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Mesenchymal stem/stromal cells in cancer 
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Abstract 

The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been 
identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, 
chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-
homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, ham-
pered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress 
has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-
associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the 
clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed accord-
ing to published data.
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Background
Mesenchymal stem/stromal cells (MSCs), which were 
first uncovered in 1976 [1], represent one of the most 
widely distributed cells in human body [2]. Generally, 
MSCs are characterized as multipotent stem cells that 
can differentiate into osteocytes, chondrocytes, adipo-
cytes, and other lineages [3]. So far, MSCs have been iso-
lated from various tissues including endometrial polyps, 
umbilical cord, menses blood, bone marrow, etc. Gen-
erally, human MSCs express markers including CD90, 
CD73 and CD105 [4]. However, the surface marker pro-
files of MSCs derived from different tissues are slightly 
different. For example, MSCs from bone marrow are 
positive for CD73, CD90, CD105, STRO-1 but nega-
tive for CD14, CD34, CD45 and HLA-DR. Except for 
those positive or negative markers described for bone 

marrow-derived MSCs, adipose tissue-derived MSCs are 
also positive for extra CD29, CD44, CD71, CD13, CD166, 
but negative for additional CD31. In addition, MSCs in 
peripheral blood express CD44, CD90, CD105, HLA-
ABC but do not express CD45 and CD133. The detailed 
characters and immunophenotypes of MSCs derived 
from different tissues are summarized in Table 1.

Notably, it has been well documented that MSCs have 
strong immunomodulatory effects and the capacities to 
migrate to inflammatory and tumor sites [5]. Equipped 
with immunomodulation capacity, MSCs play substan-
tial roles in the regulation of immune responses and the 
development of a broad range of diseases [6]. As one 
of the most prevalent and fatal diseases, cancer is seri-
ously threatening human health [7]. Importantly, it has 
been revealed that MSCs participate in the initiation, 
development, progression, and metastasis of cancer [8]. 
Moreover, since MSCs have tumor-homing property, 
they are considered as promising vehicles for the precise 
and selective delivery of anticancer drugs [9]. Recently, 
more mechanisms through which MSCs play promo-
tive or suppressive roles on the development of cancers 
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have been revealed [10], which led to the springing up 
of the explorations with respect to MSC-based antican-
cer therapies [11]. However, given the fact that MSCs are 
considered as a promising therapeutic tool for the treat-
ment of cancer, some of its disadvantages, such as pro-
metastasis functions [12] and the capacities to facilitate 
evasion of immune surveillance [12], are hampering the 
further clinical applications [10]. Hence, a comprehensive 
evaluation of MSC-based anticancer therapy on the basis 
of its therapeutic mechanisms and the underlying signal 
pathways is urgently needed for the purpose of accelerat-
ing the development of clinically applicable MSC-based 
anticancer cell therapies and improving quality of life for 
patients with cancer.

At present, the major sources of MSCs for clinical 
applications include bone marrow, cord blood, and adi-
pose tissue. While cord blood could be obtained from 
birth-derived tissues, bone marrow and adipose tissue 
need to be procured using bone marrow aspirate or lipo-
suction [13]. Moreover, density gradient centrifugation 
is commonly used to isolate MSCs from human tissues, 
and the isolated cells would be seeded on plastic cul-
ture plates to further exclude the hematopoietic cells, as 
hematopoietic cells do not attach to the plastic substrate 
[14]. The subsequent expansion and manufacturing of 
the MSCs should comply with the Good Manufacturing 

Practice (GMP) guidelines [15]. In this review, the poten-
tial anticancer therapeutic prospects of MSC-based 
approach will be evaluated in terms of the mechanisms 
and essential signaling pathways that are associated with 
the development of cancer. In addition, to facilitate the 
research and development of high-quality cell therapy 
drugs, the clinical trials designed to appraise the efficacy 
and safety of MSC-based anticancer therapies will be 
assessed according to published data.

Controversial roles of MSCs in cancer
Immunomodulation of MSCs
The ability of MSC to modulate immune response was 
first uncovered by Amelia Bartholomew et al. in 2002 [16]. 
They tested the ability to influence the proliferation of 
allogeneic lymphocytes of Baboon-derived MSCs in vitro 
and in vivo. Their data showed that Baboon MSCs could 
significantly suppress the proliferation rate of allogenic 
lymphocytes in  vitro and prolong the survival of skin 
grafts in MHC-mismatched recipients in  vivo. Inspired 
by this work, the immunomodulation effects of MSC 
have been extensively explored [17]. So far, apart from 
affecting lymphocytes proliferation, it has been shown 
that MSCs mediate immune response through a vari-
ety of ways, including inhibiting the activation of nature 
killer (NK) cells [18], repressing the activation as well as 

Table 1  Biomarkers and characteristics of MSCs derived from different sources

MSCs isolated 
from different 
sources

Presence Absence Characteristics References

Bone marrow CD13, CD44, CD73, CD90, CD105, 
CD166, STRO-1

CD14, CD34, CD45, HLA-DR Confirmed safety [184–186]

Capacity to differentiate into hepatocyte

Adipose tissue CD71, CD9, CD13, CD29, CD44, CD54, 
CD73, CD90, CD105, CD106, CD146, 
CD166, HLA I, STRO-1

CD14, CD19, CD31, CD34, 
CD45, CD133, HLA-DR

Abondance in adipose tissue [184, 187–190]

Have weaker differentiating potential 
towards osteocytes and chondrocytes

Birth-derived tissues CD29, CD44, CD73, CD90, CD105, CD146 CD14, CD34, CD45 Have relatively high proliferation rate [191–193]

Produce more insulin than bone mar-
row MSC

Dental pulp CD29, CD44, CD90, CD105 CD14, CD34, CD45 Have odontoosteogenic properties [194–196]

