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Abstract: The information bottleneck (IB) problem tackles the issue of obtaining relevant compressed
representations T of some random variable X for the task of predicting Y. It is defined as a constrained
optimization problem that maximizes the information the representation has about the task, I(T; Y),
while ensuring that a certain level of compression r is achieved (i.e., I(X; T) ≤ r). For practical reasons,
the problem is usually solved by maximizing the IB Lagrangian (i.e., LIB(T; β) = I(T; Y)− βI(X; T))
for many values of β ∈ [0, 1]. Then, the curve of maximal I(T; Y) for a given I(X; T) is drawn and
a representation with the desired predictability and compression is selected. It is known when Y
is a deterministic function of X, the IB curve cannot be explored and another Lagrangian has been
proposed to tackle this problem: the squared IB Lagrangian: Lsq-IB(T; βsq) = I(T; Y)− βsq I(X; T)2.
In this paper, we (i) present a general family of Lagrangians which allow for the exploration of the IB
curve in all scenarios; (ii) provide the exact one-to-one mapping between the Lagrange multiplier
and the desired compression rate r for known IB curve shapes; and (iii) show we can approximately
obtain a specific compression level with the convex IB Lagrangian for both known and unknown IB
curve shapes. This eliminates the burden of solving the optimization problem for many values of the
Lagrange multiplier. That is, we prove that we can solve the original constrained problem with a
single optimization.

Keywords: information bottleneck; representation learning; mutual information; optimization

1. Introduction

Let X ∈ X and Y ∈ Y be two statistically dependent random variables with joint distribution
p(X,Y). The information bottleneck (IB) [1] investigates the problem of extracting the relevant
information from X for the task of predicting Y.

For this purpose, the IB defines a bottleneck variable T ∈ T obeying the Markov chain Y ↔
X ↔ T so that T acts as a representation of X. Tishby et al. [1] define the relevant information as
the information the representation keeps from Y after the compression of X (i.e., I(T; Y)), provided a
certain level of compression (i.e., I(X; T) ≤ r). Therefore, we select the representation which yields the
value of the IB curve that best fits our requirements.

Definition 1 (IB Functional). Let X and Y be statistically dependent variables. Let ∆ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then the IB functional is

FIB,max(r) = max
T∈∆
{I(T; Y)} s.t. I(X; T) ≤ r, ∀r ∈ [0, ∞). (1)

Definition 2 (IB Curve). The IB curve is the set of points defined by the solutions of FIB,max(r) for varying
values of r ∈ [0, ∞).
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Definition 3 (Information Plane). The plane is defined by the axes I(T; Y) and I(X; T).

This method has been successfully applied to solve different problems from a variety of domains.
For example:

• Supervised learning. In supervised learning, we are presented with a set of n pairs of input
features and task outputs instances. We seek an approximation of the conditional probability
distribution between the task outputs Y and the input features X. In classification tasks (i.e.,
when Y is a discrete random variable), the introduction of the variable T learned through the
information bottleneck principle maintained the performance of standard algorithms based on
the cross-entropy loss while providing with more adversarial attacks robustness and invariance
to nuisances [2–4]. Moreover, by the nature of its definition the information bottleneck appears to
be closely related with a trade-off between accuracy on the observable set and generalization to
new, unseen instances (see Section 2).

• Clustering. In clustering, we are presented with a set of n pairs of instances of a random variable
X and their attributes of interest Y. We seek groups of instances (or clusters T) such that the
attributes of interest within the instances of each cluster are similar and the attributes of interest
of the instances of different clusters are dissimilar. Therefore, the information bottleneck can be
employed since it allows us to aim for attribute representative clusters (maximizing the similarity
between instances within the clusters) and enforce a certain compression of the random variable
X (ensuring a certain difference between instances of the different clusters). This has been
successfully implemented, for instance, for gene expression analysis and word, document, stock
pricing, or movie rating clustering [5–7].

• Image segmentation. In image segmentation, we want to partition an image into segments such
that each pixel in a region shares some attributes. If we divide the image into very small regions
X (e.g., each region is a pixel or a set of pixels defined by a grid), we can consider the problem of
segmentation as that of clustering the regions X based on the region attributes Y. Hence, we can
use the information bottleneck so that we seek region clusters T that are maximally informative
about the attributes Y (e.g., the intensity histogram bins) and maintain a level of compression of
the original regions X [8].

• Quantization. In quantization, we consider a random variable X ∈ X such that X is a large or
continuous set. Our objective is to map X into a variable T ∈ T such that T is a smaller, countable
set. If we fix the quantization set size to |T | = brc and aim at maximizing the information of the
quantized variable with another random variable Y and restrict the mapping to be deterministic,
then the problem is equivalent to the information bottleneck [9,10].

• Source coding. In source coding, we consider a data source S which generates a signal Y ∈ Y ,
which is later perturbed by a channel C : Y → X that outputs X. We seek a coding scheme that
generates a code T ∈ T from the output of the channel X which is as informative as possible
about the original source signal Y and can be transmitted at a small rate I(X; T) ≤ r. Therefore,
this problem is equivalent to the the formulation of the information bottleneck [11].

Furthermore, it has been employed as a tool for development or explanation in other disciplines
like reinforcement learning [12–14], attribution methods [15], natural language processing [16],
linguistics [17] or neuroscience [18]. Moreover, it has connections with other problems such as source
coding with side information (or the Wyner-Ahlswede-Körner (WAK) problem), the rate-distortion
problem or the cost-capacity problem (see Sections 3, 6 and 7 from [19]).

In practice, solving a constrained optimization problem such as the IB functional is challenging.
Thus, in order to avoid the non-linear constraints from the IB functional, the IB Lagrangian is defined.

Definition 4 (IB Lagrangian). Let X and Y be statistically dependent variables. Let ∆ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then we define the IB Lagrangian as
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LIB(T; β) = I(T; Y)− βI(X; T). (2)

Here β ∈ [0, 1] is the Lagrange multiplier which controls the trade-off between the information
of Y retained and the compression of X. Note we consider β ∈ [0, 1] because (i) for β ≤ 0 many
uncompressed solutions such as T = X maximize LIB(T; β), and (ii) for β ≥ 1 the IB Lagrangian is
non-positive due to the data processing inequality (DPI) (Theorem 2.8.1 from Cover and Thomas [20])
and trivial solutions like T = const are maximizers with LIB(T; β) = 0 [21].

We know the solutions of the IB Lagrangian optimization (if existent) are solutions of the IB
functional by the Lagrange’s sufficiency theorem (Theorem 5 in Appendix A of Courcoubetis [22]).
Moreover, since the IB functional is concave (Lemma 5 of Gilad-Bachrach et al. [19]) we know they
exist (Theorem 6 in Appendix A of Courcoubetis [22]).

Therefore, the problem is usually solved by maximizing the IB Lagrangian with adaptations of
the Blahut-Arimoto algorithm [1], deterministic annealing approaches [23] or a bottom-up greedy
agglomerative clustering [6] or its improved sequential counterpart [24]. However, when provided
with high-dimensional random variables X such as images, these algorithms do not scale well
and deep learning-based techniques, where the IB Lagrangian is used as the objective function,
prevailed [2,25,26].

Note the IB Lagrangian optimization yields a representation T with a given performance
(I(X; T), I(T; Y)) for a given β. However, there is no one-to-one mapping between β and I(X; T).
Hence, we cannot directly optimize for the desired compression level r but we need to perform several
optimizations for different values of β and select the representation with the desired performance;
e.g., [2]. The Lagrange multiplier selection is important since (i) sometimes even choices of β < 1
lead to trivial representations such that pT|X = pT , and (ii) there exist some discontinuities on the
performance level w.r.t. the values of β [27].

Moreover, recently Kolchinsky et al. [21] showed how in deterministic scenarios (such as many
classification problems where an input xi belongs to a single particular class yi) the IB Lagrangian
could not explore the IB curve. Particularly, they showed that multiple β yielded the same performance
level and that a single value of β could result in different performance levels. To solve this issue,
they introduced the squared IB Lagrangian, Lsq-IB(T; βsq) = I(T; Y)− βsq I(X; T)2, which is able to
explore the IB curve in any scenario by optimizing for different values of βsq. However, even though
they realized a one-to-one mapping between βsq and the compression level existed, they did not find
such mapping. Hence, multiple optimizations of the Lagrangian were still required to find the best
trade-off solution.

The main contributions of this article are:

1. We introduce a general family of Lagrangians (the convex IB Lagrangians) which are able to
explore the IB curve in any scenario for which the squared IB Lagrangian [21] is a particular
case of. More importantly, the analysis made for deriving this family of Lagrangians can serve
as inspiration for obtaining new Lagrangian families that solve other objective functions with
intrinsic trade-offs such as the IB Lagrangian.

2. We show that in deterministic scenarios (and other scenarios where the IB curve shape is known)
one can use the convex IB Lagrangian to obtain a desired level of performance with a single
optimization. That is, there is a one-to-one mapping between the Lagrange multiplier used for the
optimization and the level of compression and informativeness obtained, and we provide the exact
mapping. This eliminates the need for multiple optimizations to select a suitable representation.

