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As overexpression and membrane localization of stress proteins together with high lactate
levels promote radioresistance in tumor cells, we studied the effect of the Hsp90 inhibitor
NVP-AUY922 on the cytosolic and membrane expression of heat shock proteins (HSPs)
and radiosensitivity in murine melanoma (B16F10) and human colorectal (LS174T)
wildtype (WT) and lactate dehydrogenases A/B double knockout (LDH−/−) tumor cells.
Double knockout for LDHA/B has been found to reduce cytosolic as well as membrane
HSP levels, whereas treatment with NVP-AUY922 stimulates the synthesis of Hsp27 and
Hsp70, but does not affect membrane Hsp70 expression. Despite NVP-AUY922-inducing
elevated levels of cytosolic HSP, radiosensitivity was significantly increased in WT cells
and even more pronounced in LDH−/− cells. An impaired lipid metabolism in LDH−/− cells
reduces the Hsp70 membrane-anchoring sphingolipid globotriaosylceramide (Gb3) and
thereby results in a decreased Hsp70 cell surface density on tumor cells. Our results
demonstrate that the membrane Hsp70 density, but not cytosolic HSP levels determines
the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in LDH−/− cells.

Keywords: LDHA/B double knockout, stress response, membrane Hsp70, radiosensitization, Hsp90 inhibitor
NVP-AUY922
INTRODUCTION

Many tumor cell types including colorectal carcinoma and melanoma, exhibit an increased
synthesis of heat shock proteins (HSPs) such as Hsp90, Hsp70 and Hsp27 which in turn
promotes tumor progression, malignant transformation and therapy resistance (1). In recent
years, the therapeutic potential of several different HSP-targeting drugs has been tested in
preclinical and clinical trials (2). Although, the Hsp90 inhibitor AUY-NVP922 exhibited
promising radiosensitizing potential by impairing the DNA damage repair and the cell cycle, not
only in different tumor cell entities including lung cancer cells, uterine cervical carcinoma, head and
neck squamous cell carcinoma and colorectal carcinoma cells but also in a human head and neck
squamous cell carcinoma xenograft model (3–5), its efficacy is limited due to its hepatotoxicity and a
compensatory upregulation of the transcription of other HSPs, especially the major stress-inducible,
anti-apoptotic Hsp70. As a consequence, combined treatment strategies with inhibitors targeting
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different HSP families concomitantly are currently under
investigation, although clinical data are not yet available (2).

Our laboratory has previously demonstrated that a
pharmacological inhibition of the lactate dehydrogenase (LDH)
as well as a lactate dehydrogenase A/B (LDHA/B) double
knockout (LDH−/−) has the capacity to decrease the expression
of Hsp90, Hsp70 and Hsp27 and thereby can increase the
radiosensitivity in cancer cells (6). An increased LDH activity
causes high lactate concentrations and an acidic tumor
microenvironment which further enhances tumor growth (7),
suppresses immune cell functions including effector T and NK
cells (8–10), correlates with an aggressive tumor phenotype and
increases the risk of metastatic spread and tumor recurrence (11).

Compared to normal cells, tumor cells frequently overexpress
Hsp70 in the cytosol and present it on their plasma membrane in
a tumor-specific manner. A high cell surface density of Hsp70
stabilizes plasma membranes of tumor cells and thereby
contributes to cell survival and radioresistance (12–14). Herein,
we assessed the mechanism(s) via which an impaired lactate
metabolism in combination with an Hsp90 inhibition impacts
the stress protein expression and membrane localization of
tumor cells in context with their radiosensitivity.
MATERIALS AND METHODS

