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Abstract: Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of
confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short-
and long-term motor and cognitive impairments. Recent studies have documented the therapeutic
potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor
function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique
used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was
to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the
literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed,
Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS
in mTBI. The publication search yielded 14,422 records from all of the databases, however, only
three met the inclusion criteria and were included in the final review. Based on the review, there is
limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only
three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide
additional insights into ideal therapeutic brain targets and optimized stimulation parameters.

Keywords: tDCS; mild traumatic brain injury; concussion

1. Introduction

Mild traumatic brain injury (mTBI; sometimes referred to as a concussion) has been
defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less
than 30 min after brain injury [1] and might be the result of diffuse brain injury that can
affect motor and cognitive functions [2–5]. Cognitive symptoms of mTBI might include
confusion, difficulty focusing attention, impaired memory, and reduced visual processing
speed [6–8]. Recovery from sport-related mTBI is typically assessed using computerized
neurocognitive testing, usually within 10 days post-injury [9,10]. A growing body of
literature, however, suggests that even in the absence of neurocognitive deficits, motor
impairments such as reduced movement speed and difficulties with gait and balance
control can persist in the longer term [4,11–13].

The sequelae experienced by mTBI patients (e.g., long-term physical, mental, social, or
occupational problems) are difficult to observe but can have profound consequences [14–16].
Most patients with mTBI experience symptom resolution within 3 months [17]. However, a
large proportion experience post-concussion symptoms (PCS) for an extended period [14].
The symptoms of PCS include balance problems, headache, dizziness, fatigue, sleep distur-
bance, irritability, difficulties with concentration, memory loss, stress intolerance, light and
sound sensitivity, anxiety, and depressed mood [18]. Such prolonged post-injury effects
are referred to as persistent post-concussion syndrome (PPCS). Along with changes in
emotional regulation, cognitive dysfunction (characterized by impaired concentration,
attention, memory, and/or executive function) are also prominent features of the clinical
profile of PPCS [18]. It has been hypothesized that PPCS is secondary to microstructural
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brain damage from shearing injury, which is undetectable with conventional imaging
techniques and might underpin the functional and cognitive deficits [19,20]. Using diffu-
sion tensor imaging to measure white matter integrity [21], studies have revealed poorer
structural integrity of white matter [22] and altered structural fiber integrity in the corpus
callosum of patients with mTBI [23–25] and moderate TBI [24–26], potentially from brain
injury-induced demyelination [21]. The brain regions typically affected by concussion most
commonly include the mesial and deeper regions, such as the hippocampus and corpus
callosum [19]. This injury “preference” would justify memory complaints reported in
post-concussion patients. Additionally, the prefrontal cortex represents another frequently
involved brain area, which would account for the persistent executive function deficits in
PPCS [2,27]. Specifically, this might explain, at least in part, why some patients have trouble
following instructions and performing tasks that were routine before their trauma [28].

Additionally, because patients with mTBI generally do not present with overt struc-
tural brain lesions on routine magnetic resonance imaging (MRI) or computed tomography
scans, neurochemical changes have also been proposed to account for the slight, but persis-
tent, deficits reported in this population. Such changes have been directly and indirectly
investigated via magnetic resonance spectroscopy (MRS) and non-invasive brain stimula-
tion (NIBS) techniques, respectively. MRS studies have postulated a strong link between
cognitive impairments and metabolite alterations in patients with mTBI [29]. Specifi-
cally, alterations in total choline, N-acetylaspartate + N-cetylaspartylglutamate, creatine +
phosphocreatine, and glutamate + glutamine concentrations have all been evaluated and
have revealed promising associations with executive function [30]. Furthermore, recent
technological advances have permitted in vivo detection of gamma-aminobutyric acid
(GABA) [31,32], which is a promising indicator for metabolic disruption after mTBI [31,32].
Even though MRS studies in humans have thus far failed to reveal differences in GABA
concentrations between patients with mTBI and healthy controls [32], altered GABA con-
centrations after TBI have been reported in animal studies [31,33].