3. We introduce a particular case of the convex IB Lagrangians: the shifted exponential IB Lagrangian,
which allows us to approximately obtain a specific compression level in any scenario. This way,
we can approximately solve the initial constrained optimization problem from Equation (1) with
a single optimization.
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Furthermore, we provide some insight for explaining why there are discontinuities in the
performance levels w.r.t. the values of the Lagrange multipliers. In a classification setting, we connect
those discontinuities with the intrinsic clusterization of the representations when optimizing the IB
bottleneck objective.

The structure of the article is the following: In Section 2 we motivate the usage of the IB in
supervised learning settings. Then, in Section 3 we outline the important results used about the IB
curve in deterministic scenarios. Later, in Section 4 we introduce the convex IB Lagrangian and explain
some of its properties like the bijective mapping between Lagrange multipliers and the compression
level and the range of such multipliers. After that, we support our (proved) claims with some empirical
evidence on the MNIST [28] and TREC-6 [29] datasets in Section 5. Finally, in Section 6 we discuss
our claims and empirical results. A PyTorch [30] implementation of the article can be found at
https://github.com/burklight/convex-IB-Lagrangian-PyTorch.

In the Appendices A–F we provide with the proofs of the theoretical results. Then, in
Appendix G we show some alternative families of Lagrangians with similar properties. Later, in
Appendix H we provide with the precise experimental setup details to reproduce the results from
the paper, and further experimentation with different datasets and neural network architectures.
To conclude, in Appendix I we show some guidelines on how to set the convex information bottleneck
Lagrangians for practical problems.

2. The IB in Supervised Learning

In this section, we will first give an overview of supervised learning in order to later motivate the
usage of the information bottleneck in this setting.

2.1. Supervised Learning Overview

In supervised learning we are given a dataset Dn = {(xi, yi)}n
i=1 of n pairs of input features and

task outputs. In this case, X and Y are the random variables of the input features and the task outputs.
We assume xi and yi are sampled i.i.d. from the true distribution p(X,Y) = pY|X pX. The usual aim
of supervised learning is to use the dataset Dn to learn a particular conditional distribution qŶ|X of
the task outputs given the input features, parametrized by θ, which is a good approximation of pY|X .
We use Ŷ and ŷ to indicate the predicted task output random variable and its outcome. We call a
supervised learning task regression when Y is continuous-valued and classification when it is discrete.

Usually, supervised learning methods employ intermediate representations of the inputs before
making predictions about the outputs; e.g., hidden layers in neural networks (Chapter 5 from
Bishop [31]) or transformations in a feature space through the kernel trick in kernel machines like
SVMs or RVMs (Sections 7.1 and 7.2 from Bishop [31]). Let T be a possibly stochastic function of
the input features X with a parametrized conditional distribution qT|X, then, T obeys the Markov
condition Y ↔ X ↔ T. The mapping from the representation to the predicted task outputs is defined
by the parametrized conditional distribution qŶ|T . Therefore, in representation-based machine learning

methods, the full Markov Chain is Y ↔ X ↔ T ↔ Ŷ. Hence, the overall estimation of the conditional
probability pY|X is given by the marginalization of the representations; i.e., qŶ|X = Et∼qT|X

[
qŶ|T=t

]
(The notation qŶ|T=t represents the probability distribution qŶ|T(·|t; θ). For the rest of the text, we
will use the same notation to represent conditional probability distributions where the conditioning
argument is given).

In order to achieve the goal of having a good estimation of the conditional probability distribution
pY|X, we usually define an instantaneous cost function j : X × Y → R. The value of this function
j(x, y; θ) serves as a heuristic to measure the loss of our algorithm, parametrized by θ, obtains when
trying to predict the realization of the task output y with the input realization x.

Clearly, we can be interested in minimizing the expectation of the instantaneous cost function
over all the possible input features and task outputs, which we call the cost function. However, since
we only have a finite dataset Dn we have instead to minimize the empirical cost function.

https://github.com/burklight/convex-IB-Lagrangian-PyTorch
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Definition 5 (Cost Function and Empirical Cost Function). Let X and Y be the input features and task
output random variables and x ∈ X and y ∈ Y their realizations. Let also j be the instantaneous cost function,
θ the parametrization of our learning algorithm, and Dn = {(xi, yi)}n

i=1 the given dataset. Then, we define:

1. The cost function: J(p(X,Y); θ) = E(x,y)∼p(X,Y)
[j(x, y; θ)] (3)

2. The emprical cost function: Ĵ(Dn; θ) =
1
n

n

∑
i=1

j(xi, yi; θ) (4)

The discrepancy between the normal and empirical cost functions is called the generalization gap
or generalization error (see Section 1 of Xu and Raginsky [32], for instance) and intuitively, the smaller
this gap is, the better our model generalizes; i.e., the better it will perform to new, unseen samples in
terms of our cost function.

Definition 6 (Generalization Gap). Let J(p(X,Y); θ) and Ĵ(Dn; θ) be the cost and the empirical cost functions
as defined in Definition 5. Then, the generalization gap is defined as

gen(Dn; θ) = J(p(X,Y); θ)− Ĵ(Dn; θ), (5)

and it represents the error incurred when the selected distribution is the one parametrized by θ when the rule
Ĵ(Dn; θ) is used instead of J(p(X,Y); θ) as the function to minimize.

Ideally, we would want to minimize the cost function. Hence, we usually try to minimize the
empirical cost function and the generalization gap simultaneously. The modifications to our learning
algorithm which intend to reduce the generalization gap but not hurt the performance on the empirical
cost function are known as regularization.

2.2. Why Do We Use the IB?

Definition 7 (Representation cross-entropy cost function). Let X and Y be two statistically dependent
variables with joint distribution p(X,Y) = pY|X pX . Let also T be a random variable obeying the Markov condition
Y ↔ X ↔ T and qT|X and qŶ|T be the encoding and decoding distributions of our model, parametrized by θ.
Finally, let C(pZ||qZ) = −Ez∼pZ [log(qZ(z))] be the cross entropy between two probability distributions pZ
and qZ. Then, the cross-entropy cost function is

JCE(p(X,Y); θ) = E(x,t)∼qT|X pX

[
C(qY|T=t||qŶ|T=t)

]
= E(x,y)∼p(X,Y)

[jCE(x, y; θ)] , (6)

where jCE(x, y; θ) = −Et∼qT|X=x [qŶ|T=t(y|t; θ)] is the instantaneous representation cross-entropy cost
function and qY|T = Ex∼pX [pY|X=xqT|X=x/qT ] and qT = Ex∼pX [qT|X=x].

The cross-entropy is a widely used cost function in classification tasks (e.g., Teahan [8], Krizhevsky
et al. [33], Shore and Gray [34]) which has many interesting properties [35]. Moreover, it is known that
minimizing the JCE(p(X,Y); θ) maximizes the mutual information I(T; Y). That is:

Proposition 1 (Minimizing the Cross Entropy Maximizes the Mutual Information).
Let JCE(p(X,Y); θ) be the representation cross-entropy cost function as defined in Definition 7. Let also I(T; Y)
be the mutual information between random variables T and Y in the setting from Definition 7. Then, minimizing
JCE(p(X,Y); θ) implies maximizing I(T; Y).

The proof of this proposition can be found in Appendix A.
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Definition 8 (Nuisance). A nuisance is any random variable that affects the observed data X but is not
informative to the task we are trying to solve. That is, Ξ is a nuisance for Y if Y ⊥ Ξ or I(Ξ, Y) = 0.

Similarly, we know that minimizing I(X; T) minimizes the generalization gap for restricted
classes when using the cross-entropy cost function (Theorem 1 of Vera et al. [36]), and when
using I(T; Y) directly as an objective to maximize (Theorem 4 of Shamir et al. [37]). Furthermore,
Achille and Soatto [38] in Proposition 3.1 upper bound the information of the input representations,
T, with nuisances that affect the observed data, Ξ, with I(X; T). Therefore, minimizing I(X; T) helps
generalization by not keeping useless information of Ξ in our representations.

Thus, jointly maximizing I(T; Y) and minimizing I(X; T) is a good choice both in terms of
performance in the available dataset and in new, unseen data, which motivates studies on the IB.

3. The Information Bottleneck in Deterministic Scenarios

Kolchinsky et al. [21] showed that when Y is a deterministic function of X (i.e., Y = f (X)), the IB
curve is piecewise linear. More precisely, it is shaped as stated in Proposition 2.

Proposition 2 (The IB Curve is Piecewise Linear in Deterministic Scenarios). Let X be a random
variable and Y = f (X) be a deterministic function of X. Let also T be the bottleneck variable that solves the IB
functional. Then the IB curve in the information plane is defined by the following equation:{

I(T; Y) = I(X; T) if I(X; T) ∈ [0, I(X; Y))
I(T; Y) = I(X; Y) if I(X; T) ≥ I(X; Y)

(7)

Furthermore, they showed that the IB curve could not be explored by optimizing the IB Lagrangian
for multiple β because the curve was not strictly concave. That is, there was not a one-to-one
relationship between β and the performance level.