Locate within the dental crown

Peripheral blood CD44, CD54, CD90, CD105, CD166, 
HLA-ABC

CD14, CD34, CD45, CD31 Manifest similar immunophenotypes 
and differentiation potential to those of 
bone marrow MSC

[197–199]

The volume of blood is large

Endometrium CD73, CD90, CD105, CD146 CD34, CD45 Have the potential of mesodermal line-
age differentiation

[197, 200, 201]

Producing high level of leukemia inhibi-
tory factors

Skin CD44, CD73, CD90, CD105, CD166, CD29 CD34, CD45, HLA-DR Have higher proliferation rate than that 
of adipose MSC

(202–204)
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basic functions of dendritic cells (DC) [19], modulating 
proliferation and functions of B cells [20], and inducing 
the expansion of regulatory T cells [21]. Furthermore, the 
immunomodulatory potentials of MSCs are exerted by 
direct cell-to-cell contact or paracrine secretion of solu-
ble factors [22]. It has been shown that the upregulation 
of cell adhesion molecules like galectin-1 and CD274 on 
MSCs not only enhanced the cell-to-cell contact, but also 
strengthened the immunomodulation effects [23, 24]. 
Besides, MSC could produce a wide spectrum of soluble 
factors such as cytokines, enzymes, and nitric oxide (NO) 
[25–27] to mediate the immune response.

Notably, the immunomodulation effects of MSCs asso-
ciated with cancer therapies act in two opposite ways. On 
the one hand, MSCs are considered as a powerful compo-
nent of the stem cell transplantation therapy. In particu-
lar, for the treatment of leukemia, multiple myeloma, and 
lymphoma, transplantation of allogenic bone marrow 
or hematopoietic stem cells (HSC) is one of the widely 
used therapies [28]. However, the allogenic transplanta-
tion could lead to graft-versus-host disease (GVHD), a 
major cause of morbidity and mortality in patients who 
received the treatment [29]. The immune suppressive 
functions of MSCs have been leveraged to relieve GVHD 
[30]. Furthermore, MSCs have been reported to facilitate 
the hematopoietic reconstitution following HSC trans-
plantation [31]. Thus, MSC-based therapy represents a 
promising supportive method for HSC or bone marrow 
transplantation in patients with certain types of cancers. 
On the other hand, as a critical component of tumor 
microenvironment (TME) [32], MSCs contribute to the 
survival as well as proliferation of tumor cells [33] and 
inhibit natural anti-tumor immune response [34]. Hence, 
targeting MSCs in TME has been considered as a poten-
tial strategy to improve the outcomes of patients with 
cancer [35].

Crosstalk between MSCs and tumor
Although the immunomodulation property is tightly 
associated with the growth of tumors, MSCs could 
directly impact cancer development through crosstalk 
with tumors mediated by cell-to-cell contact or secre-
tion of soluble molecules [36]. It should be noted that, in 
terms of the treatment of cancer, the roles of MSCs are 
divergent [37]. Specifically, although numerous stud-
ies have demonstrated that MSCs have pro-tumor func-
tions [38], it is also commonly accepted that MSCs could 
inhibit the growth of tumors through a multitude of 
mechanisms such as jeopardizing tumor cell cycle and 
inducing apoptosis [39].

On the one hand, MSCs could contribute to the devel-
opment and progression of cancer through various ways. 
First, MSCs are able to influence the phenotype of tumor 

cells by secreted molecules. For instance, it has been 
reported that the C–C motif chemokine ligand 5 (CCL5) 
secreted by MSCs could increase the invasiveness of 
metastatic breast cancer cells [40]. Second, MSCs have 
been found to support tumor angiogenesis. For exam-
ple, within TMEs of breast and prostate cancers, it was 
observed that the expression levels of angiogenic factors 
such as vascular endothelial growth factor (VEGF) and 
Interleukin 6 (IL-6) are upregulated by the MSCs. Con-
sequently, these factors led to the enhanced tumor vas-
cularization [41]. Third, accumulating evidence indicates 
that MSCs could be differentiated into cancer-associated 
fibroblasts (CAFs) in response to soluble factors pro-
duced by cancer cells. In particular, it has been demon-
strated that transforming growth factor β1 (TGF-β1) 
derived from the TME of prostate cancer was capable 
of inducing the MSC-to-CAF differentiation [42]. Last 
but not least, apart from exerting pro-tumor properties 
with soluble signaling factors, MSC could more directly 
facilitate the growth of tumor through cell-to-cell contact 
or cell engulfment. Mele et  al. have shown that, medi-
ated by cell-to-cell contact, the surface-bound TGF-β of 
MSC promotes the epithelial-to-mesenchymal transi-
tion in colorectal cancer cells [43]. Besides, Chen et  al. 
revealed that MSCs could be engulfed by breast cancer 
cells. More importantly, followed by the engulfment, the 
gene expression pattern of breast cancer cells was altered. 
Further, EMT, metastasis and invasiveness of breast can-
cer cells were found to be enhanced [44].

On the other hand, considerable number of studies 
converged on the finding that MSCs suppress the growth 
of tumor and progression of cancer. Previous investiga-
tions have unveiled the cytotoxicity of MSC on the tumor 
cells [45]. Additionally, a recent study has demonstrated 
that MSCs induce the apoptosis and suppress the prolif-
eration of glioma cells through inhibiting phosphatidylin-
ositol 3-kinase/protein kinase B (PI3K/AKT) pathway 
[46]. Notably, although it has been well documented 
that MSCs possess pro-angiogenic property, emerging 
evidence have shown that MSCs could also inhibit the 
tumor vascularization [47, 48]. Ho et al. have illustrated 
that MSCs repress the growth of tumor by inhibiting 
angiogenesis. Moreover, they further demonstrated that 
the inhibition of angiogenesis might be associated with 
the MSC-mediated downregulation of PDGF/PDGFR 
axis in glioma cells [49]. In addition, cell-to-cell contact 
is also implemented by MSCs to exert their anti-tumor 
effects. In a previous study, glioblastoma cancer stem 
cells (CSCs) were cocultured with umbilical cord derived 
MSCs (UC-MSCs). It was observed that the proliferation 
rate of cocultured CSCs was significantly reduced, which 
implied that such direct cell-to-cell interaction could lead 
to the inhibition of tumor growth [37]. Besides, Sarmadi 
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et  al. have shown that MSC arrests cell cycle in G0/G1 
phase of lymphoid origin hematopoietic tumor cells by 
cell-to-cell contact [50].

