
the spatial frequency spectra for vertical modulation against temporal frequency.
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to polar coordinate to account for concentric and radial motion. The cross-correlation
(Figure 4A and B), scaled by the geometric mean of the max autocorrelations of the two

frames, was from 0 to 0.09 for the random image sequences (red solid curves in Figure 4A
and B) and from 0.01 to 0.20 for random walk motion (Figure 4B). Notice that, the random

image sequence has less motion coherence than random walk motion even though the former

produced a stronger global motion percept (Figure 2). It is expected because a dot in a frame
of a random walk motion stimulus must be placed on a 10’ radius circle around its corre-

sponding dot in the previous frame, whereas the dot placement within a frame in a random
image sequence was not constrained. Thus, there was no evidence of exceeding large coherent

displacement in our random stimuli.
We then examined the distribution of the global motion rating for each individual stim-

ulus. If our result that a participant can perceive global motion in random dot image

sequences but not in random walk stimuli was due to the occurrence of accidental features,
we would expect the distributions for the random image sequence and the random walk

stimuli to be similar except some outliers with high rating for the random image sequence.
This is inconsistent with our result (Figure 5). The two distributions were vastly different:

The Kolmogorov–Smirnov test D¼ 0.7, p <.0001 for concentric motion rating in the circular

window condition, and D¼ 0.6, p< .0001 for parallel motion rating in the rectangular
window condition. Actually, even the lowest concentric motion rating in the random

image sequence was higher than the rating of 65% of the random walk stimuli. Thus, the
difference in perceived global motion between the random image sequence and random walk

stimuli was systematic and not accidental.
We found that the perceived global motion in random image sequence depends on the

shape of the viewing window: The participants perceived a concentric motion with a circular

window, whereas they perceived a linear motion with a rectangular window. Thus, some may
argue the perceived global motion may result from a bias of local motion at the edge of the

window. For instance, because a dot cannot associate with anything outside of the window,

it has a greater probability of associating with another dot in the direction parallel to the
edge of the window than one would presume with a completely random association. Or, as

demonstrated in the barberpole illusion (Badcock McKendrick &Ma-Wyatt, 2003; Guilford,

Figure 4. Interframe motion coherence for random walk motion (blue dashed curve) and random image
sequence (red solid curve) in (A) circular window and (B) rectangular window. We computed the cross-
correlation between each frame and its subsequent frame and took the max of the result. This max cross-
correlation is then divided by the geometric mean of the max of the autocorrelations of the two frames to
get interframe coherence. The circular windowed stimuli were morphed from Cartesian to polar repre-
sentations to account for radial and concentric motion. For visualization, we sorted coherence from smallest
to largest. The cumulative probability was calculated as the order of a coherence divided by the total number
of coherence in the respective category.
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1929; Kooi, 1993; Wallach, 1935), the edge of the window provides a solution to the aperture
problem and thus makes the global motion appear to be parallel to the edge. . If there are
enough number dot associations parallel to the edge, the visual system may be able to pick
them up and allow an observer to perceive a global motion. This interpretation, however,
would encounter many difficulties. First, unlike the terminating points of the 1-D grating in
the barberpole illusion, which have only one direction of motion along the edge, in the
random image sequence, a dot can go in either directions along the edge individually. It is
rather difficult to have enough dots moving along the same direction. Second, the largest
probability bias should be in the direction away from the edge of the window. Furthermore,
this bias, unlike the one parallel to the edge, is unidirectional. Hence, one should expect with
a circular window to perceive a contracting radial motion in the random image sequence.
Yet, our participants reported no such percept. Second, such probability bias also occurs for
random walk motion stimuli. Yet, they also reported no radial global motion percept in such
stimuli. Thus, the edge of the window cannot explain our result.

Hsieh and Tse (2006) refreshed a random dot pattern surrounded by a stationary random
dot pattern. They reported that the observers can perceive a zipper-like motion in the refresh-
ing part of the display. They called this phenomenon illusory rebound motion for the per-
ceived motion direction after each refreshment was opposite from the previous refreshment.
Notice that the stationary surround is important for Hsieh and Tse’s (2006) experiment, for
they interpreted their result in terms of an illusory line motion (Hikosaka et al., 1993) in
which a horizontal bar presented shortly after a reference stimulus appears to shoot away
from it. That is, the stationary surround provides such a reference and, in turn, the first
illusory motion. Then, the heuristic that the “visual system tends to interpret objects as
moving from where they last stopped moving” (Hsieh & Tse, 2006, p. 1927) provided the
subsequent illusory rebound motion. Our result is different from theirs in two major ways.
First, in our display, we did not have a surround pattern. Thus, it is unlikely that the illusory
line motion was involved. Second, instead of a change in the motion direction from one
frame to the next, observers would perceive a coherent motion in the same direction for
many frames, if not for the entire stimulus duration of a trial. Thus, our effect is unlikely to
be a rebound motion from the previous frame. In addition, the perceived global motion in
the random image sequence should have nothing to do with illusory line motion (Hikosaka
et al., 1993) or rebound motion (Hsieh & Tse, 2006).

A similar type of stimuli to our random image sequence is the dynamic Glass pattern. A
Glass pattern (Glass, 1969) is composed of randomly distributed dot pairs, or dipoles. If the

Figure 5. The concentric (A) and the linear (B) global motion rating for each of random walk motion (blue
dashed curve) and random image sequence (blue solid curve) stimulus. For visualization, we sorted rating in
each category from smallest to largest. The cumulative probability was calculated as the order of rating
divided by the total number of stimulus in its category.
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orientation of the dipoles conforms to a certain geometric transform, observers perceive a

global pattern in the image. Ross et al. (2000) showed that an observer can perceive global

motion with a sequence of Glass patterns, and the direction is consistent with the orientation

of the dipoles. The common interpretation is that the orientation of the dipoles biases the

motion system and thus produces a global motion percept. However, in our random image

sequence, no such local orientation exists. Thus, the orientation of local image elements, such

as dipoles, may not be a necessary condition for perceived global motion.
Finally, in the circular window condition, an observer tends to perceive a concentric

motion rather than a radial one, even though the image properties should either be neutral

for both or favor the latter. Perhaps a concentric motion is a default mode of motion percept

in the visual system, although it is subject to scene interpretation and thus can be replaced

under different viewing conditions.
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