Theorem 1 (In Deterministic Scenarios, the IB Curve cannot be Explored Using the IB Lagrangian).
Let X be a random variable and Y = f (X) be a deterministic function of X. Let also ∆ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then:

1. Any solution T ∈ ∆ such that I(X; T) ∈ [0, I(X; Y)) and I(T; Y) = I(X; T) solves
arg maxT∈∆{LIB(T; β)} for β = 1. That is, many different compression and performance levels can
be achieved for β = 1.

2. Any solution T ∈ ∆ such that I(X; T) > I(X; Y) and I(T; Y) = I(X; Y) solves arg supT∈∆{LIB(T; β)}
for β = 0. That is, many compression levels can be achieved with the same performance for β = 0.

Note we use the supremum in this case since for β = 0 we have that I(X; T) could be infinite and then the
search set from Equation (1); i.e., {T : Y ↔ X ↔ T} ∩ {T : I(X; T) < ∞} is not compact anymore.

3. Any solution T ∈ ∆ such that I(X; T) = I(T; Y) = I(X; Y) solves arg maxT∈∆{LIB(T; β)} for all
β ∈ (0, 1). That is, many different β achieve the same compression and performance level.

An alternative proof for this theorem can be found in Appendix B.

4. The Convex IB Lagrangian

4.1. Exploring the IB Curve

Clearly, a situation like the one depicted in Theorem 1 is not desirable, since we cannot aim
for different levels of compression or performance. For this reason, we generalize the effort from
Kolchinsky et al. [21] and look for families of Lagrangians which are able to explore the IB curve.
Inspired by the squared IB Lagrangian, Lsq-IB(T; βsq) = I(T; Y) − βsq I(X; T)2, we look at the



Entropy 2020, 22, 98 7 of 27

conditions a function of I(X; T) requires in order to be able to explore the IB curve. In this way,
we realize that any monotonically increasing and strictly convex function will be able to do so, and we
call the family of Lagrangians with these characteristics the convex IB Lagrangians, due to the nature
of the introduced function.

Theorem 2 (Convex IB Lagrangians). Let ∆ be the set of r.v. T obeying the Markov condition Y ↔ X ↔ T.
Then, if u is a monotonically increasing and strictly convex function, the IB curve can always be recovered by
the solutions of arg maxT∈∆{LIB,u(T; βu)}, with

LIB,u(T; βu) = I(T; Y)− βuu(I(X; T)). (8)

That is, for each point (I(X; T), I(T; Y)) s.t. dI(T; Y)/dI(X; T) > 0 there is a unique βu for which
maximizing LIB,u(T; βu) achieves this solution. Furthermore, βu is strictly decreasing w.r.t. I(X; T). We call
LIB,u(T; βu) the convex IB Lagrangian.

The proof of this theorem can be found in Appendix C. Furthermore, by exploiting the IB curve
duality (Lemma 10 of Gilad-Bachrach et al. [19]) we were able to derive other families of Lagrangians
which allow for the exploration of the IB curve (Appendix G).

Remark 1. Clearly, we can see how if u is the identity function (i.e., u(I(X; T)) = I(X; T)) then we end up
with the normal IB Lagrangian. However, since the identity function is not strictly convex, it cannot ensure the
exploration of the IB curve.

During the proof of this theorem we observed a relationship between the Lagrange multipliers
and the solutions obtained of the normal IB Lagrangian LIB(T; β) and the convex IB Lagrangian
LIB,u(T; βu). This relationship is formalized in the following corollary.

Corollary 1 (IB Lagrangian and IB convex Lagrangian connection). Let LIB(T; β) be the IB Lagrangian
and LIB,u(T; βu) the convex IB Lagrangian. Then, maximizing LIB(T; β) and LIB,u(T; βu) can obtain the same
point in the IB curve if βu = β/u′(I(X; T)), where u′ is the derivative of u.

This corollary allows us to better understand why the addition of u allows for the exploration
of the IB curve in deterministic scenarios. If we note that for β = 1 we can obtain any point in
the increasing region of the curve, then we clearly see how evaluating u′ for different values of
I(X; T) define different values of βu that obtain such points. Moreover, it lets us see how if for β = 0
maximizing the IB Lagrangian could obtain any point (I(X; Y); I(X; T)) with I(X; T) > I(X; Y), then
the same happens for the IB convex Lagrangian.

4.2. Aiming for a Specific Compression Level

Let Bu denote the domain of Lagrange multipliers βu for which we can find solutions in the IB
curve with the convex IB Lagrangian. Then, the convex IB Lagrangians do not only allow us to explore
the IB curve with different βu. They also allow us to identify the specific βu that obtains a given point
(I(X; T), I(T; Y)), provided we know the IB curve in the information plane. Conversely, the convex IB
Lagrangian allows finding the specific point (I(X; T), I(T; Y)) that is obtained by a given βu.

Proposition 3 (Bijective Mapping between IB Curve Point and Convex IB Lagrange multiplier).
Let the IB curve in the information plane be known; i.e., I(T; Y) = fIB(I(X; T)) is known. Then there is a
bijective mapping from Lagrange multipliers βu ∈ Bu \ {0} from the convex IB Lagrangian to points in the IB
curve (I(X; T), fIB(I(X; T)). Furthermore, these mappings are:

βu =
d fIB(I(X; T))

dI(X; T)
1

u′(I(X; T))
and I(X; T) = (u′)−1

(
d fIB(I(X; T))

dI(X; T)
1

βu

)
, (9)
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where u′ is the derivative of u and (u′)−1 is the inverse of u′.

This is especially interesting since in deterministic scenarios we know the shape of the IB curve
(Theorem 2) and since the convex IB Lagrangians allow for the exploration of the IB curve (Theorem 2).
A proof for Proposition 3 can be found in Appendix D.

Remark 2. Note that the definition from Tishby et al. [1] β = d fIB(I(X; T))/dI(X; T) only allows for a
bijection between β and I(X; T) if fIB is a strictly convex, and known function, and we have seen this is not the
case in deterministic scenarios (Theorem 1).

A direct result derived from this proposition is that we know the domain of Lagrange multipliers,
Bu, which allows for the exploration of the IB curve if the shape of the IB curve is known. Furthermore,
if the shape is not known we can at least bound that range.

Corollary 2 (Domain of Convex IB Lagrange Multiplier with Known IB Curve Shape). Let the IB
curve in the information plane be I(T; Y) = fIB(I(X; T)) and let Imax = I(X; Y). Let also I(X; T) = rmax

be the minimum mutual information s.t. fIB(rmax) = Imax; i.e., rmax = arg infr{ fIB(r)} s.t. fIB(r) = Imax.
Then, the range of Lagrange multipliers that allow the exploration of the IB curve with the convex IB Lagrangian
is Bu = [βu,min, βu,max], with

βu,min = lim
r→r−max

{
f ′IB(r)
u′(r)

}
and βu,max = lim

r→0+

{
f ′IB(r)
u′(r)

}
, (10)

where f ′IB(r) and u′(r) are the derivatives of fIB(I(X; T)) and u(I(X; T)) w.r.t. I(X; T) evaluated at r
respectively. Also, note that there are some scenarios where rmax → ∞ (see, e.g., [39]), in these scenarios
βu,min = limr→∞ { f ′IB(r)/u′(r)} ≥ 0.

Corollary 3 (Domain of Convex IB Lagrange Multiplier Bound). The range of the Lagrange multipliers
that allow the exploration of the IB curve is contained by [0, βu,top] which is also contained by [0, β+

u,top], where

βu,top =
(infΩx⊂X {β0(Ωx)})−1

limr→0+ {u′(r)}
, and β+

u,top =
1

limr→0+ {u′(r)}
, (11)

where u′(r) is the derivative of u(I(X; T)) w.r.t. I(X; T) evaluated at r, X is the set of possible realizations of
X and β0 and Ωx are defined as in [27] (Note in [27] they consider the dual problem (see Appendix G), so when
they refer to β−1 it translates to β in this article). That is, Bu ⊆ [0, βu,top] ⊆ [0, β+

u,top].

Corollaries 2 and 3 allow us to reduce the range search for β when we want to explore the IB curve.
Practically, infΩx⊂X {β0(Ωx)}might be difficult to calculate so Wu et al. [27] derived an algorithm to
approximate it. However, we still recommend setting the numerator to 1 for simplicity. The proofs for
both corollaries are found in Appendices E and F.

5. Experimental Support

In order to showcase our claims we use the MNIST [28] and the TREC-6 [29] datasets. We
modify the nonlinear-IB method [26], which is a neural network that minimizes the cross-entropy
while also minimizing a differentiable kernel-based estimate of I(X; T) [40]. Then, we used this
technique to maximize a lower bound on the convex IB Lagrangians by applying the functions u to the
I(X; T) estimate.