Cells and Cell Culture
The wildtype (WT) B16F10 murine melanoma (ATCC® CRL-
6475TM; ATCC, Manassas, VA, USA) and LS174T human
colorectal adenocarcinoma (ATCC® CL-188™; ATCC,
Manassas, VA, USA) cell lines and their LDHA/B double
knockout (LDH−/−) counterparts (kindly provided by Marina
Kreutz and Jacques Pouyssegur (15) were grown in complete
growth medium, consisting of Rosewell Park Memorial Institute
(RPMI)-1640 medium (Sigma-Aldrich, St. Louis, MO, USA) or
high glucose Dulbecco`s Eagle`s Minimum Essential Medium
(DMEM) (Sigma-Aldrich) respectively, supplemented with 10%
v/v heat inactivated fetal bovine serum (FBS, Sigma-Aldrich), 1%
antibiotics (10,000 IU/mL penicillin, 10 mg/mL streptomycin,
Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich) and 1 mM
sodium pyruvate (Sigma-Aldrich). Cells were routinely checked
and confirmed negative for mycoplasma contamination.

Reagents and Treatment
A stock solution (10 mM) of the Hsp90 inhibitor NVP-AUY922
(Santa Cruz Biotechnology, Dallas, TX, USA) was prepared in
dimethyl sulfoxide (DMSO) and further diluted in phosphate
buffered saline (PBS). Control cells were incubated with the
respective amounts of DMSO. Cells were treated with NVP-
AUY922 for 24 h.

Western Blot Analysis
Cells were lysed in Radioimmunoprecipitation Assay (RIPA)
buffer containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1
mM EDTA, 1% v/v Triton-X-100, 0.1% w/v sodium dodecyl
sulphate (SDS), 0.5% w/v sodium deoxycholate, protease
inhibitor cocktail (Roche, Basel, Switzerland). The protein
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amount was measured using the Pierce™ BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). Proteins were
separated by SDS-PAGE, transferred on nitrocellulosemembranes
and detected by immunoblotting with the following primary and
secondary antibodies: Hsp27 (NBP2-32972, clone G3.1, Novus
Biologicals, Centennial, CO, USA), Hsp70 (clone cmHsp70.1,
murine IgG1, multimmune GmbH, Munich, Germany), LDHA
(NBP1-48336, rabbit polyclonal, Novus Biologicals), LDHB
(NBP2-53421, rabbit polyclonal, Novus Biologicals), AKT
(9272S, rabbit, Cell Signaling Technology, Danvers, MA, USA),
ß-Actin (A2228, clone AC-74, Sigma-Aldrich), horseradish
peroxidase (HRP)-conjugated rabbit anti-mouse immunoglobulins
(P0260, Dako-Agilent, Santa Clara, CA, USA) and HRP-
conjugated swine anti-rabbit immunoglobulins (P0217, Dako-
Agilent). The Pierce™ ECL Western Kit (Thermo Fisher
Scientific) was used to detect immune complexes which were
then imaged digitally (ChemiDoc™ Touch Imaging System,
Bio-Rad, Hercules, CA, USA). The Fiji software (16) was used
for quantifying Western Blot signals.

Lactate Dehydrogenase (LDH)
Activity Measurement
LDH activity wasmeasured using the Lactate Dehydrogenase Activity
kit (Sigma-Aldrich) according to the manufacturer’s protocol.

Cell Counting
Cell count and viability were determined using a Sigma-Aldrich Cell
Counting Kit-8 (CCK-8), following the manufacturer’s protocol.

Irradiation
Tumor cells were irradiated with a single dose of 0 Gy (sham), 0.5
Gy, 1 Gy and 2 Gy using the Gulmay RS225A device (Gulmay
Medical Ltd., Camberley, UK) at a dose rate of 1.1 Gy/min (15
mA, 200 kV).

Clonogenic Assay
Tumor cells were seeded into 12-well plates and one day later
they were treated with 5 nM NVP-AUY922 for 24 h and then
irradiated with the indicated doses. After irradiation cells were
cultured in fresh, drug-free medium. After 9-10 days colonies
were washed with PBS, fixed with ice-cold methanol and stained
with 0.1% w/v crystal violet. The number of colonies consisting
of ≥ 50 cells were counted automatically by a Bioreader® 3000
(Bio-Sys GmbH, Karben, Deutschland). Survival curves were
fitted to the linear quadratic model using SigmaPlot (Systat
Software Inc, San Jose, CA, USA).