In conclusion, the reported discrepancies with respect 
to the capacity of MSCs to inhibit or enhance cancer 
development might be consequent on the differences of 
experimental settings such as animal models, cell lines, 
doses, and duration times of treatment. Whether MSC 
should be considered as an anti-tumor agent or a thera-
peutic target for the treatment of cancer is still a matter 
of debate. Thus, more in  vivo investigations should be 
conducted to more rigorously evaluate the tumor-inhib-
itory effect of MSCs. Furthermore, effective methods that 
could distinguish pro-tumor MSCs need to be developed 
to improve the specificity of targeted therapy.

Signaling pathways regulated by MSCs
The initiation, progression and development of cancer is 
associated with a wide spectrum of signaling pathways 
[51]. Compelling evidence suggests that the activities 
of some crucial cancer-related pathways are being up- 
or down-regulated by MSCs [52]. Hence, it is impera-
tive to thoroughly scrutinize the signaling network that 
connects MSCs with cancer with the purpose of deeply 

accessing the potential anticancer effects of MSCs-based 
therapies. In this section, key cancer-related pathways 
affected by MSCs were selected for in-depth evaluation 
in regard to the pro- or anti-neoplastic effects (Fig.  1) 
according to published data.

PI3K/AKT signaling pathway
PI3K/AKT pathway is hyper- or hypo-activated in 
numerous types of cancers. These aberrations of PI3K/
AKT pathway are coupled with the gaining of neoplastic 
properties by tumors, such as increased cell proliferation 
rate, drug resistance and stem-cell like phenotypes [53]. 
As a family of heterodimeric lipid kinases, PI3Ks are acti-
vated by various upstream factors, including cytokines, 
chemokines, antigens, and growth factors [54]. Nota-
bly, AKT, a serine/threonine protein kinase, is known 
as one of the most important effectors downstream of 
PI3K [55]. Moreover, PI3K/AKT pathway is linked with 
a huge number of signaling molecules and cascades that 
has been shown to participate in the development of can-
cers [56]. For example, it was shown that the inhibition 
of gene encoding PI3K catalytic subunit beta (PI3KCB) 
precipitated the reduction of cell proliferation rate and 
apoptosis in glioblastoma [57]. In thyroid cancer, the 

Fig. 1  Schematic representation of the signaling pathways involved in the crosstalk between MSC and tumor. MSC play both pro-tumor and 
anti-tumor roles through upregulate or downregulate the activity of cancer-related signaling
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over-activation of PI3K/AKT pathway epigenetically 
suppresses the expression of the REC8 gene and inhib-
its the proliferation as well as colony formation capacity 
of cancer cells [58]. Additionally, Li et  al. have revealed 
that the upregulation of PI3K/AKT pathway promotes 
the expressions of placental growth factor (PlGF) and 
C-X-C Motif Chemokine Ligand 1 (CXCL1) in lung can-
cer stem cells, which further stimulate angiogenesis [59]. 
CCPlenty of paracrine factors secreted by MSCs are 
ligands for receptors that activate PI3K/AKT pathway 
[52]. Thus, it is plausible that MSCs can influence the 
growth and metastasis of tumors via PI3K/AKT path-
way. In a previous experimental study, it was suggested 
that the breast cancer-associated MSCs could facilitate 
the production of mammosphere and provide a “tumor-
friendly” microenvironment via modulating the activity 
of PI3K/AKT pathway [60]. Besides, it was observed that 
the cell culture medium that had incubated bone mar-
row-derived MSCs for 48 h (MSC conditioned medium) 
significantly enhanced the progression of head and neck 
cancer through the activation of PI3K/AKT signaling 
pathway [61]. Therefore, based on the current knowledge, 
targeting PI3K/AKT might be an effective way to inhibit 
the pro-tumor effect of MSC.

JAK/STAT signaling pathway
The Janus kinase/signal transducers and activators of 
transcription (JAK/STAT) pathway are an evolutionarily 
conserved signaling cascade [62]. By regulating the acti-
vation of a quantity of functional molecules like growth 
factors and cytokines, JAK/STAT pathway closely links 
itself to a variety of developmental trajectories of tis-
sues [63]. Consequently, the abnormal functioning of the 
pathway is associated with the development of various 
diseases, including cancer [64]. For instance, the upregu-
lation of STAT3, a member of STAT family, is associated 
with the tumorigenicity of glioma stem-like cells [65]. In 
addition, it has been demonstrated that the deregulation 
of JAK3 promotes the invasiveness of extra-nodal nasal-
type natural killer cell lymphoma [66]. Moreover, the ele-
vated expression level of Stat5a/b has been considered as 
a predictive marker of recurrent prostate cancer [67].