The network structure is the following: first, a stochastic encoder T = fenc(X; θ) + W with
pW = N (0, Id) such that T ∈ Rd, where d is the dimension of the bottleneck variable (Note that
the encoder needs to be stochastic to (i) ensure a finite and well-defined mutual information [21,41]
and (ii) make gradient-based optimization methods over the IB Lagrangian useful [41]). Second, a
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deterministic decoder qŶ|T = fdec(T; θ). For the MNIST dataset both the encoder and the decoder are
fully-connected networks, for a fair comparison with [26]. For the TREC-6 dataset, the encoder is a
set of convolutions of word embeddings followed by a fully-connected network and the decoder is
also a fully-connected network. For further details about the experiment setup, additional results for
different values of α and η and supplementary experimental results for different datasets and network
architectures, please refer to Appendix H.

In Figure 1 we show our results for two particularizations of the convex IB Lagrangians:

1. the power IB Lagrangians: LIB,pow(T; βpow, α) = I(T; Y)− βpow I(X; T)(1+α), α > 0 (Note when
α = 1 we have the squared IB functional from Kolchinsky et al. [21]).

2. the exponential IB Lagrangians: LIB,exp(T; βexp, η) = I(T; Y)− βexp exp(η I(X; T)), η > 0.
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Figure 1. The top row shows the results for the power information bottleneck (IB) Lagrangian with
α = 1, and the bottom row for the exponential IB Lagrangian with η = 1, both in the MNIST dataset.
In each row, from left to right it is shown (i) the information plane, where the region of possible
solutions of the IB problem is shadowed in light orange and the information-theoretic limits are the
dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as a function of βu.
In all plots, the red crosses joined by a dotted line represent the values computed with the training set,
the blue dots the values computed with the validation set and the green stars the theoretical values
computed as dictated by Proposition 3. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10)
in a dashed, orange line. All values are shown in bits.

We can clearly see how both Lagrangians are able to explore the IB curve (first column from
Figure 1) and how the theoretical performance trend of the Lagrangians matches the experimental
results (second and third columns from Figure 1). There are small mismatches between the
theoretical and experimental performance. This is because using the nonlinear-IB, as stated
by Kolchinsky et al. [21], does not guarantee that we find optimal representations due to factors
like (i) inaccurate estimation of I(X; T), (ii) restrictions on the structure of T, (iii) use of an estimation
of the decoder instead of the real one and (iv) the typical non-convex optimization issues that arise
with gradient-based methods. The main difference comes from the discontinuities in performance for
increasing β, which cause is still unknown (cf. Wu et al. [27]). It has been observed, however,
that the bottleneck variable performs an intrinsic clusterization in classification tasks (see, for
instance, [21,26,42] or Figure 2b). We observed how this clusterization matches with the quantized
performance levels observed (e.g., compare Figure 2a with the top center graph in Figure 1); with



Entropy 2020, 22, 98 10 of 27

maximum performance when the number of clusters is equal to the cardinality of Y and reducing
performance with a reduction of the number of clusters, which is in line with the concurrent work
from Wu and Fischer [43]. We do not have a mathematical proof for the exact relationship between
these two phenomena; however, we agree with Wu et al. [27] that it is an interesting matter and hope
this observation serves as motivation to derive new theory.
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# 
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er

s

(a) Number of clusters for different βpow.

=0.061 =0.082

=0.102 =0.245

(b) Example of clusters for different βpow.
Figure 2. Depiction of the clusterization behavior of the bottleneck variable for the power IB Lagrangian
in the MNIST dataset with α = 1. The clusters were obtained using the DBSCAN algorithm [44,45].

In practice, there are different criteria for choosing the function u. For instance, the exponential IB
Lagrangian could be more desirable than the power IB Lagrangian when we want to draw the IB curve
since it has a finite range of βu. This is Bu = [(η exp(η Imax))−1, η−1] for the exponential IB Lagrangian
vs. Bu = [((1 + α)Iα

max)
−1, ∞) for the power IB Lagrangian. Furthermore, there is a trade-off between

(i) how much the selected u function resembles a linear function in our region of interest; e.g., with
α or η close to zero, since it will suffer from similar problems as the original IB Lagrangian; and (ii)
how fast it grows in our region of interest; e.g., higher values of α or η, since it will suffer from value
convergence; i.e., optimizing for separate values of βu will achieve similar levels of performance
(Figure 3). Please, refer to Appendix I for a more thorough explanation of these two phenomena.

I(X; T)

I(T
;Y

)

= 0.0

= 0.083
= 0.167= 0.25= 0.333

Figure 3. Example of value convergence with the exponential IB Lagrangian with η = 3. We show
the intersection of the isolines of LIB,exp(T; βexp) for different βexp ∈ Bexp ≈ [1.56× 10−5, 3−1] using
Corollary 2.

Particularly, the value convergence phenomenon can be exploited in order to approximately
obtain a particular level of compression r∗, both for known and unkown IB curves (see Appendix I
or the example in Figure 4). For known IB curves, we also know the achieved predictability I(T; Y)
since it is the same as the level of compression I(X; T). For this exploitation, we can employ the shifted
version of the exponential IB Lagrangian (which is also a particular case of the convex IB Lagrangian):
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• the shifted exponential IB Lagrangians:

LIB,sh-exp(T; βsh-exp, η, r∗) = I(T; Y)− βsh-exp exp(η(I(X; T)− r∗)) , η > 0 , r∗ ∈ [0, ∞).
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Figure 4. Example of value convergence exploitation with the shifted exponential Lagrangian with
η = 200. In the top row, for the MNIST dataset aiming for a compression level r∗ = 2 and in the
bottom row, for the TREC-6 dataset aiming for a compression level of r∗ = 16. In each row, from left to
right it is shown (i) the information plane, where the region of possible solutions of the IB problem is
shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y) as
a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses joined
by a dotted line represent the values computed with the training set, the blue dots the values computed
with the validation set and the green stars the theoretical values computed as dictated by Proposition 3.
Moreover, in all plots, it is indicated H(Y) in a dashed, orange line. All values are shown in bits.

For this Lagrangian, the optimization procedure converges to representations with approximately
the desired compression level r∗ if the hyperparameter η is set to a large value.

In Figure 4 we show the results of aiming for a compression level of r∗ = 2 bits in the MNIST
dataset and of r∗ = 16 bits in the TREC-6 dataset, both with η = 200. We can see how for different
values of βsh-exp we can obtain the same desired compression level, which makes this method stable to
variations in the Lagrange multiplier selection.

To sum up, in order to achieve a desired level of performance with the convex IB Lagrangian as
an objective one should:

1. In a deterministic or close to a deterministic setting (see ε-deterministic definition in Kolchinsky
et al. [21]): Use the adequate βu for that performance using Proposition 3. Then if the performance
is lower than desired, i.e., we are placed in the wrong performance plateau, gradually reduce
the value of βu until reaching the previous performance plateau. Alternatively, exploit the value
convergence phenomenon with, for instance, the shifted exponential IB Lagrangian.

2. In a stochastic setting: exploit the value convergence phenomenon with, for instance, the shifted
exponential IB Lagrangian. Alternatively, draw the IB curve with multiple values of βu on the
range defined by Corollary 3 and select the representations that best fit their interests.
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6. Conclusions

The information bottleneck is a widely used and studied technique. However, it is known that
the IB Lagrangian cannot be used to achieve varying levels of performance in deterministic scenarios.
Moreover, in order to achieve a particular level of performance, multiple optimizations with different
Lagrange multipliers must be done to draw the IB curve and select the best traded-off representation.

In this article we introduced a general family of Lagrangians which allow to (i) achieve varying
levels of performance in any scenario, and (ii) pinpoint a specific Lagrange multiplier βu to optimize
for a specific performance level in known IB curve scenarios; e.g., deterministic. Furthermore, we
showed the βu domain when the IB curve is known and a βu domain bound for exploring the IB curve
when it is unknown. This way we can reduce and/or avoid multiple optimizations and, hence, reduce
the computational effort for finding well traded-off representations. Moreover, (iii) when the IB curve
is not known, we saw how we can exploit the value convergence issue of the convex IB Lagrangian
to approximately obtain a specific compression level for both known and unknown IB curve shapes.
Finally, (iv) we provided some insight into the discontinuities on the performance levels w.r.t. the
Lagrange multipliers by connecting those with the intrinsic clusterization of the bottleneck variable.
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Appendix A. Proof of Proposition 1

Proof. We can easily prove this statement by finding I(T; Y) is lower bounded by the γJCE(p(X,Y); θ) +

C where γ < 0 and C does not depend on T. This way maximizing such lower bound would be
equivalent to minimizing JCE(p(X,Y); θ) and, moreover, it would imply maximizing I(T; Y).