Analysis of Membrane Hsp70 (mHsp70)
Expression by Flow Cytometry
The membrane Hsp70 (mHsp70) phenotype was analyzed by flow
cytometry using the FITC-conjugated cmHsp70.1 monoclonal
antibody (mAb, IgG1, multimmune GmbH, Munich, Germany)
on a FACSCalibur flow cytometer (BD Biosciences, Heidelberg,
Germany). Tumor cells (0.2 x 106 cells) were washed with flow
cytometry buffer (PBS/10% v/v fetal bovine serum, FBS) and
incubated either with the cmHsp70.1 mAb or with an isotype
matched FITC-labeled control immunoglobulin (mouse IgG1
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FITC, 345815, BD Biosciences) on ice in the dark for 30 min. After
a second washing step, viable cells (propidium iodide negative
cells) were gated upon, and the proportion of positively stained
cells were analyzed.

Statistics
Each experiment was performed independently at least 3 times
(biological replicates). Comparative analysis of two or multiple
groups was carried out using the Student’s t-test or the Tukey
Test respectively (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). Data are
presented as mean values with standard deviation (SD).
RESULTS

Hsp90 Inhibition by NVP-AUY922
Increases Cytosolic Hsp70 and Hsp27
Expression in B16F10 and LS174T WT
and LDH−/− Cells
The radiosensitizing effects of the Hsp90 inhibitor NVP-AUY922
was studied using murine (B16F10) and human (LS174T)
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wildtype (WT) and CRISPR/Cas9 lactate dehydrogenases A/B
(LDH−/−) double knockout tumor cells with an impaired lactate
metabolism (6, 15). The Hsp90 inhibitor NVP-AUY922 induced a
comparable and concentration-dependent reduction in the
viability of WT and LDH−/− tumor cells (B16F10, LS174T;
Figures 1A, B). In line with our previous data, a LDHA/B
double knockout significantly reduced the cytosolic Hsp70 and
Hsp27 expression (Figures 1C, D) (6). Despite significant
differences in their basal levels of HSP expression, NVP-AUY922
caused a comparable upregulation of intracellular Hsp70 andHsp27
in WT and LDH−/− cells above the initial levels of WT cells
(Figures 1C, D). Due to a very low Hsp27 expression, Hsp27
levels could not be quantified in B16F10 cells.

Low Hsp90 Inhibitor Concentration
Potentiates Radiosensitivity Especially
in LDH−/− Cells
In line with previous data, clonogenic cell survival assays revealed
that LS174T WT cells are significantly more radioresistant than
LDH−/− cells (Figure 2A) (6). Despite elevated cytosolic HSP
levels a low concentration of the Hsp90 inhibitor NVP-AUY922
A

B D

C

FIGURE 1 | Hsp90 inhibition reduces cell viability in a concentration-dependent manner and increases cytosolic Hsp70 and Hsp27 levels. (A, B) Toxicity assay of
B16F10 (A) and LS174T (B) WT and LDH−/− cells treated with NVP-AUY922 (0, 5, 10, 50, 100 nM) for 24 h. (C, D) Representative immunoblot showing intracellular
Hsp70, Hsp27 and b-Actin levels in B16F10 (C) and LS174T (D) cells upon treatment with NVP-AUY922 (100 nM) for 24 h. Quantification of the heat shock protein
(HSP) levels are shown in the adjacent bar chart (**p ≤ 0.01, ***p ≤ 0.001).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Schwab and Multhoff LDH Inhibition Mediates Radiosensitization
(5 nM) increased radiosensitivity in WT and LDH−/− cells. This
radiosensitizing effect was significantly more pronounced in
LDH−/− cells (Figures 2B–D). Since a low concentration of 5
nM NVP-AUY922 completely inhibited clonogenic cell survival
of B16F10 cells (Supplementary Figure 1) an additive
radiosensitizing effect could not be shown in this cell line.