Interestingly, NIBS studies have reported changes in GABA receptor activity in the
human motor cortex. Several studies have used transcranial magnetic stimulation (TMS)
protocols to investigate the neurochemical mechanisms underpinning mTBI. In particular,
TMS measures such as long-interval intracortical inhibition (LICI) and corticomotor silent
period (CSP), allows an evaluation of GABAB receptor activity [32] and recent TMS studies
have revealed alterations of these parameters in athletes with recurrent mTBI. Most of
these studies found enhanced LICI [32,34–36] and prolonged CSP duration [32,34,36–38],
indicating increased activity in the GABAB receptor system and intracortical inhibition-
excitation imbalance [39]. In these patients, higher GABAB receptor activity has been
coupled with decreased long-term potentiation-like plasticity and motor learning [35].

Recent studies have documented the therapeutic potential of non-invasive neuromod-
ulation for cognitive enhancement [28,40–46]. Alongside repetitive transcranial magnetic
stimulation (rTMS), the main technique used for this purpose is transcranial direct current
stimulation (tDCS). tDCS is a NIBS tool that might effectively combine with conventional
cognitive and motor rehabilitation to enhance rehabilitation in patients with mTBI. Stimula-
tion administration involves applying electrical currents through the scalp to alter cortical
excitability [47] and facilitate neural plasticity. This neuromodulation tool is an especially
appealing therapeutic adjunct because it has a relatively low cost, is easy to administer, has
an excellent safety record, and a strong potential for in-home use [48–52]. Of particular
interest, a proposed mechanism for anodal tDCS (atDCS) excitability enhancement is a
reduction in cortical GABA concentration [53–56]. For example, a recent study found that
atDCS reduced GABAB-mediated inhibition, indicated by a shortened CSP duration [57].
In addition, there is evidence that tDCS can modulate metabolite concentrations in a
polarity-specific manner [56]; atDCS increases cortical excitability, potentially mediated
by a decrease in GABA concentration [54–57] and cathodal tDCS (ctDCS) inhibits corti-
cal excitability, possibly mediated by a reduction in glutamate concentration [53,55,56].
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Thus, this NIBS technique would be a promising treatment for patients with pathologically
elevated cerebral GABA concentrations, such as mTBI [58].

Several reviews of NIBS in moderate-severe TBI have previously been undertaken
[39,59–63]. Specifically, two groups have reviewed the effects of tDCS on attention, memory,

inhibitory control, cognitive flexibility [59,60] and another emphasized the effects on motor
impairments [61]. However, there are currently no systematic reviews examining the effects
of tDCS on cognitive and/or motor impairment after mTBI in athletes. Therefore, the focus
of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor
impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI.

2. Search Methodology

A publication search of the PubMed, Scopus, CINAHL, and PsycInfo databases was
performed to identify records that applied tDCS in mTBI. The PubMed search terms were
“transcranial direct current stimulation”[MeSH Terms] OR “transcranial”[All Fields] AND
“direct”[All Fields] AND “current”[All Fields] AND “stimulation”[All Fields] OR “tran-
scranial direct current stimulation”[All Fields] OR “tdcs”[All Fields] AND “mild traumatic
brain injury”[All Fields] OR “mild”[All Fields] AND “tbi”[All Fields] OR “mild”[All Fields]
AND “head injury”[All Fields]. Similar terms were also searched in the other databases.
The inclusion criteria for full review were: (1) English-language studies, (2) applied tran-
scranial direct current stimulation to the brain of animals or humans, (3) included a motor,
cognitive, or symptomatic outcome measure (i.e., not neuroimaging or motor evoked
potentials as the only outcomes), and (4) access to the full text was readily available. Exclu-
sion criteria were: (1) other forms of transcranial electrical stimulation (e.g., transcranial
alternating current stimulation, transcranial random noise stimulation, etc.), deep brain
stimulation, and repetitive transcranial magnetic stimulation interventions (rTMS, theta
burst). The titles and abstracts of the search results were independently examined by two
reviewers according to the inclusion/exclusion criteria. Potentially relevant tDCS and
mTBI publications were exported and examined in more detail by two reviewers before
inclusion in the final review. The bibliographies of retrieved records were also searched for
additional publications. A third researcher was consulted in the event of disagreements by
the two initial reviewers at any stage of the review process.