We can find such an expression as follows:

I(T; Y) = E(y,t)∼qY|T qT

[
log

(
qY|T=t(y|t; θ)

pY(y)

)]
= H(Y) +E(y,t)∼qY|T qT

[
log(qY|T=t(y|t; θ))

]
(A1)

= H(Y) +Et∼qT

[
DKL

(
qY|T=t||qŶ|T=t

)]
+E(y,t)∼qY|T qT

[
log(qŶ|T(y|t; θ))

]
(A2)

≥ H(Y) +E(x,y,t)∼qY|T qT|X pX

[
log(qŶ|T=t(y|t, θ))

]
= H(Y)−E(x,t)∼qT|X pX

[
C(qY|T=t||qŶ|T=t)

]
(A3)

= H(Y)− JCE(p(X,Y); θ). (A4)

Here, in Equation (A1) we just used the definition of the mutual information between
two random variables, and then we decoupled it using the definition of the entropy of a
variable (Note we used H(·) which is usually employed for discrete variables. However,
in this setting H(·) could also refer to the differential entropy h(·) of a continuous
random variable since we employed the general definition using the expectation). Then, in
Equation (A2) we only multiplied and divided by qŶ|T inside the logarithm and employed the definition
of the Kullback–Leibler divergence. Finally, in Equation (A3) we first used the fact the Kullback–Leibler
divergence is always positive (Theorem 2.6.3 from Cover and Thomas [20]) and then the properties of
the Markov chain T ↔ X ↔ Y.

Therefore, since H(Y) does not depend on T and we have a negative multiplicative term on
JCE(p(X,Y); θ) the proposition is proved.
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Appendix B. Alternative Proof of Theorem 1

Proof. We will proof all the enumerated statements sequentially, since the third one requires from the
two first ones to be proved.

1. Proposition 2 states that the IB curve in the information plane follows the equation I(T; Y) =

I(X; T) if I(X; T) ∈ [0, I(X; Y)). Then, since β = dI(T; Y)/dI(X; T) [1], we know β = 1 in all
these points. Therefore, for β = 1 all points (I(X; T), I(X; T)) such that I(X; T) ∈ [0, I(X; Y)) are
solutions of optimizing the IB Lagrangian.

2. Similarly, Proposition 2 states that the IB curve follows the equation I(T; Y) = I(X; Y) if I(X; T) ≥
I(X; Y). Then, since β = dI(T; Y)/dI(X; T) [1], we know β = 0 in all points such that I(X; T) >
I(X; Y). We cannot ensure it at I(X; T) = I(X; Y) since β = 1 for I(X; T) = limε→0+{I(X; Y)− ε}.

3. Finally, in order to prove the last statement we will first prove that if β ∈ (0, 1) achieves a solution,
it is (I(X; Y), I(X; Y)). Then, we will prove that if the solution (I(X; Y), I(X; Y)) exists, this can
be yield by any β ∈ (0, 1). Hence, the solution (I(X; Y), I(X; Y)) is achieved ∀β ∈ (0, 1) and it is
the only solution achievable.

(a) Since the IB curve is concave we know β is non-increasing in I(X; T) ∈ R+. We also know
β = 1 at the points in the IB curve where I(X; T) ≤ limε→0+{I(X; Y)− ε} and β = 1 at
the points in the IB curve where I(X; T) ≥ limε→0+{I(X; Y) + ε}. Hence, if we achieve a
solution with β ∈ (0, 1), this solution is I(X; T) = I(T; Y) = I(X; Y).

(b) We can upper bound the IB Lagrangian by

LIB(T; β) = I(T; Y)− βI(X; T) ≤ (1− β)I(T; Y) ≤ (1− β)I(X; Y), (A5)

where the first and second inequalities use the DPI (Theorem 2.8.1 from
Cover and Thomas [20]).

Then, we can consider the point of the IB curve (I(X; Y), I(X; Y)). Since the function is concave
a tangent line to (I(X; Y), I(X; Y)) exists such that all other points in the curve lie below this line.
Let β be the slope of this curve (which we know it is from Tishby et al. [1]). Then,

I(X; Y)− βI(X; Y) = (1− β)I(X; Y) ≥ FIB,max(r)− βr, ∀r ∈ [0, ∞). (A6)

As we see, by the upper bound on the IB Lagrangian from Equation (A5), if the point
(I(X; Y), I(X; Y)) exists, any β can be the slope of the tangent line to (I(X; Y), I(X; Y)) that
ensures concavity.

Appendix C. Proof of Theorem 2

Proof. We start the proof by remembering the optimization problem at hand (Definition 1):

FIB,max(r) = max
T∈∆
{I(T; Y)} s.t. I(X; T) ≤ r (A7)

We can modify the optimization problem by

max
T∈∆
{I(T; Y)} s.t. u(I(X; T)) ≤ u(r) (A8)

iff u is a monotonically non-decreasing function since otherwise u(I(X; T)) ≤ u(r) would not hold
necessarily. Now, let us assume ∃T∗ ∈ ∆ and β∗u s.t. T∗ maximizes LIB,u(T; β∗u) over all T ∈ ∆, and
I(X; T∗) ≤ r. Then, we can operate as follows:
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max
T∈∆

u(I(X;T))≤u(r)

{I(T; Y)} = max
T∈∆

u(I(X;T))≤u(r)

{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A9)

≤ max
T∈∆
{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A10)

= I(T∗; Y)− β∗u(u(I(X; T∗)− u(r) + ξ) = I(T∗; Y). (A11)

Here, the equality from Equation (A9) comes from the fact that since I(X; T) ≤ r, then ∃ξ ≥ 0 s.t.
u(I(X; T))− u(r) + ξ = 0. Then, the inequality from Equation (A10) holds since we have expanded
the optimization search space. Finally, in Equation (A11) we use that T∗ maximizes LIB,u(T; β∗u) and
that I(X; T∗) ≤ r.

Now, we can exploit that u(r) and ξ do not depend on T and drop them in the maximization in
Equation (A10). We can then realize we are maximizing over LIB,u(T; β∗u); i.e.,

max
T∈∆

u(I(X;T))≤u(r)

{I(T; Y)} ≤ max
T∈∆
{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A12)

= max
T∈∆
{I(T; Y)− β∗u(I(X; T))} = max

T∈∆
{LIB,u(T; β∗u)}. (A13)

Therefore, since I(T∗; Y) satisfies both the maximization with T∗ ∈ ∆ and the constraint
I(X; T∗) ≤ r, maximizing LIB,u(T; β∗u) obtains FIB,max(r).

Now, we know if such β∗u exists, then the solution of the Lagrangian will be a solution for
FIB,max(r). Then, if we consider Theorem 6 from the Appendix of Courcoubetis [22] and consider the
maximization problem instead of the minimization problem, we know if both I(T; Y) and −u(I(X; T))
are concave functions, then a set of Lagrange multipliers S∗u exists with these conditions. We can make
this consideration because f is concave if − f is convex and max{ f } = min{− f }. We know I(T; Y) is
a concave function of T for T ∈ ∆ (Lemma 5 of Gilad-Bachrach et al. [19]) and I(X; T) is convex w.r.t.
T given pX is fixed (Theorem 2.7.4 of Cover and Thomas [20]). Thus, if we want −u(I(X; T)) to be
concave we need u to be a convex function.

Finally, we will look at the conditions of u so that for every point (I(X; T), I(T; Y)) in the IB curve,
there exists a unique β∗u s.t. LIB,u(T; β∗u) is maximized. That is, the conditions of u s.t. |S∗u| = 1. For this
purpose we will look at the solutions of the Lagrangian optimization:

dLIB,u(T; βu)

dT
=

d(I(T; Y)− βuu(I(X; T)))
dT

=
dI(T; Y)

dT
− βu

du(I(X; T))
dI(X; T)

dI(X; T)
dT

= 0 (A14)

Now, if we integrate both sides of Equation (A14) over all T ∈ ∆ we obtain

βu =
dI(T; Y)
dI(X; T)

(
du(I(X; T))

dI(X; T)

)−1

=
β

u′(I(X; T))
, (A15)

where β is the Lagrange multiplier from the IB Lagrangian [1] and u′(I(X; T)) is du(I(X;T))
dI(X;T) . Also, if we

want to avoid indeterminations of βu we need u′(I(X; T)) not to be 0. Since we already imposed u to
be monotonically non-decreasing, we can solve this issue by strengthening this condition. That is, we
will require u to be monotonically increasing.

We would like βu to be continuous, this way there would be a unique βu for each value of I(X; T).
We know β is a non-increasing function of I(X; T) (Lemma 6 of Gilad-Bachrach et al. [19]). Hence, if
we want βu to be a strictly decreasing function of I(X; T), we will require u′ to be a strictly increasing
function of I(X; T). Therefore, we will require u to be a strictly convex function.
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Thus, if u is a strictly convex and monotonically increasing function, for each point
(I(X; T), I(T; Y)) in the IB curve s.t. dI(T; Y)/dI(X; T) > 0 there is a unique βu for which maximizing
LIB,u(T; βu) achieves this solution.

Appendix D. Proof of Proposition 3

Proof. In Theorem 2 we showed how each point of the IB curve (I(X; T), I(T; Y)) can be found with a
unique βu maximizing LIB,u(T; βu). Therefore, since we also proved LIB,u(T; βu) is strictly concave
w.r.t. T we can find the values of βu that maximize the Lagrangian for fixed I(X; T).