As demonstrated in Table 1, the D50 value of NVP-AUY922-
treated WT versus LDH−/− cells was 1.54 Gy and 1.0 Gy,
respectively, and the sensitizing enhancement ratio (SER) was
greater 1.20 (1.58 and 1.79, respectively) in both cell types.
Frontiers in Oncology | www.frontiersin.org 4
A downregulation of the Hsp90 client protein AKT
(Figure 2E) confirmed the activity of the Hsp90 inhibitor
NVP-AUY922 at a low concentration of 5 nM.

In contrast to the cytosolic Hsp70 levels, the low membrane
Hsp70 expression (6) remained unaltered low by Hsp90 inhibition
in LDH−/− B16F10 and LS174T tumor cells (Figures 2F, G).
DISCUSSION

Since many cells of different tumor entities including lung, breast,
pancreatic and colorectal overexpress HSPs and are thus more
resistant to therapy including radiotherapy, efforts are being made
to develop HSP inhibitors (1, 17, 18). Although the synthetic,
isoxazole/resorcinol-based Hsp90 inhibitor NVP-AUY922 has
shown promising results in tumor cell lines and a human head
and neck squamous cell carcinoma xenograft model (3, 5), its
hepatotoxicity and a compensatory upregulated expression of
anti-apoptotic HSPs limits its broader clinical application. The
effectiveness of combination therapies using inhibitors targeting
different HSP have therefore recently been investigated, although
clinical data are still missing (2, 19). Our previous data
demonstrated that combining the Heat Shock Factor 1 (HSF1)
knockdown with Hsp90 inhibition using NVP-AUY922
A B

D

E F

G

C

FIGURE 2 | Hsp90 inhibition potentiates radiosensitivity in LS174T cells. (A) Colony forming assay of LS174T WT and LDH−/− cells after irradiation with 0, 0.5, 1 and
2 Gy (**p ≤ 0.01). Colony forming assay of LS174T WT (B) and LDH−/− (C) cells after treatment with a low concentration of NVP-AUY922 (5 nM) for 24 h and
irradiation with 0, 0.5, 1 and 2 Gy (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). (D) Comparison of WT and LDH−/− cells treated with a low dose of NVP-AUY922 (5 nM)
(**p ≤ 0.01). (E) Representative immunoblot showing the expression of AKT and b-Actin in LS174T cells upon treatment with NVP-AUY922 (5 nM) for 24 h. (F, G)
Membrane Hsp70 expression on B16F10 (F) and LS174T (G) cells treated with 100 nM NVP-AUY922 for 24 h, as determined by flow cytometry using the
cmHsp70.1 mAb. The proportion of positively stained cells is shown (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
TABLE 1 | Summary of radiobiological parameters depicted in Figures 2A–D.

LS174T D50 [Gy]
a SERb a [Gy-1]c b [Gy-1]c

WT
0 nM NVP 2.43 1.00 0.04 0.10
5 nM NVP 1.54 1.58 0.08 0.24
LDH−/−

0 nM NVP 1.79 1.00 0.14 0.14
5 nM NVP 1.00 1.79 0.32 0.37
aD50, dose [Gy] required for 50% inactivation of a tumor cell population.
bSER, Sensitizing enhancement ratio = D50 (control)/D50 (drug treatment). A SER greater
than 1.20 indicates a radio sensitization (indicated in bold).
ca and b values were derived from the linear quadratic equation f = exp(-a*x-b*x2).
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radiosensitizes H1339 human lung cancer cells by impairing the
DNA double-strand break repair (20). Furthermore, we have
shown recently that targeting the lactate/pyruvate metabolism in
cancer cells by a pharmacological or genetic inhibition of LDHA/B
results in decreased cytosolic Hsp90, Hsp70 and Hsp27 levels and
a reduced membrane Hsp70 expression (6). Therefore, we studied
the radiosensitization effect of NVP-AUY922 in B16F10 and
LS174T cells having an impaired lactate metabolism, and
correlated radiosensitization with the cytosolic expression of
different HSPs including Hsp27 and Hsp70 and the membrane
Hsp70 positivity. A LDHA/B double knockout diminishes the HSP
transcription and thereby reduces the cytosolic amounts of HSF1-
regulated Hsp27 and Hsp70 (Figures 1C, D). However, the
addition of NVP-AUY922 reversed this beneficial effect and
resulted in a significant upregulation of cytosolic Hsp70 and
Hsp27 in both, WT and LDH−/− cells, even highly above initial
levels (Figures 1C, D).