3. Results

Only three publications from the literature search were retained for full review
(Figure 1). As mentioned above, headache is a common symptom after mTBI. Pinchuk,
et al. [64] retrospectively analyzed the clinical efficacy of tDCS for primary and secondary
headache treatment. Among the 90 patients, the study included 44 adolescents aged
11–16 years with chronic post-traumatic headache after mTBI. Three basic localizations
(electrode positions (EP)) of stimulating electrodes were used. In the first (1EP) the anode
was secured over the frontal pole of the hemisphere less-dominant in motor skill and the
cathode was placed on the ipsilateral mastoid process. In 2EP, the anode was located
centrally on the forehead at the projection of the interhemispheric fissure, 1.5 cm above the
nasal bridge, and the cathode was placed 2 cm superior to the mastoid process of the hemi-
sphere less-dominant in motor skills. In 3EP, the anode was again secured over the center
of the frontal pole of the subdominant hemisphere and the cathode was placed 2 cm above
the ipsilateral mastoid process. The 6.25 cm2 electrodes were made of medical conductive
rubber and placed in saline-soaked multilayer flannel cases. tDCS was administered with
current intensities = 60–90 µA in the adolescents (current density = 0.001–0.014 mA/cm2)
for 30–45 min in all subjects. The number of tDCS sessions performed varied from five to
nine (stabilization of headache was the endpoint criterion), with each session separated by
four to seven days. The primary outcome for treatment effectiveness was a ≥50% decrease
in the number of days with headaches per month. Secondary outcomes included headache
intensity (rated on a numerical rating scale (NRS) from 0–10) and duration, the dosages of
analgesics taken, and depression/anxiety scale scores. Their results indicated a significant
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reduction in headache ratings (NRS pre: 5.11 ± 1.6 vs. NRS post: 2.11 ± 1.54), decreased
number of days with a headache (10.32 ± 6.48 days vs. 4.11 ± 2.18 days), and decreased
duration of headaches (4.57 ± 3.76 h vs. 2.45 ± 1.66 h). In addition, their data indicated
that these effects were maintained for five to nine months on average. Furthermore, they
also found that the efficacy of the stimulation depended on the location of the stimulating
electrodes with 85% of the adolescent mTBI subjects reporting effective headache relief after
two or three sessions using the 1EP montage. The authors postulated that this montage
allowed them to influence both the frontal pole and, to a smaller degree, the mediobasal
areas of the frontal lobes, from which a strong system of corticofugal fibers extends toward
the reticular formation (RF) of the brainstem. Activation of mesencephalic RF is purported
to be a primary tDCS treatment factor in people with posttraumatic headache related to
mTBI. Indeed, a leading cause of such headaches might be a reduction of RF activation,
leading to a disruption of the reticulo-cortico-subcortical neurodynamics [65,66] and the
1EP montage might have resulted in RF activation. Thus, by affecting these areas with
tDCS, RF and thalamus activity might stabilize at an optimal level in these patients [67]. It
was also noteworthy that the clinical efficacy of tDCS was comparable to typical pharma-
cological medications and other types of treatment, such as biofeedback and chiropractic
manipulations [68–70]. Furthermore, the beneficial effects were more consistent and were
present for longer durations than pharmacological therapies and presented with very few
side effects. Accordingly, the authors concluded that tDCS was a promising treatment
option for headaches from mTBI and various other etiologies.
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Quinn, et al. [71] investigated whether anodal tDCS over the left dorsolateral prefrontal
cortex (DLPFC) plus cognitive training altered cerebral blood flow (CBF) on pseudocontin-
uous arterial spin-labeling (pCASL) sequences in mTBI patients. Twenty-four subjects (15
male) with chronic mTBI with cognitive persistent post-traumatic symptoms were enrolled
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in the study. Subjects underwent 10 days of computerized executive function training
combined with atDCS. All subjects had a diagnosis of mild or moderate TBI within the
past 15 years and were randomly assigned to either active (n = 10 completed) or sham
n = 14 completed) atDCS combined with executive function training tasks. The current in-
tensity for the active group was 2 mA applied for 30 min (current density = 0.08 mA/cm2).
All subjects trained their executive function for 30 min during stimulation. Each session
consisted of 10 min of the AX Continuous Performance Task, which assesses response
inhibition and proactive and reactive cognitive control [72], and 20 min of a modified mul-
timodal (visual/auditory) N-back working memory task [73], counterbalanced over the 10
sessions. Cerebral perfusion imaging was accomplished via MRI scans performed during
the baseline assessment, and on the day following completion of the stimulation + training
protocol. Their results indicated similar cerebral perfusion and behavioral/cognitive test
changes in both sham and active tDCS groups following the intervention. They noted
that baseline CBF values were similar to other studies reporting decreased global CBF
post-injury [74–76]. However, they noted a decrease in global CBF over time and that
mood, attention, and executive function improved, potentially indicating enhanced cere-
bral efficiency. Changes in global CBF were weakly associated with one verbal learning
test (r = −0.44), but this correlation did not survive Type I error correction (p = 0.03 uncor-
rected; p = 0.79, corrected). No other global CBF and objective cognitive performance or
subjective mood associations were found. They postulated that the clinical condition and
generalized perfusion represented a more complicated association than they had initially
hypothesized. They also noted that adding tDCS to the cognitive training did not elicit any
additional effects on global CBF. This finding was not novel as there is evidence that tDCS,
which nominally influences primarily the brain targets under the electrodes, only induces
perfusion changes in those specific target regions rather on the brain globally [77,78]. This
concept was further supported in this study which also found that active tDCS was associ-
ated with increased CBF in the right inferior frontal gyrus, a brain area likely under the
anode, whereas regional CBF of this same area was reduced in sham; although this finding
again did not survive statistical correction. Nevertheless, this was interesting because
of theoretical and empirical findings that have indicated different right prefrontal and
right frontoparietal perfusions after mTBI [76,79–81]. The latter region is likely part of
a network that has been associated with inhibition [82], visual attention, and emotion.
Dysfunction of the former (i.e., right frontal areas) is also associated with anxiety [83],
depression [84], impulsivity [85], somatization [86], and distractibility [87], all of which are
potential comorbidities of chronic mTBI. The authors concluded that perfusion measured
with pCASL might be a potential pathophysiologic target for symptom change assessment
from cognitive training and/or tDCS in mTBI patients. However, it might be necessary to
obtain both CBF and metabolic activity (i.e., positron emission tomography) measures to
better understand how the brain adapts to injury and responds to training [88].