Thus far, several studies have been conducted to eval-
uate how MSCs interact with tumors via JAK/STAT 
pathway. Nevertheless, with regard to the impacts on 
cancer development, divergent roles of MSC have been 
observed. Reportedly, IL-6 secreted by colorectal cancer-
derived MSCs could activate JAK2/STAT3 signaling and 
promote the progression of colorectal cancer [68]. Addi-
tionally, in a recent study, it was observed that the chronic 
MSCs exposure contributed to the selection of metastatic 
prostate cancer cells that are more resistant to apoptotic 
effects, which is coupled with the alteration in IL-28/

STAT signaling from the pro-apoptotic, IL-28-STAT1 
cascade to the anti-apoptotic IL-28-STAT3[69]. Con-
versely, the anti-tumor effects of MSC mediated by JAK/
STAT pathway have also been documented. He et al. have 
demonstrated that the MSC conditioned medium inhib-
its the STAT3 level in breast cancer cells and suppresses 
tumor progression, indicating that paracrine soluble fac-
tors secreted by MSC could modulate JAK/STAT signal-
ing and inhibit the growth of breast tumor [70]. Hence, 
future studies should focus on the specific molecular 
mechanisms involved in the JAK/STAT-mediated inter-
plays between MSC and tumors.

Wnt signaling pathway
Wnt pathway contains a large number of proteins that 
act as signaling molecules mediating tissue development 
and homeostasis [71, 72]. Besides, the pathway is also 
described as a key player regulating the development of 
cancer as well as the stemness of tumor cells [73, 74]. 
The roles that Wnt signaling plays has been well-stud-
ied in numerous types of cancers [75]. In colon cancer, 
it was elucidated that the secretion of Wnt ligands, such 
as Wnt3, by cancer cells contributes to the maintenance 
of Wnt activity [76]. In addition, Luis et  al. have shown 
that the well-regulated Wnt signaling is crucial for sus-
taining the normal hematopoiesis, whereas its deregu-
lation might precipitate the development of leukemia. 
In melanoma cells, it has been revealed that WNT5A, a 
Wnt protein, induces the release of exosomes containing 
pro-angiogenetic factors VEGF and IL-6[77]. Moreover, 
it is generally accepted that Wnt signaling is a key media-
tor of stemness in cancer stem cells [78]. Mechanistically, 
as a crucial signaling molecule in Wnt pathway, β-catenin 
improves the expression of telomerase reverse tran-
scriptase (TERT), a ribonucleoprotein that prevents the 
loss of telomeres in cancer stem cells [79].

Although it was described that MSCs could modu-
late Wnt signaling in cancer [80], the question con-
cerning whether such modulations inhibit or facilitate 
cancer development is still controversially discussed. In 
cholangiocarcinoma, Wang et  al. revealed a pro-tumor 
effect mediated by human UC-MSCs [81]. They treated 
the xenograft tumor model established using cholangio-
carcinoma cells with UC-MSCs and then observed that 
the expression levels of Wnt target genes such as cyclin 
D1 and c-Myc were upregulated. Moreover, the metas-
tasis and chemoresistance of cholangiocarcinoma was 
also found to be enhanced following the treatment of 
UC-MSCs. In contrast, the report from another group 
suggests that MSC secretes dickkopf-related protein 1 
(DKK-1), a soluble Wnt antagonist, to modulate Wnt 
signaling and decreases the proliferation rate of leukemia 
cancer cells [82]. Hence, MSC-mediated Wnt signaling 
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changes might play dual roles in cancer progression, this 
discrepancy might be attributable to the differences in 
cancer types, sources of MSC, and the activation status 
of Wnt proteins.

Hippo signaling pathway
The Hippo pathway play central roles in cell proliferation 
and growth of organs [83]. In recent years, there has been 
accumulating evidence suggesting that the pathway con-
tribute to the progression of cancer [84]. The network of 
Hippo pathway consists of multiple proteins, including 
Yes-associated protein/WW-domain-containing tran-
scription regulator (YAP/TAZ), large tumor suppressor 
1/2 (LATS1/2) and mammalian Ste20-like kinases 1/2 
(MST1/2) [85]. Notably, as a tumor suppressor, the acti-
vation of Hippo pathway is linked with the inhibition of 
YAP/TAZ activity. Hence, YAP/TAZ has been considered 
as an oncogene as it was found to be overexpressed in a 
large number of cancers [86, 87]. Dysregulation of the 
Hippo pathway contributes to tumorigenesis. In cholan-
giocarcinoma, overexpression of YAP is associated with 
metastatic disease and poor prognosis [88]. In addition, 
Hippo pathway was found to be suppressed during the 
development of colorectal cancer, which further led to 
the tumor metastasis [89].

With respect to MSC-based cancer therapies, very lim-
ited evidence indicates that MSCs can regulate the Hippo 
pathway to affect the neoplastic process [90]. However, it 
has been demonstrated that MSC secretes prostaglandin 
E2 (PGE2) to activate YAP in liver cells and promote the 
proliferation of hepatocytes as a result [91]. Furthermore, 
Liu et  al. have shown that, under hypoxia condition, 
MSCs contribute to the growth of hepatocellular carci-
noma via a similar molecular mechanism [92]. However, 
more investigations need to be conducted for acquiring a 
more comprehensive understanding of the role of Hippo 
pathway in the crosstalk between MSC and tumors.

MYC signaling pathway
MYC is a family of genes that encodes three transcription 
factors: c-Myc, n-Myc, and l-Myc. Among them, c-Myc 
is characterized as an important oncogene and is consid-
ered as an ideal therapeutic target in anticancer therapy 
[93]. The stimulatory roles of MYC on cancer progression 
have been well studied [94, 95]. For example, it has been 
reported that overexpression of c-Myc induces the EMT 
in mammary cells, which could potentiate the motility of 
cancer cells. Moreover, high expression level of c-Myc in 
patients with diffuse large B-cell lymphoma is reported to 
be coupled with compromised overall survival [96]. More 
importantly, in more than 70% of human cancers, the 
abnormal expressions of c-Myc were observed [97].