In contrast to the elevated cytosolic HSP levels, membrane
Hsp70 expression remained unaffected by Hsp90 inhibition in
both tumor cell types (Figures 2F, G). Tumor cells with an
impaired lactate metabolism had a significantly lower membrane
Hsp70 expression than WT cells after Hsp90 inhibition. Since
the radiosensitizing effect of NVP-AUY922, even at low
concentrations, was significantly more pronounced in LDH−/−

compared to WT cells (Figures 2B–D), despite the fact that both
cell types exhibited comparably high cytosolic HSP levels, we
propose that the increased radiosensitivity of LDH−/− cells is
associated with a reduced membrane Hsp70 positivity
(Figures 2F, G) (6). The localization and anchorage of Hsp70
on the plasma membrane of tumor cells is enabled by a
spontaneous interaction of Hsp70 with negatively charged
sphingolipids including sulfogalactosyl ceramide (21) or
globotriaosylceramide Gb3 (22) which are elevated in tumor
cells and reside in cholesterol rich domains also termed lipid
rafts (23). Atomic force microscopy studies (24) as well as the
formation of ion conductance channels (25, 26) revealed a
dimerization/clustering of Hsp70 in artificial lipid membranes
which may affect the stability/fluidity of lipid membranes (27–29).
Interference with the lactate/pyruvate metabolism results in an
altered lipid metabolism (6) which also affects the production of
Gb3. A reduction in the amount of the Hsp70-anchoring
glycolipid Gb3 causes a significant decrease in the amount of
plasmamembrane-boundHsp70 inLDH−/− cells compared toWT
cells. It remains to be determined whether an interference of the
lactate/pyruvate metabolism also affects the trafficking of cytosolic
Hsp70 to the plasma membrane and the release of Hsp70 in
exosomes (30) into the extracellular milieu. Transport inhibitor
studies revealed that membrane transport and exosomal export
of Hsp70 are mediated via a non-classical liposomal but not a
classical ER/Golgi pathway (31). Live cell STED nanoscopy has
demonstrated that tumor cell-to-tumor cell connections are
enabled by tunneling nanotubes that originate form membrane
Hsp70 residing in cholesterol rich microdomains (32). It is
conceivable that these nanotubes and cell interactions might also
be impaired by an interference with the lactate metabolism.

A plasma membrane expression of Hsp70 on tumor cells
correlates with the localization of Hsp70 in lysosomal
Frontiers in Oncology | www.frontiersin.org 5
membranes (33). Functionally, Hsp70 not only stabilizes
plasma but also lysosomal membranes and thereby mediates
resistance to chemical and/or physical-induced membrane
permeabilization, such as anticancer drugs or radiation (13, 33,
34). Murakami et al. have demonstrated that not only cytosolic,
but also plasma membrane-bound Hsp70 affects radiosensitivity
(14). In this study, we demonstrate that the membrane Hsp70
status, not cytosolic Hsp70 levels, regulated by the lactate/
pyruvate metabolism, determines the radiosensitizing effect of
the Hsp90 inhibitor NVP-AUY922 in tumor cells.

Based on these findings, combining LDH and Hsp90
inhibition might provide a promising strategy to combat
radioresistance, however further studies are necessary to
identify more potent LDH inhibitors for clinical use with an
improved efficacy, higher stability and lower off-target effects
(35). The clinically approved, nonsteroidal anti-inflammatory
drug (NSAID) diclofenac could be a potential candidate for
efficiently inhibiting LDH activity (35–38).
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