First, we look at the solutions of the Lagrangian maximization:

dLIB,u(T;βu)
dT = d( fIB(I(X;T))−βuu(I(X;T)))

dT = d fIB(I(X;T))
dT − βu

du(I(X;T))
dI(X;T)

dI(X;T)
dT = 0. (A16)

Then as before we can integrate at both sides for all T ∈ ∆ and solve for βu:

βu =
d fIB(I(X; T))

dI(X; T)
1

u′(I(X; T))
. (A17)

Moreover, since u is a strictly convex function it’s derivative u′ is strictly increasing. Hence, u′ is
an invertible function (since a strictly increasing function is bijective and a function is invertible iff it is
bijective by definition). Now, if we consider βu > 0 to be known and I(X; T) to be the unknown we
can solve for I(X; T) and get:

I(X; T) = (u′)−1
(

d fIB(I(X; T))
dI(X; T)

1
βu

)
. (A18)

Note we require βu not to be 0 so the mapping is defined.

Appendix E. Proof of Corollary 2

Proof. We will start the proof by proving the following useful Lemma.

Lemma A1. Let LIB,u(T; βu) be a convex IB Lagrangian, then supT∈∆{LIB,u(T; 0)} = I(X; Y).

Proof. Since LIB,u(T; 0) = I(T; Y), maximizing this Lagrangian is directly maximizing I(T; Y).
We know I(T; Y) is a concave function of T for T ∈ ∆ (Theorem 2.7.4 from Cover and Thomas
[20]); hence it has a supremum. We also know I(T; Y) ≤ I(X; Y). Moreover, we know I(X; Y) can be
achieved if, for example, Y is a deterministic function of T (since then the Markov Chain X ↔ T ↔ Y
is formed). Thus, supT∈∆{LIB,u(T; 0)} = I(X; Y).

For βu = 0 we know maximizing LIB,u(T; 0) we can obtain the point in the IB curve
(rmax, Imax) (Lemma A1). Moreover, we know that for every point (I(X; T), fIB(I(X; T))) such that
d fIB(I(X; T))/dI(X; T) > 0, ∃!βu s.t. max{LIB,u(T; βu)} achieves that point (Theorem 2). Thus,
∃!βu,min s.t. limr→r−max

(r, fIB(r)) is achieved. From Proposition 3 we know this βu,min is given by

βu,min = lim
r→r−max

{
f ′IB(r)
u′(r)

}
. (A19)

Since we know fIB(I(X; T)) is a concave non-decreasing function in (0, rmax) (Lemma 5 of
Gilad-Bachrach et al. [19]) we know it is continuous in this interval. In addition we know βu is
strictly decreasing w.r.t. I(X; T) (Theorem 2). Furthermore, by definition of rmax and knowing
I(T; Y) ≤ I(X; Y) we know f ′IB(r) = 0, ∀r > rmax. Therefore, we cannot ensure the exploration of the
IB curve for β′u s.t. 0 < β′u < βu,min.

Then, since u is a strictly increasing function in (0, rmax), u′ is positive in that interval. Hence,
taking into account βu is strictly decreasing we can find a maximum βu when I(X; T) approaches to 0.
That is,
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βu,max = lim
r→0+

{
f ′IB(r)
u′(r)

}
, (A20)

Appendix F. Proof of Corollary 3

Proof. If we use Corollary 2, it is straightforward to see that βu ⊆ [L−, L+] if βu,min ≥ L− and
βu,max ≤ L+ for all IB curves fIB and functions u. Therefore, we look at a domain bound dependent on
the function choice. That is, if we can find βmin ≤ f ′IB(r) and βmax ≥ f ′IB(r) for all IB curves and all
values of r, then

Bu ⊆
[

βmin

limr→r−max
{u′(r)} ,

βmax

limr→0+{u′(r)}

]
. (A21)

The region for all possible IB curves regardless of the relationship between X and Y is depicted in
Figure A1. The hard limits are imposed by the DPI (Theorem 2.8.1 from Cover and Thomas [20]) and
the fact that the mutual information is non-negative (Corollary with Equation 2.90 for discrete and first
Corollary of Theorem 8.6.1 for continuous random variables from Cover and Thomas [20]). Hence, a
minimum and maximum values of f ′IB are given by the minimum and maximum values of the slope of
the Pareto frontier. Which means

Bu ⊆
[

0,
1

limr→0+{u′(r)}

]
. (A22)

Note 0/(limr→r−max
{u′(r)}) = 0 since u is monotonically increasing and, thus, u′ will never be 0.

I(X; T)

I(T
;Y

)

 I(X; Y)

I(X; Y)  I(X; T) I(T; Y)

Figure A1. Graphical representation of the IB curve in the information plane. Dashed lines in orange
represent tight bounds confining the region (in light orange) of possible IB curves (delimited by the red
line, also known as the Pareto frontier). Black dotted lines are informative values. In blue we show
an example of a possible IB curve confining a region (in darker orange) of an IB curve that does not
achieve the Pareto frontier. Finally, the yellow star represents the point where the representation keeps
the same information about the input and the output.

Then, we can tighten the bound using the results from Wu et al. [27], where, in Theorem 2, they
showed the slope of the Pareto frontier could be bounded in the origin by f ′IB ≤ (infΩx⊂X {β0(Ωx)})−1.
Finally, we know that in deterministic classification tasks infΩx⊂X {β0(Ωx)} = 1, which aligns with
Kolchinsky et al. [21] and what we can observe from Figure A1. Therefore,
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Bu ⊆
[

0,
(infΩx⊂X {β0(Ωx)})−1

limr→0+{u′(r)}

]
⊆
[

0,
1

limr→0+{u′(r)}

]
. (A23)

Appendix G. Other Lagrangian Families

We can use the same ideas we used for the convex IB Lagrangian to formulate new families of
Lagrangians that allow the exploration of the IB curve. For that, we will use the duality of the IB curve
(Lemma 10 of [19]). That is:

Definition A1 (IB Dual Functional). Let X and Y be statistically dependent variables. Let also ∆ be the set
of random variables T obeying the Markov condition Y ↔ X ↔ T. Then the IB dual functional is

FIB,min(i) = min
T∈∆
{I(X; T)} s.t. I(T; Y) ≥ i, ∀i ∈ [0, I(X; Y)). (A24)

Theorem A1 (IB Curve Duality). Let the IB curve be defined by the solutions of FIB,max(r) for varying
r ∈ [0, ∞). Then,

∀r∃i s.t. (r, FIB,max(r)) = (FIB,min(i), i) (A25)

and

∀i∃r s.t. (FIB,min(i), i) = (r, FIB,max(r)). (A26)

From this definition, it follows that minimizing the dual IB Lagrangian, LIB,dual(T; βdual) =

I(X; T) − βdual I(T; Y), for βdual = β−1 is equivalent to maximizing the IB Lagrangian. In fact,
the original Lagrangian for solving the problem was defined this way [1]. We decided to use the
maximization version because the domain of useful β is bounded while it is not for βdual.

Following the same reasoning as we did in the proof of Theorem 2, we can ensure the IB curve
can be explored if:

1. We minimize the concave IB Lagrangian LIB,v(T; βv) = I(X; T)− βvv(I(T; Y)).
2. We maximize the dual concave IB Lagrangian LIB,v,dual(T; βv,dual) = v(I(T; Y))− βv,dual I(X; T).
3. We minimize the dual convex IB Lagrangian LIB,u,dual(T; βu,dual) = u(I(X; T))− βu,dual I(T; Y).

Here, u is a monotonically increasing strictly convex function, v is a monotonically increasing
strictly concave function, and βv, βv,dual, βu,dual are the Lagrange multipliers of the families of
Lagrangians defined above.

In a similar manner, one could obtain relationships between the Lagrange multipliers of the
IB Lagrangian and the convex IB Lagrangian with these Lagrangian families. For instance, the
convex IB Lagrangian LIB,u(T; βu) is related with the concave IB Lagrangian LIB,v(T; βv) as defined by
Propositon A1.

Proposition A1 (Relationship between the convex and concave IB Lagrangians). Consider the convex
and concave IB Lagrangians LIB,u(T; βu), LIB,v(T; βv). Let the IB curve defined as in Definition 2 be fIB.
Then, if we fix the functions u and v we can obtain the same point in the IB curve (r, fIB(r)) with both
Lagrangians when

β−1
v = f ′IB(r)v

′
(

fIB

(
(u′)−1

(
f ′IB(r)

βu

)))
, (A27)

or equivalently,

β−1
u =

1
f ′IB(r)

u′
(

f−1
IB

(
(v′)−1

(
β−1

v
f ′IB(r)

)))
. (A28)
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Proof. If we proceed like we did in the proof of Proposition 3 we can find the mapping between
I(X; T) and βu and between I(T; Y) and βv. That is,

I(X; T) = (u′)−1
(

d fIB(I(X; T))
dI(X; T)

1
βu

)
and I(T; Y) = (v′)−1

((
d fIB(I(X; T))

dI(X; T)

)−1 1
βv

)
. (A29)

Then, if we recall that I(T; Y) = fIB(I(X; T)), we can directly obtain that

fIB

(
(u′)−1

(
d fIB(I(X; T))

dI(X; T)
1

βu

))
= (v′)−1

((
d fIB(I(X; T))

dI(X; T)

)−1 1
βv

)
. (A30)

Then, if we solve Equation (A30) with a fixed point (I(X; T) = r, I(T; Y) = fIB(r)) for βv we obtain
Equation (A27), and if we solve it for βu we obtain Equation (A28).