In recent years, a few reports indicate that MSC reg-
ulate the progression and drug resistance of cancers 
through MYC signaling pathway. Particularly, it was 
revealed that Galectin 3 expressed by MSCs in the TME 
of acute myeloid leukemia (AML) activates MYC expres-
sion and contributes to the cell adhesion between MSC 
and AML tumor, thereby promoting the survival of can-
cer cells [98]. Besides, it was observed that the bone mar-
row MSC conditioned medium enhances the growth of 
gastric tumor via upregulation of c-Myc [99]. In addition, 
in a previous study, it was demonstrated that cell-to-cell 
contact between MSC and AML cell prevents cancer cells 
from apoptosis and fosters the drug resistance of AML 
[100]. Hence, it is plausible that c-Myc could be consid-
ered as a promising target for anticancer therapies, as the 
inhibition of the pathway not only directly suppress the 
development, but also interrupts pro-tumor pathways 
governed by MSC.

NF‑κB signaling pathway
Nuclear factor kappa B (NF-κB), a transcription factor 
family, was first uncovered by Sen et  al. in 1986 [101]. 
The family comprises five members: RelA, RelB, c-Rel, 
NF-κB1/p50 and NF-κB2/p52, all of which participate 
in the regulation of the expression of a variety of genes 
[102]. In the progression of cancer, the NF-κB signaling 
pathway plays considerable roles [103]. For example, in 
an early study, the suppression of NF-κB signaling has 
been found to reduce the incidence of colitis-associated 
cancer [104]. Moreover, in breast cancer, it was shown 
that the activation of NF-κB signaling contributes to 
EMT and tumor metastasis. Similarly, in gastric cancer, 
the upregulation of NF-κB signaling is associated with 
the improvement of tumor invasiveness and is also con-
sidered as a prognostic marker in patients with gastric 
cancer [105].

Compelling evidence suggests that a part of pro-
tumor effect of MSC is mediated by NF-κB pathway. 
For instance, it was unveiled that, in acidosis condition, 
IL-6 secreted by cancer-associated MSCs upregulates 
NF-κB and fosters the stemness as well as chemoresist-
ance of osteosarcoma cells [106]. Furthermore, Wu et al. 
have shown that the MSC conditioned medium could 
induce the activations of mTOR and NF-κB signaling in 
colorectal tumor and facilitate the cancer progression 
[107]. In addition, MSC in inflammatory environment 
upregulates NF-κB signaling following activation of the 
C–C chemokine ligand 5/C–C chemokine receptor type 
5 (CCL5/CCR5) axis, which plays pro-metastatic roles 
[108]. Thus, it is conceivable that inhibition of NF-κB is 
an effective approach to repress the pro-tumor effect of 
MSC.
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The tumor homing property of MSCs
Since the development of cancer shares multiple simi-
larities with wound healing, tumors are also known as 
“wounds that do not heal” [109]. Biological processes 
such as the growth of new blood vessels, activation of 
fibroblasts, remodeling of extracellular matrix (ECM) are 
associated with both tumor growth and wound healing 
[110]. Importantly, it has been demonstrated that MSCs 
are capable of homing to injured or inflammatory sites 
[111]. In 2003, MSCs were found to spontaneously dis-
tributed in a variety of tissues following systemic infu-
sion in baboons, suggesting that MSCs could selectively 
migrate to certain locations [112]. Then, in 2004, Jean-
marie et al. demonstrated that MSCs could engraft in the 
tumor sites in the gastric cancer model [113], indicating 
the tumor homing capacity of MSCs.

However, although it has been observed that infused 
MSCs could be home to tumor sites in various types 
of cancers [114], the underlying mechanisms are still 
unclear. Based on current knowledge, the tumor homing 
capacity of MSCs is mainly mediated by the cooperation 
of cytokines, chemokines, and other functional mole-
cules [115]. Firstly, cytokines are involved in the adhesion 
and traversing process of the vascular endothelial layer of 
circulating MSCs. It has been shown that tumor necrosis 
factor alpha (TNF-α), IL-6, IL-1β and interferon-gamma 
(IFN-γ) contribute to this process [116–118]. Secondly, 
chemokines could stimulate chemotaxis in cells, which 
leads to the migration of cells to targeted tissues or 
sites [119]. For instance, stromal cell-derived factor-1 
(SDF1) is highly expressed on the surface of tumor cells 
[120]. It was observed that MSCs could express CXC 
chemokine receptor 4 (CXCR4), a receptor of SDF1. And 
the CXCR4-SDF1 axis plays important role in the induc-
tion of MSCs migration towards tumors [121]. Thirdly, 
other functional molecules such as growth factors and 
hypoxia-inducible factor (HIF) were also found to be 
the mediators of tumor homing of MSCs. While growth 
factors like platelet derived growth factor (PDGF) could 
affect the transmigration capacity of MSCs [122], HIF 
could induce the expression of CXCL10, and its cognate 
receptor, CXC chemokine receptor 3 (CXCR3), on MSCs 
and breast cancer cells, respectively [123]. Although the 
mechanisms whereby MSCs migrate to tumor sites are 
still not comprehensively understood, the tumor tropism 
of MSCs has been leveraged to develop more specific and 
effective anticancer therapies [124].

Current strategies in MSC‑based cancer therapy
The intricate pattern of interaction between MSCs and 
tumor makes researchers remain cautious about using 
MSCs in the anticancer therapies. However, the quick 

development of gene engineering techniques makes it 
possible to load the agents with the well-established anti-
tumor effects into MSCs using viral vectors, non-viral 
vectors or other transfection tools [125]. Furthermore, 
the tumor tropism of MSCs allows them to precisely 
release the drug near the tumor site, which, theoretically, 
increases the safety and efficacy of the treatment. In addi-
tion, a growing number of studies have shown that MSC-
derived exosomes can be utilized as powerful cell-free 
cancer treatment.