The symptoms of mTBI include non-motor symptoms such as headache, loss of con-
sciousness, and memory loss, but there are also motor symptoms that include balance
impairment, lack of motor coordination, and decreased dynamic motor function [5,89],
especially in acute injury. These symptoms often make it difficult for people with mTBI to
returning to sport and leisure activities or to perform at pre-mTBI levels. Although studies
have reported that tDCS might have therapeutic effects on motor function in patients with
neurological disorders such as multiple sclerosis (reviews in [90,91]), no study has assessed
the effect of atDCS on balance in humans with repetitive mTBI. Still, animal models might
serve s a foundation for such investigations. Importantly, human brains and rat brains
are anatomically similar and studying human brain diseases via rodent investigations
may be informative [92]. Leveraging the close evolutionary and genomic similarities to
humans, the intricacy and conviviality of the animal, and the ease of physiological and
behavioral measurements, the rat represents a key preliminary model for non- and invasive
brain stimulation research [93]. Accordingly, Park, et al. [93] investigated if atDCS over the
primary motor cortex (M1) will improve balance and gait function in a repetitive mTBI rat
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model. Sixty-five rats were randomly assigned to either a tDCS group or a control group.
To simulate repetitive mTBI in rats the authors induced mTBI for three consecutive days
via a weight-drop device (rodents anesthetized during induction). mTBI was confirmed
via lack of structural/pathological changes via MRI and histochemical analysis. tDCS was
administered for 30 min via 10 mm diameter (0.785 cm2 contact area) cup electrode (anode)
secured over the left M1 with a 0.2 mA intensity (current density = 0.255 mA/cm2). The
tDCS group received a single session of atDCS over the left M1 24 h after the third weight
drop day (Day 4; animal anesthetized during tDCS administration) and the control group
received no treatment but was still anesthetized on Day 4. The outcomes were changes
in TMS-induced motor-evoked potential (MEP), a foot-fault test (balance control), and a
rotarod test (postural orientation) evaluated before mTBI (Day 1), after the last weight
drop (Day 3), and after tDCS (Day 4), with similar time-based evaluations for the control
group. The findings indicated that atDCS administered the day after repetitive mTBI
induction increased the amplitude of MEP, decreased (trend only) the foot-fault ratio, and
significantly improved rotarod duration. The authors discussed that the stimulated area
was composed of the primary motor and premotor cortices and postulated that atDCS
over these areas generated an electric field that polarized the underlying neuronal popu-
lations and modulated the resting membrane potential in their mTBI rats. Subsequently,
the corticospinal tract might have been activated and induced the balance and gait im-
provements. Moreover, their results suggested that mTBI reduced the number of motor
units recruited in corticospinal excitability and that this acute deficiency might be restored
by atDCS over these areas. This seems plausible because the replacement of lost fibers
might be facilitated by the concurrent excitement of motor units [94]. These findings [93]
provide preliminary evidence for tDCS as a promising tool to modulate brain network
function and, subsequently, supraspinal motor control and might provide a translational
platform to bridge human and animal studies and establish new therapies for repetitive
mTBI. Still, some methodologies unique to such animal models warrant consideration.
Specifically, because the rats in the Park, et al. [93] study were anesthetized during both
the weight drops and tDCS, the potential impact of anesthesia on the study outcomes or
efficacy of stimulation cannot be overlooked. Additionally, their rats experienced targeted,
repetitive (i.e., daily for three sessions) mTBI and stimulation was administered over the
same targeted/damaged brain area. Both mTBI and tDCS in humans are inherently less
precise and their brain injuries may not occur on a predictable, or even on a repeated,
schedule. Thus, researchers using both humans and animals should carefully consider if
the proposed study group has experienced single or repeated mTBI and how the short-
and long-term effects might differ by brain injury frequency.