Also, one could find a range of values for these Lagrangians to allow for the IB curve exploration
and define a bijective mapping between their Lagrange multipliers and the IB curve. However, (i) as
mentioned in Section 2.2, I(T; Y) is particularly interesting to maximize without transformations
because of its meaning. Moreover, (ii) like βdual, the domain of useful βv and βu,dual is not upper
bounded. These two reasons make these other Lagrangians less preferable. We only include them
here for completeness. Nonetheless, we encourage the curiours reader to explore these families
of Lagrangians too. For example, a possible interesting research would be investigating if some
particularization of the concave IB Lagrangian suffers from an issue like value convergence that can be
exploited for approximately obtaining any predictability level I(T; Y) = i∗ for many values of βv.

Appendix H. Experimental Setup Details and Further Experiments

In order to generate empirical support for our claims, we performed several experiments on
different datasets with different neural network architectures and different ways of calculating the
information bottleneck.

Appendix H.1. Information Bottleneck Calculations

The information bottleneck is calculated modifying either the nonlinear-IB [26]. This method of
calculating the information bottleneck is a neural network that minimizes the cross-entropy while
also miniminizing an upper bound estimate of the mutual information Iθ ≈ I(X; T). The nonlinear-IB
relies on a kernel-based estimate of this mutual information [40]. We modify this calculation method
by applying the function u to the I(X; T) estimate.

For the nonlinear-IB calculations, we estimated the gradients of both Iθ(X; T) and the
cross-entropy with the same mini-batch. Moreover, we did not learn the covariance of the mixture of
Gaussians used for the kernel density estimation of Iθ(X; T) and we set it to (exp(−1))2.

In both methods, and for all the experiments, we assumed a Gaussian stochastic encoder T =

fenc(X; θ) + W with pW = N (0, Id), where d are the number of dimensions of the representations. We
trained the neural networks with the Adam optimization algorithm [46] with a learning rate of 10−4

and a 0.6 decay rate every 10 epochs. We used a batch size of 128 samples and all the weights were
initialized according to the method described by Glorot and Bengio [47] using a Gaussian distribution.

Then, we used the DBSCAN algorithm [44,45] for clustering. Particularly, we used the
scikit-learn [48] implementation with ε = 0.3 and min_samples = 50.

The reader can find the PyTorch [30] implementation in the following link: https://github.com/
burklight/convex-IB-Lagrangian-PyTorch.

https://github.com/burklight/convex-IB-Lagrangian-PyTorch
https://github.com/burklight/convex-IB-Lagrangian-PyTorch
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Appendix H.2. The Experiments

We performed experiments in four different datasets:

• A Classification Task on the MNIST Dataset [28] (Figures 1, 2, and A2–A4 and top row from
Figure 3). This dataset contains 60,000 training samples and 10,000 testing samples of hand-written
digits. The samples are 28x28 pixels and are labeled from 0 to 9; i.e., X = R784 and Y = {0, 1, ..., 9}.
The data is pre-processed so that the input has zero mean and unit variance. This is a deterministic
setting, hence the experiment is designed to showcase how the convex IB Lagrangians allow us
to explore the IB curve in a setting where the normal IB Lagrangian cannot and the relationship
between the performance plateaus and the clusterization phenomena. Furthermore, it intends
to showcase the behavior of the power and exponential Lagrangians with different parameters
of α and η. Finally, it wants to demonstrate how the value convergence can be employed to
approximately obtain a specific compression value. In this experiment, the encoder fenc is a three
fully-connected layer encoder with 800 ReLU units on the first two layers and two linear units on
the last layer (T ∈ R2), and the decoder fdec is a fully-connected 800 ReLU unit layers followed
by an output layer with 10 softmax units. The convex IB Lagrangian was calculated using the
nonlinear-IB.
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Figure A2. Results for the power IB Lagrangian in the MNIST dataset with α = {0.5, 1, 2}, from top to
bottom. In each row, from left to right it is shown (i) the information plane, where the region of possible
solutions of the IB problem is shadowed in light orange and the information-theoretic limits are the
dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as a function of βu.
In all plots, the red crosses joined by a dotted line represent the values computed with the training set,
the blue dots the values computed with the validation set and the green stars the theoretical values
computed as dictated by Proposition 3. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10)
in a dashed, orange line. All values are shown in bits.
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In Figure A2 we show how the IB curve can be explored with different values of α for the power
IB Lagrangian and in Figure A3 for different values of η and the exponential IB Lagrangian.

Finally, in Figure A4 we show the clusterization for the same values of α and η as in
Figure A2 and A3. In this way the connection between the performance discontinuities and
the clusterization is more evident. Furthermore, we can also observe how the exponential IB
Lagrangian maintains better the theoretical performance than the power IB Lagrangian (see
Appendix I for an explanation of why).
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Figure A3. Results for the exponential IB Lagrangian in the MNIST dataset with η = {log(2), 1, 1.5},
from top to bottom. In each row, from left to right it is shown (i) the information plane, where the
region of possible solutions of the IB problem is shadowed in light orange and the information-theoretic
limits are the dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as
a function of βu. In all plots, the red crosses joined by a dotted line represent the values computed
with the training set, the blue dots the values computed with the validation set and the gren stars
the theoretical values computed as dictated by Proposition 3. Moreover, in all plots, it is indicated
I(X; Y) = H(Y) = log2(10) in a dashed, orange line. All values are shown in bits.
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Figure A4. Depiction of the clusterization behavior of the bottleneck variable in the MNIST dataset.
In the first row, from left to right, the power IB Lagrangian with different values of α = {0.5, 1, 2}.
In the second row, from left to right, the exponential IB Lagrangian with different values of η =

{log(2), 1, 1.5}.

• A Classification Task on the Fashion-MNIST Dataset [49] (Figure A5). As MNSIT, this dataset
contains 60,000 training and 10,000 testing samples of 28x28 pixel images labeled from 0 to 9 and
constitutes a deterministic setting. The difference is that this dataset contains fashion products
instead of hand-written digits and it represents a harder classification task [49]. The data is also
pre-processed so that the input has zero mean and unit variance. For this experiment, the encoder
fenc is composed of a two-layer convolutional neural network (CNN) with 32 filters on the first
layer and 128 filters on the second with kernels of size 5 and stride 2. This CNN is followed by
two fully-connected layers of 128 linear units (T ∈ R128). After the first convolution and the first
fully-connected layer, a ReLU activation is employed. The decoder fdec is a fully-connected 128
ReLU unit layer followed by an output layer with 10 softmax units. The convex IB Lagrangian
was calculated using the nonlinear-IB. Therefore, this experiment intends to showcase how the
convex IB Lagrangian can explore the IB curve for different neural network architectures and
harder datasets.

0 2 4 6 8
I(X; T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I(T
;Y

)

 I(X; Y) = H(Y) I(X; T) I(T; Y)

theoretical
train
validation

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I(T
;Y

)

 I(X; Y) = H(Y)

theoretical
train
validation

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

I(X
;T

)

 I(X; Y) = H(Y)

theoretical
train
validation

Figure A5. Results for the exponential IB Lagrangian in the Fashion MNIST dataset with η = 1. From
left to right it is shown (i) the information plane, where the region of possible solutions of the IB problem
is shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y)
as a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses
joined by a dotted line represent the values computed with the training set and the blue dots the values
computed with the validation set. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10).
All values are shown in bits.