MSC as a vehicle for therapy delivery
As a vector of anti-tumor drugs, MSCs could be geneti-
cally modified to express or secret a variety of agents that 
suppress the growth and progression of cancer [126]. 
These agents could be classified into three major groups: 
therapeutic proteins, suicide genes, oncolytic viruses 
(Fig. 2).

Delivery of therapeutic proteins
A variety of proteins such as cytokines [127, 128] and 
growth factors [129] have been identified as potent reg-
ulators of the development of cancers. Therapeutic pro-
teins that suppress the tumor growth or act as inhibitors 
of pro-tumor factors represent a novel form of antican-
cer drug. MSCs are considered as ideal vehicles for the 
delivery of such proteins. For example, interferons are 
considered as potent anti-tumor agents because they 
have been shown to inhibit the proliferation of tumor 
cells and modulate the immune response[130]. The 
strategies linked IFN-β with tumor-specific antibodies 
[131] or traditional chemotherapy drugs [132] have been 
shown to efficiently control the progression of cancer in 
animal models. Reportedly, MSCs that had been geneti-
cally edited to produce IFN-β showed anti-proliferative 
and proapoptotic effects on tumor cells [133]. Moreover, 
IL-12 has been considered as another promising pro-
tein for immunotherapy against cancer, as it stimulates 
the activation of T cells and cytotoxic NK cells [134]. It 
was shown that IL-12-expressing MSCs could inhibit the 
growth of tumors in both renal cell carcinoma and cervi-
cal tumor models established in mice [135, 136]. Kane-
hira et  al. have demonstrated that MSCs that express 
NK4, an inhibitor of hepatocyte growth factor (HGF) 
could effectively suppress the progression of lung meta-
static tumor [137]. Besides, the engineered MSCs that 
could secrete a variant of thrombospondin (TSP)-1, a 
protein that inhibit angiogenesis, remarkably suppressed 
the vascularization at tumor site and led to the reduction 
of tumor growth rate in a glioma model [138]. However, 
it was revealed that (TSP)-1 accelerates the proliferation 
rate of MSCs through TGF-β signaling [139]. Thus, the 
safety of this therapy needs to be rigorously evaluated 
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since the stem cell transplantation is usually associated 
with the potential risks of teratoma formation [140]. 
Additionally, the anticancer roles of MSCs that express 
a pro-apoptotic protein, tumor necrosis factor-related 
apoptosis induced ligand (TRAIL), have been analyzed in 
a series of investigations. The data show that, in a wide 
range of cancers including lung, breast, brain, cervical 
and colorectal cancers, TRAIL-expressing MSCs induced 
the apoptosis in neoplastic cells [141–143].

Delivery of suicide genes
Except for expressing anticancer cytokines, MSCs have 
been engineered to secret suicide genes that could con-
vert nontoxic reagents into toxic anti-tumor drugs 
[144]. For instance, MSCs expressing a “suicide gene,” 
cytosine deaminase::uracil phosphoribosyltransferase 
(CD::UPRT), are efficient for inhibiting tumor growth 
in a prostate cancer model [145]. CD::UPRT can convert 
the non-toxic 5-fluorocytosine into the toxic anti-tumor 
drug 5-fluorouracil [146]. MSCs secreting CD::UPRT 
have also been shown to be effective in models of colon 
cancer and melanoma established in mice [147, 148]. In 
a more recent study, Liu et al. were inspired by the corre-
lation between tumor and tissue stiffness and developed 
a precise drug delivery system called mechanoresponsive 
cell system (MRCS) using MSC. To establish the system, 

MSCs were modified to express YAP/TAZ and a suicide 
gene encoding cytosine deaminase (CD) [149]. Report-
edly, YAP/TAZ are important mediators that could sense 
the stiffness of tissues [150]. As tumor and metastasis 
sites are associated with extensive collagen linearization 
which leads to increased matrix stiffness [151], YAP/
TAZ in MRCS that homed to tumor would be activated 
and then stimulate the expression of CD. This system has 
been evaluated in the model of lung metastasis of breast 
tumor and manifested good efficiency in inhibiting the 
metastasis with minimal side effects [149].

Delivery of oncolytic viruses
Besides, oncolytic viruses (OVs) which could selectively 
kill cancer cells are also considered as one of the pro-
spective anticancer agents [152]. By targeting the sur-
face proteins on cancer cells, OVs recognize and bind to 
cancer cells, leading to oncolysis [153]. In a recent study, 
it was observed that oncolytic herpes simplex virus-1 
modulates the TME via reducing the percentage of anti-
inflammatory macrophages and increasing the number of 
tumor-infiltrating lymphocytes. In addition, the combi-
nation of oncolytic herpes simplex virus-1 and immune 
checkpoint modulators was found to significantly pro-
long the survival of the tumor-bearing mice [154]. How-
ever, the efficiency of the direct administration of OV is 

Fig. 2  Schematic illustration of the current antitumor therapies based on MSC and MSC-derived exosome
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usually low because the defense mechanism of host can 
eliminate the exogenous viruses [155]. Therefore, MSCs 
were implemented as vectors to transport and shield OVs 
[156]. Moreover, the tumor-homing property of MSCs 
could increase the specificity of drug delivery, thereby 
further avoiding the potential attacking of normal tis-
sues. In animal models, it has been shown that the MSC-
mediated administration of OVs was effective for treating 
malignant glioma, hepatocellular carcinoma, and lung 
metastases of breast carcinoma [157–159]. Except for 
cytokines, suicide genes and OVs, some other agents such 
as growth factor antagonists, pro-apoptotic proteins, and 
antiangiogenic agents were also considered as poten-
tial therapeutic proteins that could be over-expressed by 
MSC after genetical modifications [160–162].