4. Discussion and Perspectives

We performed a comprehensive review of the effect of tDCS on cognitive and motor
impairment within the mTBI population. Based on the review, there is limited evidence
of tDCS improving cognitive and motor performance. Surprisingly, there were only three
studies that used tDCS in mTBI, which highlights an urgent need for more research to
provide additional insights into ideal therapeutic brain targets and optimized stimulation
parameters.

The frontal poles [64], DLFPC [71], and M1 [93] were the tDCS brain targets in the
reviewed studies and the choice of the tDCS target brain target should coincide with the
study outcomes and be relevant to the studied population. For example, the DLPFC is the
important role that this site exerts in cognitive function and some studies have shown that
DLPFC is associated with attention and working memory function [45,95]. Indeed, this
region is a hub of the executive functions required to coordinate and integrate different
cognitive processes [96]. Therefore, researchers might logically choose this brain target
when investigating cognitive outcomes. For motor outcomes, other relevant brain areas
might be stimulated. For example, Park, et al. [93] applied tDCS over M1 to improve
balance and posture in their rat model of mTBI. However, balance and posture are influ-
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enced by various interacting networks, including the spinal cord, cerebellum, cortex, and
brainstem [97,98]. Of these, some might argue that the cerebellum would be an ideal tDCS
target for balance and postural control. For example, Yosephi, et al. [99] suggested that
bilateral stimulation of the cerebellar hemispheres was more effective than stimulating M1
to improve balance in older adults with a high fall risk. However, a previous study by
Sussman, et al. [100] found that mTBI was associated with white and gray matter volume
reduction and cortical thinning in areas that included M1, but such brain injury left the
cerebellum unaffected. Furthermore, a recent study highlighted the critical interactions
between M1 and the cerebellum for effective motor function [101] and there is evidence
that the effects of tDCS can influence brain areas in remote locations [102–104]. Thus, tDCS
researchers should carefully consider the potential direct and indirect influences of the
stimulation and select brain targets that will most relevantly affect the studied population.