• A Regression Task on the California Housing Dataset [50] (Figure A6). This dataset contains
20,640 samples of 8 real number input variables like the longitude and latitude of the house (i.e.,
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X ∈ R8) and a task output real variable representing the price of the house (i.e., Y ∈ R). We used
the log-transformed house price as the target variable and dropped the 992 samples in which the
house price was equal or greater than $500, 000 so that the output distribution was closer to a
Gaussian as they did in [26]. The input variables were processed so that they had zero mean and
unit variance and we randomly split the samples into a 70% training and 30% test dataset. As
in [40], for regression tasks we approximate H(Y) with the entropy of a Gaussian with variance
Var(Y) and H(Y|T) with the entropy of a Gaussian with variance equal to the mean-squared error
(MSE). This leads to the estimate I(T; Y) ≈ 0.5 log(Var(Y)/MSE). The encoder fenc is a three
fully-connected layer encoder with 128 ReLU units on the first two layers and 2 linear units on the
last layer (T ∈ R2), and the decoder fdec is a fully-connected 128 ReLU unit layers followed by an
output layer with 1 linear unit. The convex IB Lagrangian was calculated using the nonlinear-IB.
Hence, this experiment was designed to showcase the convex IB Lagrangian can explore the IB
curve in stochastic scenarios for regression tasks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
I(X; T)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I(T
;Y

)

 I(X; Y) I(X; T) I(T; Y)

train
validation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

I(T
;Y

)

 I(X; Y)

train
validation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I(X
;T

)

 I(X; Y)

train
validation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
I(X; T)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I(T
;Y

)

 I(X; Y) I(X; T) I(T; Y)

train
validation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

I(T
;Y

)

 I(X; Y)

train
validation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I(X
;T

)

 I(X; Y)

train
validation

Figure A6. The top row shows the results for the normal IB Lagrangian, and the bottom row for the
exponential IB Lagrangian with η = 1, both in the California housing dataset. In each row, from left to
right it is shown (i) the information plane, where the region of possible solutions of the IB problem is
shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y)
as a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses
joined by a dotted line represent the values computed with the training set and the blue dots the values
computed with the validation set. Moreover, in all plots, it is indicated I(X; Y) as the empirical value
obtained maximizing I(T; Y) without compression limitations as in [26]. All values are shown in bits.

• A Classification Task on the TREC-6 Dataset [29] (Figure A7 and bottom row from Figure 3).
This dataset is the six-class version of the TREC [51] dataset. It contains 5452 training and 500
test samples of text questions. Each question is labeled within six different semantic categories
based on what the answer is; namely: Abbreviation, description and abstract concepts, entities,
human beings, locations, and numeric values. This dataset does not constitute a deterministic
setting since there are examples that could belong to more than one class and there are examples
which are wrongly labeled (e.g., “What is a fear of parasites?” could belong both to the
description and abstract concept category, however it is labeled into the entity category), and
hence H(Y|X) > 0. Following Ben Trevett’s tutorial on Sentiment Analysis [52] the encoder fenc is
composed by a 6 billion token pre-trained 100-dimensional Glove word embedding [53], followed
by a concatenation of three convolutions with kernel sizes 2–4 respectively, and finalized with a
fully-connected 128 linear unit layer (T ∈ R128). The decoder fdec is a single fully-connected 6
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softmax unit layer. The convex IB Lagrangian was calculated using the nonlinear-IB. Thus,
this experiment intends to show an example where the classification task does not convey
a deterministic scenario, that the convex IB Lagrangian can recover the IB curve in complex
stochastic tasks with complex neural network architectures and that the value convergence can be
employed to obtain a specific compression value even in stochastic settings where the IB curve
is unknown.
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Figure A7. The top row shows the results for the normal IB Lagrangian, and the bottom row for the
power IB Lagrangian with α = 0.1, both in the TREC-6 dataset. In each row, from left to right it is
shown (i) the information plane, where the region of possible solutions of the IB problem is shadowed
in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y) as a function
of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses joined by a
dotted line represent the values computed with the training set and the blue dots the values computed
with the validation set. Moreover, in all plots, it is indicated H(Y) = log2(6). All values are shown
in bits.

Appendix I. Guidelines for Selecting A Proper Function in the Convex IB Lagrangian

When choosing the right u function, it is important to find the right balance between avoiding
value convergence and aiming for strong convexity. Practically, this balance is found by looking at
how much faster u grows w.r.t. the identity function.

When the aim is not to draw the IB curve but to find a specific level of performance, we can exploit
the value convergence phenomenon in order to design a stable performance targeted u function.

Appendix I.1. Avoiding Value Convergence

In order to explain this issue we are going to use the example of classification on MNIST [28],
where I(X; Y) = H(Y) = log2(10), and again the power and exponential IB Lagrangians.

If we use Proposition 3 on both Lagrangians we obtain the bijective mapping between their
Lagrange multipliers and a certain level of compression in the classification setting:

1. Power IB Lagrangian: βpow = ((1 + α)I(X; T)α)−1 and I(X; T) =
(
(1 + α)βpow

)− 1
α .

2. Exponential IB Lagrangian: βexp = (η exp(η I(X; T)))−1 and I(X; T) = − log(ηβexp)/η.

Hence, we can simply plot the curves of I(X; T) vs. βu for different hyperparameters α and η (see
Figure A8). In this way, we can observe how increasing the growth of the function (e.g., increasing α or
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η in this case) too much provokes that many different values of βu converge to very similar values of
I(X; T). This is an issue both for drawing the curve (for obvious reasons) and for aiming for a specific
performance level. Due to the nature of the estimation of the IB Lagrangian, the theoretical and practical
value of βu that yields a specific I(X; T) may vary slightly (see Figure 1). Then if we select a function
with too high growth, a small change in βu can result in a big change in the performance obtained.
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Figure A8. Theoretical bijection between I(X; T) and different α from βu,min to 1.5 in the power IB
Lagrangian (top), and different η in the domain Bu in the exponential IB Lagrangian (bottom).

Appendix I.2. Aiming for Strong Convexity

Definition A2 (µ-Strong Convexity). If a function f (r) is twice continuous differentiable and its domain is
confined in the real line, then it is µ-strong convex if f ′′(r) ≥ µ ≥ 0 ∀r.

Experimentally, we observed when the growth of our function u(r) is small in the domain of
interest r > 0 the convex IB Lagrangian does not perform well (see first row of Figures A2 and A3).
Later we realized that this was closely related to the strength of the convexity of our function.

In Theorem 2 we imposed the function u to be strictly convex to enforce having a unique βu for
each value of I(X; T). Hence, since in practice we are not exactly computing the Lagrangian but an
estimation of it (e.g., with the nonlinear IB [26]) we require strong convexity in order to be able to
explore the IB curve.

We now look at the second derivative of the power and exponential function: u′′(r) = (1+ α)αrα−1

and u′′(r) = η2 exp(ηr) respectivelly. Here we see how both functions are inherently 0-strong convex
for r > 0 and α, η > 0. However, values of α < 1 and η < 1 could lead to low µ-strong convexity in
certain domains of r. Particularly, the case of α < 1 is dangerous because the function approaches
0-strong convexity as r increases, so the power IB Lagrangian performs poorly when low α are used to
find high performances.
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Appendix I.3. Exploiting Value Convergence

When the aim is not to draw or explore the IB curve, but to obtain a specific level of performance,
the power of exponential IB Lagrangians aforementioned might not be the best choice due to the
problems with value convergence or non-strong convexity. However, we can exploit the former in
order to design a performance targeted u function.

For instance, if we look at Figure A8 we can see how a modification of the exponential
IB Lagrangian could result in such a function. More precisely, a shifted exponential u(r) =

exp(η(r − r∗)), with η > 0 sufficiently large, converges to the compression level r∗. We can see
this more clearly if we consider the shifted exponential IB Lagrangian LIB,sh-exp(T; βsh-exp, η, r∗) =

I(T; Y)− βsh-exp exp(η(I(X; T)− r∗)), since then the application of Proposition 3 results on I(X; T) =
− log(ηβsh-exp/ f ′IB(I(X; T)))/η + r∗, where f ′IB(I(X; T)) is the derivative of fIB evaluated at I(X; T).
We know f ′IB = 1 in deterministic scenarios (Theorem 2) and that f ′IB < 1 otherwise (see, e.g., [27]).
Then, for large enough η, I(X; T) ≈ r∗ regardless of the value of f ′IB.

For instance, if we consider a deterministic scenario like the MNIST dataset [28] with I(X; Y) =
H(Y) = log2(10), for η = 200 and r∗ = 2 the range of the Lagrange multipliers that allow
the exploration of the IB curve, according to Corollary 2, is βsh-exp ∈ [7.54× 10−178, 2.61× 10171].
Furthermore, I(X; T) is close to 2 for many values of βsh-exp. For instance, I(X; T) = 1.974 for
βsh-exp = 1 and I(X; T) = 1.963 for βsh-exp = 8. This ensures a stability in the performance level
obtained so that small changes in the choice of βsh-exp do not result in significant changes on the
performance (e.g., see top row from Figure 4).

If we now consider a stochastic scenario like the TREC-6 dataset [29] with H(Y) = log2(6), for
η = 200 and r∗ = 16 the range of the Lagrange multipliers that allow the IB curve, according to
Corollary 3, is βsh-exp ∈ [0, 2.76(infΩx⊂X {β0(Ωx)})−1× 101287], where β0 and Ωx are defined as in [27].
Then, unless (infΩx⊂X {β0(Ωx)})−1 is of the order of 10−1287, the range of possible betas is wide.
Moreover, I(X; T) is close to 16 for many values of βsh-exp. For example, I(X; T) = 15.939 if f ′IB = 0.001
at that point and I(X; T) = 15.973 if f ′IB = 0.9 for βsh-exp = 1; and I(X; T) = 15.929 if f ′IB = 0.001 at
that point and I(X; T) = 15.963 if f ′IB = 0.9 for βsh-exp = 8. Hence, as in the deterministic scenario, the
performance level obtained is stable with changes in the choice of βsh-exp (e.g., see bottom row from
Figure 4).
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