To conclude, tumor-homing capacity represents one 
of the most important therapeutic mechanisms of MSCs 
that has been utilized to develop precision medicines for 
the treatment of cancer. This inherent property of MSCs 
makes it possible to specifically deliver multiple types of 
anticancer agents to pathological regions. However, there 
are still several potential issues associated with such 
therapy. First, after the eradication of neoplastic cells, 
the remaining engineered MSCs may cause unexpected 
problems [163]. Second, the therapeutic proteins carried 
by MSCs may affect the proliferation of the transplanted 
MSCs and increase the risk of teratoma formation. Third, 
the efficaciousness of the tumor homing of MSCs is 
sometimes limited by the insufficient expression of hom-
ing molecules, which might lead to off-target issues [5].

MSC‑derived exosomes
Exosomes are a type of nanoparticles generated by cel-
lular multivesicular bodies, with a diameter size about 
50-200  nm [164]. Moreover, exosomes are globally 
secreted by all types of cells and abundantly exist in 
the body fluids [165]. As important signal transduc-
ers between cells, exosomes contain a considerable 
level of biologically functional molecules such as DNAs, 
enzymes, proteins, RNAs, and lipids (Fig. 2), which play 
different roles in the interactions among cells via a vari-
ety of mechanisms[166]. Thus, it is conceivable that 
cell-derived exosomes could be leveraged for therapeu-
tic applications. Notably, MSC is one of the most effi-
cient human cell types in the production of exosomes 
[167], which makes MSC-derived exosomes be consid-
ered as a prospective approach to treat diseases, includ-
ing cancer [168]. Pascucci et al. found that MSC-derived 
exosomes could uptake Paclitaxel (PTX) after priming 
MSCs with PTX, indicating that MSC-derived exosomes 
is a novel method for drug delivery [169]. Besides, it was 
reported that the delivery of therapeutic microRNA, 
anti-miR-9, to chemo-resistant glioblastoma multiforme 

by MSC-derived exosomes was more efficient than that 
through direct intercellular communications between 
MSCs and cancer cells [170]. Further, MSC-derived 
exosomes have also manifested anti-angiogenesis activi-
ties. In 2013, Lee et  al. showed that exosomes derived 
from MSCs could inhibit angiogenesis through downr-
gulating the expression of VEGF in breast cancer model 
[171]. Recently, a group from Tehran University demon-
strated that exosomes from dental pulp MSCs that over-
express miR-34a, a tumor suppressor microRNA, could 
inhibit the growth of tumor in vitro. Recently, Zhou et al. 
have demonstrated that exosomes from bone marrow-
derived MSCs could induce the anti-tumoral macrophage 
polarization and elicit the recruitment of cytotoxic lym-
phocytes, thus enhancing the immunotherapy against 
pancreatic cancer in vivo [172]. In contrast, MSC-derived 
exosomes was reported to contributing the develop-
ment of chemoresistance of breast cancer. After treating 
mice with doxorubicin (a standard chemotherapy drug), 
the expression level of MSC-derived exosome has been 
observed to be increased and subsequently induced the 
expression of S100A6, an anti-apoptotic factor, in breast 
cancer cells [173].

Taken together, MSC-derived exosome therapy is a 
promising approach to further improve the efficacy and 
safety of traditional anticancer therapies. Emerging evi-
dence suggests that exosomes from MSC are superior 
drug deliver method in terms of gene transfer capacity, 
biocompatibility, immunogenicity, and stability [174]. 
Nevertheless, the complicity of the contents within the 
exosomes makes it a strenuous job to completely detan-
gle the mechanisms by which exosomes interact with 
tumors. Moreover, future investigations may focus on 
developing gene engineering techniques that could mod-
ify the surface and content of exosomes to increase the 
targeting specificity [175].

MSC‑based therapies in clinical trials
Although it is clear that MSC is tightly linked with the 
cancer development [176], the lack of tools for specifi-
cally defining the heterogeneous MSC populations [177] 
and the contradictory relationship between MSC and 
tumor [178] have impeded the development of MSC-
based therapies for oncological applications. So far, 31 
clinical trials accessing the MSC-based therapies for 
the treatment or alleviation of cancer conditions have 
been registered on ClinicalTrials. Gov database. Among 
them, 16 trials are aimed to use MSCs for the treatment 
of cancer, 7 trials are using engineered MSCs as vehi-
cles of therapeutic cytokines or oncolytic virus, 1 trial 
is designed to evaluate the safety and efficacy of MSC-
derived exosomes with KrasG12D siRNA (iExosomes) 
in pancreatic cancer (Table 2) Furthermore, according to 
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the database, 7 trials used bone marrow-derived MSCs, 
3 trials used adipose tissue-derived MSCs, 4 trials used 
cord blood-derived MSCs, and 8 trials did not indicate 
the source of MSCs. (Fig. 3).

Although a big proportion of trials were designed to 
evaluate MSCs that are not genetically modified, no 
data have been published from such trials registered on 

ClinicalTrials. Gov database. Theoretically, the admin-
istered MSCs could potentially modify the immune 
response or interact with tumors via cell–cell contact 
and secretion of soluble factors, thereby playing antican-
cer roles. However, considering the pro-tumor effects 
of MSCs in TME and the controversial roles that MSCs 
play in the interactions with cancer cells, the administra-
tion of unmodified MSCs might not be an efficient way to 
treat cancers.