However, the ideal tDCS brain target may differ for each individual, especially in
mTBI. To make the clinical application of tDCS for cognitive impairment more robust, it is
necessary to consider the heterogeneity of brain injury sites within this population. Thus,
the results obtained from tDCS may vary substantially and would be reflected in brain
activity changes that might be assessed via neuroimaging and neuropsychological tests.
Furthermore, in the two extracted human studies [64,71], the target patients were identified
based on symptoms of cognitive impairment post-TBI as opposed to being categorized
by objective measures, such as conventional brain imaging or known brain lesion, which
may not be possible in this population [19,20]. Understandably, from the standpoint of
rehabilitating the entire population, it may not be appropriate not to select patients based
on their known lesions. However, for tDCS to be established as a rehabilitation method
for cognitive and motor impairment, it is necessary to systematically select patients from
their brain function imaging (e.g., diffusion tensor imaging, PET imaging). In addition,
more evaluations using functional brain imaging to predict prognosis and identify tDCS
responders would be beneficial. For example, molecular imaging techniques that exam-
ine functional processes within the brain, such as [18F]fluorodeoxyglucose and positron
emission tomography (FDG-PET), can detect changes after mTBI and over time. Such
techniques are an increasingly viable option as recent technological improvements in the
resolution of PET systems, the integration of PET with structural magnetic resonance
imaging (MRI), the availability of normal healthy human databases, and commercial image
analysis software are contributing to the growing use of molecular imaging in basic science
research and advancing this modality in clinical settings [88,105].

The intra- and inter-individual variabilities in “ideal” parameters for electrical current
application, stimulation targets, and responses are some of the major concerns prohibiting
the widespread use of tDCS in real clinical settings. As pointed out in a review by Rudroff,
et al. [105], it is a challenge to determine optimal treatment procedures to adapt the
configurations to the complex shapes and dramatic conductivity differences among various
tissues (e.g., scalp, skull, cerebrospinal fluid, gray matter, etc.). In other words, placing the
tDCS electrodes directly over the targeted brain area does not guarantee that those areas
will be modulated (excitation or inhibition) as expected [106]. Computer simulations and
tDCS modeling studies have helped identify the theoretical behavior of induced electrical
currents [107], however, they have many limitations. For example, they necessarily make
assumptions about the conductivity of the underlying tissues (and the relevancy of such
tissues), but different conductive values can lead to highly variable results in electrical field
magnitudes [108,109]. Other factors that might alter the electrical field include registration
procedure errors, anatomic variations [110], functional connectivity, and inter-individual
variability (e.g., age, gender, hormones, neurotransmitter levels, neuroanatomy [111]).
Consequently, it is essential to routinely combine tDCS with human neuroimaging via
structural/functional magnetic resonance imaging (sMRI/fMRI) or PET to investigate
cerebral blood flow and metabolism mechanisms. Specifically, FDG-PET imaging can
provide a comprehensive (e.g., whole brain) image, it is ideally suited to not only investigate
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the effects of tDCS in areas directly under the stimulation electrodes but also in remote or
functionally connected brain areas [105].

One factor, that contributes significantly to the high inter-subject variability of tDCS
is biological sex differences [111–113]. For example, it has been shown that female hor-
mones endogenously influence cortical excitability [114], with progesterone levels driving
increases in cortical inhibition and estrogen enhancing cortical excitability. Accordingly,
tDCS applied in phases of the menstrual cycle when estradiol is high may result in cortical
overexcitation and unpredictable or unwanted outcomes [115]. The enlightenment of
ideal tDCS methodologies specific to each sex (e.g., low intensities for women and high
intensities for men, or vice versa) would represent a vital foundation for individualized
tDCS applications. However, sex-related differences represent only one of a myriad of
issues (e.g., age, handedness, cognitive ability, neurological and psychiatric disorders, med-
ications, recreational drugs, prior exposure to brain stimulation, electrode configurations,
stimulation parameters, task dependency) suspected to contribute to the high variability
in tDCS outcomes [111]. Furthermore, optimal protocols for interventions coupling tDCS
and physical therapy are yet to be defined. Factors such as the tDCS technique used
and its parameters (e.g., polarity, intensity, duration), the target area, the type of physical
training performed, and its timing in relation to stimulation (before, during, or after) can
all influence the therapeutic outcomes. Furthermore, these factors will likely need to be
individually tailored based on patient-specific considerations such as the time since brain
injury and the specific anatomical and neurophysiological derangements unique to each
patient. Therefore, the need for further research in mTBI cannot be overemphasized. It
is currently questionable whether standardized tDCS applications, to treat mTBI and in
general, are feasible, at least in the near future. Furthermore, it is practically impossible
to include all characteristics of every individual into clinical trial study designs to obtain
homogenous samples and tDCS tailored to individual participants is a more likely solution
to address response heterogeneity.
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