Equipped with the tumor-trophic migration property, 
the genetically modified MSC could home to tumor site 
to deliver anti-tumor agents. In clinical studies, MSCs are 
used as vectors of cytokines and oncolytic virus. To date, 
the results from two of such trials have been published. 
First of which has shown that the bone marrow MSCs 
infected with ICOVIR5, an oncolytic adenovirus, was 
well tolerated in patients with relapsed/refractory pedi-
atric solid tumors. In addition, two of nine patients who 
received the treatment showed disease stabilization [179]. 
As the first clinical trial using genetically modified MSCs 
in patients with cancer, the result of this study indicates 
favorable safety and quality of the therapy. The second 

Table 2  Clinical studies using MSC-based therapies for cancer treatment

Form of drug Cancer applications Interventions Phase NCT NO

Tissue-derived MSC Hematopoietic and lymphoid cell neoplasm Cord blood MSCs I/II NCT04565665

Acute leukemia IFNγ-primed bone marrow MSCs I NCT04328714

Pancreatic cancer Adipose MSCs I NCT04087889

Mandible tumor Adipose MSCs I/II NCT03678467

Acute respiratory distress syndrome (ARD) in 
patients with malignancies

Bone marrow MSCs I NCT02804945

Myelodysplastic syndromes Cord blood MSCs I/II NCT03184935

Rectal cancer NeuroRegen Scaffold™ + Cord blood MSCs I/II NCT02648386

Hematologic malignancies MSCs I NCT02181478

Prostate cancer Bone marrow MSCs I NCT01983709

Expanding umbilical cord blood derived blood 
stem cells for treating leukemia, lymphoma, and 
myeloma

Bone marrow MSCs I/II NCT01624701

Solid organ cancers MSCs I NCT01275612

Hematological malignancies Cord blood transplantation + MSCs I/II NCT01092026

Leukemia, lymphoma, and myeloma Hematopoietic stem cells + MSCs II NCT01045382

Bone neoplasms Pre-immunodepleted MSCs II/III NCT00851162

Myelodysplastic syndromes Cord blood MSCs II NCT01129739

Engineered MSC Ovarian cancer MSCs secreting INF-β I NCT02530047

Adenocarcinoma of lung MSCs secreting TRAIL + standard therapy I NCT03298763

Diffuse intrinsic pontine glioma Radio therapy + Bone marrow MSCs infected 
with oncolytic virus

I NCT04758533

Glioma Bone marrow MSCs infected with oncolytic virus I NCT03896568

Head and neck cancer MSCs secreting IL-12 I NCT02079324

Ovarian, primary peritoneal or fallopian tube cancer Adipose MSCs infected with oncolytic virus I/II NCT02068794

Metastatic and refractory tumors Bone marrow MSCs infected with oncolytic virus I/II NCT01844661

MSC-derived exosome Metastatic pancreas cancer MSCs-derived exosomes with KRAS G12D siRNA I NCT03608631

32%

14%
18%

36%

Distribu�on of MSCs derived from different sources 

Bone marrow

Adipose �ssue

Umbilical cord

Not indicated

Fig. 3  Illustration of the distribution of MSCs derived from different 
sources in clinical trials
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trial with published data was conducted in Germany. It 
is a phase I/II study evaluating the safety and efficacy of 
MSCs that express thymidine kinase of the herpes sim-
plex virus (HSV-Tk) in patients with advanced, recurrent, 
or metastatic gastrointestinal or hepatopancreatobiliary 
adenocarcinoma [180]. It was reported that the treatment 
was safe and tolerable. Furthermore, the median time to 
progression and median overall survival was 1.8 months 
and 15.6  months, which indicate the preliminary stabi-
lization of the disease [181]. Both trials described above 
used MSCs as vectors of oncolytic virus. Comparing to 
therapeutic proteins like cytokines and growth factors, 
the anticancer effect of the oncolytic virus is clearer. 
Additionally, combining the MSC-based anticancer ther-
apies with traditional chemo- or radio-therapies is also 
an ideal option that could improve the efficacy of cur-
rent strategies. However, in another clinical trial with 
published data, the bone marrow-derived MSCs failed to 
manifest antitumor effects in patients with prostate can-
cer. Unfortunately, the results from the clinical study sug-
gest that the MSCs did not home to the primary tumors 
[182]. Therefore, the feasibility of tumor-tropism of MSC 
might differ from cancer to cancer. Besides, the source of 
MSC and the route of administration may also affect the 
efficacy of the genetically modified MSCs.

The application of MSC-derived exosomes is one of 
the current hot topics in the research of cell-free thera-
pies [183]. For the treatment of cancer, one active phase 
I clinical trial is designed to assess the therapeutic value 
of iExosomes in pancreatic cancer with KrasG12D muta-
tion. In iExosome, the MSC-derived exosomes load the 
siRNA against KrasG12D, thereby specifically inhibiting 
the activity of KrasG12D in patients. MSC-derived exo-
some is a promising platform to further improve the anti-
cancer effects of traditional therapies, and it is expectable 
that more translational studies will be conducted to fur-
ther reveal its therapeutic potentials.

Conclusions
MSC-based therapies are emerging as an attractive 
option for the treatment of cancers. As a matter of fact, 
MSC can modulate the immune response to neoplastic 
diseases and home to tumor sites. Furthermore, medi-
ated by a wide array of signaling pathways, the inter-
actions between MSCs and tumors are involved in 
the induction or inhibition of cancer progression and 
metastasis. However, the discrepancies regarding the 
impacts of MSC on cancer development remain largely 
unexplored, which has, to a large extent, hindered the 
transitions of bench-to-bed MSC-based applications. 
Up to date, a few clinical studies have been registered 
to analyze the therapeutic values of tissue-derived 
MSCs, engineered MSCs, and MSC-derived exosomes. 

Encouragingly, favorable clinical outcomes indicating 
safety and efficacy have been obtained from several tri-
als. In conclusion, although the development of MSC-
based anticancer therapies is still relatively slow and 
the functions of unmodified MSCs in the treatment of 
cancer are still not clear, promising progress have been 
made in clinical studies, especially for those designed 
for assessing the efficacy and safety of genetically 
altered MSCs. Future studies may focus on the strate-
gies that take advantage of the anti-tumor properties 
while circumvent the pro-tumor effects of MSCs.
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